March Monthly Compliance Report

Solid Waste Permit #588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05-18 | April 10, 2023

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sec	tion			Page		
	Intro	duction		4		
1.0	Gas	Collecti	on	4		
	1.1	Surfac	e and Leachate Collection Emissions	4		
		1.1.1	Surface Emissions	4		
		1.1.2	Leachate Collection Emissions	5		
	1.2	Existin	ng Gas Extraction System Performance	6		
	1.3	Remot	te Monitoring System	6		
	1.4	Large-	Diameter Dual-Phase Extraction Wells	6		
	1.5	VDEQ	Concurrence on Wells	8		
2.0	Side	wall Ode	or Mitigation	8		
	2.1	Perime	eter Gas Collection System	8		
	2.2	Sidewa	all Odor Mitigation System	11		
	2.3	Pilot System Construction				
	2.4	Full Sy	stem Construction	14		
3.0	Wast	Waste Temperature Monitoring				
	3.1	Temperature Monitoring System Design				
	3.2 Temperature Monitoring System Installation					
4.0	Lead	hate Ex	traction and Monitoring	25		
	4.1	Existing System Optimization				
	4.2	Sampl	ling and Analysis	28		
		4.2.1	Sample Collection	28		
		4.2.2	Quality Assurance and Quality Control	29		
		4.2.3	Data Validation	30		
		4.2.4	Laboratory Analytical Results	30		
5.0	Settl	ement l	Monitoring and Management	32		
	5.1	Settle	ment Monitoring and Management Plan	32		
	5.2	Month	ıly Surveys	32		
		5.2.1	Topographic Data Collection	32		
		5.2.2	Settlement Plate Surveys	36		
6.0	Intermediate Cover and EVOH Cover System			37		
	6.1	Interm	nediate Cover Installation	37		
	6.2	EVOH	Cover System Design	37		
	6.3	EVOH	Cover System Procurement	38		

Table of Contents

Sect	ion		Page
	6.4	EVOH Cover System Installation	38
7.0	Storr	n Water Management	38
8.0		ellaneous	
	8.1	Cease Waste Acceptance	
	8.2	Long-Term Plan	
	8.3	Monthly Compliance Reports	
		Community Outreach Program	
	8.4	Community Outreach Program	39
		Eiguros	
		Figures	
Figur		Proposed Landfill Gas Collect Well Location Marker	
Figur		Trailer Landfill Gas Well Drilling Supplies Delivered to the ISWMF	
Figur		Landfill Gas Collection System Piping Delivered to the ISWMF	
Figur		Chlorinated Polyvinyl Chloride Casing for Landfill Gas Extraction Wells	
Figur Figur		Landfill Gas Extraction Well DrillingVacuum Box at the Base of Drill Rig	
Figur		SOMS Phase I Approximate As-Built	
Figur		Phase 1 Sidewall Odor Mitigation System Construction	
Figur		Phase 2 SOMS Construction	
_	e 10.	Phase 2 Sidewall Odor Mitigation System Progress As-Built	
Figur		Average Temperatures within TP-1 on Select Days in March	
Figur		Average Temperatures within TP-2 on Select Days in March	
Figur		Average Temperatures within TP-3 on Select Days in March	
Figur		Average Temperatures within TP-4 on Select Days in March	
Figur Figur		Average Temperatures within TP-5 on Select Days in March	
_	e 17.	Average Temperatures within TP-7 on Select Days in March	
_	e 18.	Average Temperatures within TP-8 on Select Days in March	
_	e 19.	Average Temperatures within TP-9 on Select Days in March	
Figur	e 20.	Estimated Volume of Liquids Removed from Landfill Gas Wells	
_	e 21.	1-Month Elevation Change Color Map	
_	e 22.	3-Month Elevation Change Color Map	
Figur	e 23.	Settlement Plate Locations	36
		Tables	
Table		Summary of March Surface Emissions Monitoring	
Table		Cleanout Pipe Identification	
Table		Sidewall HC Wellhead Gas Quality Measurements	
Table		Summary of Dual Extraction Well Pump Stroke Counter Data	
Table	ð.	Summary of Dual Extraction Well Pump Liquids Removal	26

Table of Contents

Section		Page
Table 6.	Monthly LFG-EW Leachate Monitoring Event Summary	30
Table 7.	Settlement Plate Locations	
Appendic	ces	
Appendix A	Surface Emissions Monitoring Summary Letters	
Appendix B	SCS-FS March Summary Report	
Appendix C	Semi-Monthly Temperature Update Memos	
Appendix D	Solid Waste Permit 588 Daily Borehole Temperature Averages	
Appendix E	Monthly Topography Analysis	
Appendix F	Sample Collection Log, Lab Reports, and Historical LFG-EW Leachate Mon	itoring
	Results Summary	
Appendix G	Monitoring, Maintenance, and Repair Plan Implementation Letter	

INTRODUCTION

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) in accordance with item 8.iii in Appendix A of the Consent Decree between the City and VDEQ. This report covers the Solid Waste Permit #588 landfill during the month of March.

1.0 GAS COLLECTION

The following sections describe the steps the City, in collaboration with its consultants and contractors, has taken to improve the operation, monitoring, and performance of the facility's landfill gas collection and control system (GCCS).

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Quarterly SEM

SCS performed the First Quarter surface emissions monitoring event on March 15, 2023. The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area.

No exceedances were detected during this quarterly monitoring event on the serpentine route or at the pipe penetrations. This monitoring event also represented the weekly monitoring event for that week. A quarterly SEM report will be submitted to the VDEQ as part of the Semi-Annual Report. In addition, monitoring results were presented to the VDEQ in a letter dated March 22, 2023.

