SCS ENGINEERS
Environmental Consultants \& Contractors 15521 Midlothian Turnpike
Suite 305
Midlothian, VA 23113-7313
804 378-7440 FAX 804 378-7433
www.scsengineers.com

JOB NO.	02218208.17 - Bristol SWP 498			
SHEET NO.		1	OF	1
CALCULATED B		TRW	DATE	2/10/2023
CHECKED BY		CJW	DATE	2/17/2023
SUBJECT	IV - ESTIMATED MAXIMUM SETTLEMENT			

Purpose:

Estimate the maximum amount of settlement of the final cover system that may occur.

Given:

Based upon assumed base grades for the SWP \#498 landfill provided by others and the design final closure grade, the
maximum depth of waste may be estimated as:

Maximum Waste Depth \approx 50

Based upon historical experience and research, SCS estimates the long-term waste settlement as 10\% of the original depth. SCS believes this estimate to be conservative due to the age of the waste and the previous landfill mining activities at the site.

Calculation

Estimated Settlement $=$ Waste Depth \times Settlement $\%=50 \mathrm{ft} \times 10 \%=$ $5 \quad f t$

SCS ENGINEERS
Environmental Consultants \& Contractors 15521 Midlothian Turnpike
Suite 305
Midlothian, VA 23113-7313
804 378-7440 FAX 804 378-7433
www.scsengineers.com

JOB NO.	02218208.17 - Bristol SWP 498			
SHEET NO.	1		OF	1
CALCULATED B		TRW	DATE	2/10/2023
CHECKED BY		CJW	DATE	2/17/2023
SUBJECT	IV -	TRESS	SUBSID	

Purpose:

Determine the stress in the final cover geomembrane (40 mil textured LLDPE) due to potential severe (approx. worse case) differential settlement and compare with the geomembrane break strength.

Given:

The required strength ($\sigma_{\text {reqd }}$) of the geomembrane may be calculated as:

$$
\sigma_{r e q d}=\frac{2 D L^{2} \gamma_{C S} H_{C S}}{3 t\left(D^{2}+L^{2}\right)}
$$

Reference: Design and Construction of RCRA-CERCLA Final Covers
United States Environmental Protection Agency
Office of Research and Development, May 1991

where:		
D	$=$ differential settlement	$=$
L	$=$ radius of settlement area	$=$
\dagger	$=$ thickness of geomembrane	$=$
H_{CS}	$=$ height of cover soil	$=$
$\gamma_{C S}$	$=$ unit weight of cover soil	$=$

assumed 5 foot, see figure assumed 10 feet, see figure 40 mil, see technical specifications
2 feet, see final cover details assumed 110 pcf

The 40 mil LLDPE geomembrane break strength is specified as $60 \mathrm{lb} / \mathrm{in}$ (1500 psi) by the technical specifications.

Calculation

$$
\sigma_{r e q d}=\frac{2 D L^{2} \gamma_{C S} H_{C S}}{3 t\left(D^{2}+L^{2}\right)}=\frac{2(5 f t)(10 f t)^{2}(110 p c f)(2 f t)}{3\left(\frac{040}{12} f t\right)\left((5 f t)^{2}+(10 f t)^{2}\right)}=176,000 \mathrm{lb} / \mathrm{ft}^{2}=1222 \mathrm{lb} / \mathrm{in}^{2}
$$

$1222 \mathrm{lb} / \mathrm{in}^{2}$ is required to resist the stress from assumed differential settlement

The factor of safety is given by:

$$
F S=\frac{\sigma_{\text {break strength }}}{\sigma_{\text {reqd }}}=\frac{1500 \text { psi }}{1222 p s i} \quad=\quad 1.23 \mathrm{OK}
$$