1.1.1.2 Weekly SEM

In addition to the standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on March 9, 2023, March 23, 2023, and March 29, 2023. (The quarterly event on March 15, 2023, described in section 1.1.1.1, also represents a weekly SEM event.) These Weekly Surface Emissions Monitoring (SEM) Events were performed in accordance with Section 3.5 of the Plan of Action in Response to the Expert Panel Report, submitted to VDEQ on July 6, 2022.

The monitoring in March generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The surface emission monitoring route included the entire waste footprint of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in

accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint.

SCS submitted letters to VDEQ outlining the results of the March monitoring events on March 15, 2023, March 22, 2023, March 29, 2023, and April 5, 2023. Copies of those submittals are included in Appendix A. Table 1 summarizes the results of the four monitoring events in March.

Description	March 9, 2023	March 15, 2023	March 23, 2023	March 29, 2023
Number of Points Sampled	149	149	149	147
Number of Points in Serpentine Route	100	100	100	100
Number of Points at Surface Cover Penetrations	49	49	49	47
Number of Exceedances	0	0	0	1
Number of Serpentine Exceedances	0	0	0	0
Number of Pipe Penetration Exceedances	0	0	0	1

Table 1. Summary of March Surface Emissions Monitoring

Out of the 594 recorded points monitored as part of the four March monitoring events, only one exceedance was found. The exceedance was a pipe penetration exceedance located at gas extraction well (EW) 52. Following the surface emissions monitoring event, the liquids removal pump was repaired and the flexible hose connecting the well to the header piping was replaced. This location will be monitored again during the week of April 3, 2023 to confirm that surface emissions have been reduced at this location.

1.1.2 Leachate Collection Emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill on March 1, 2023, and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in SCS-FS's summary report for the month of March dated April 7, 2023. A copy of this report is included in Appendix B. The monitoring data for the clean-outs at the southern end of the landfill are listed as LC01 – LC10. The monitoring data for the clean-outs at the northern end of the landfill are listed as NC01 – NC10. Table 2 presents the cleanout pipe identification labeling convention, which is based on site records and review of correspondence.

Northern Cleanouts Southern Cleanouts ID# ID# Description Description NC01 Leachate East LC01 **Gradient West** NC02 Leachate Center LC02 **Gradient East** NC03 LC03 Leachate West Leachate Center NC04 Witness East LC04 Witness East

Table 2. Cleanout Pipe Identification

N	orthern Cleanouts	Southern Cleanouts		
ID # Description		ID#	Description	
NC05	Witness Center	LC05	Leachate West	
NC06	Witness West	LC06	Gradient Center West	
NC07	Gradient East	LC07	Leachate East	
NC08	Gradient Center East	LC08	Gradient Center East	
NC09	Gradient Center West	LC09	Leachate West	
NC10	Gradient West	LC10	Witness Center	

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in SCS-FS's summary report for the month of March.

1.3 REMOTE MONITORING SYSTEM

In the fall of 2022, SCS Remote Monitoring & Control (SCS-RMC) installed 25 industrial internet of things (IIoT) temperature sensors in the landfill gas well-heads. The purpose of the sensors is to record and transmit well-head gas temperatures via a cellular connection to a database managed by SCS-RMC. As outlined in previous monthly compliance reports for the SWP #588 Landfill the system is currently undergoing commissioning.

The City is providing average temperatures recorded by the sensors to VDEQ on a daily basis via e-mail. In addition, SCS prepares a semi-monthly report with analysis of this data. The semi-monthly reports for March are included in Appendix C.

1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS completed design work on an expansion of the existing GCCS during the month of December. The proposed expansion includes at least 5 large diameter dual-phase extraction wells. SCS submitted the design to VDEQ prior to December 31, 2022. The City commenced solicitation of contractor's bids for this project by advertising for bids and received one bid for the project from SCS Field Services Construction (SCS-CONS). On January 26, 2023 the City awarded the project to SCS-CONS.

Figure 1. Proposed Landfill Gas Collect Well Location Marker

During the week of March 6, 2023, the proposed locations of the large diameter dual extraction wells and the perimeter LFG wells described in Section 2.1 were surveyed and marked in the field by the City's surveyor. An example of a proposed well location marked in the field is shown in Figure 1. In some cases the proposed well locations were modified to avoid conflicts with existing infrastructure. Proposed well elevations were recorded and reviewed by SCS. The proposed well scheduled was modified based on the surveyed well locations and elevations.

During the week of March 20, 2023 SCS-CONS began the process of mobilizing equipment to the site. Figures 2 and 3 show examples of tools and supplies mobilized to the site.

Figure 3. Landfill Gas Collection System Piping Delivered to the ISWMF

During the week of March 20, 2023 chlorinated polyvinyl chloride (CPVC) casings for the perimeter LFG wells described in Section 2.1 also arrived on site. Due to the longer lead times associated the steel casings required for the large diameter dual extraction wells, those casings were not delivered during the month of March. Drilling of the perimeter LFG wells began during the last week of March and those activities are described in Section 2.1.

1.5 VDEQ CONCURRENCE ON WELLS

As described in previous monthly compliance reports, the City engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. Upon completion of the landfill gas collection system, SCS will submit updated as-built drawings depicting the completed system to VDEQ. The City intends to delay installation of temporary or final cover systems until the City and VDEO agree that the GCCS is sufficient.

2.0 SIDEWALL ODOR MITIGATION

The City initiated design and construction work to address fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are outlined in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS's design of the GCCS expansion outlined in Section 1.4 included perimeter LFG wells. These wells will be placed closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells will supplement the sidewall odor mitigation system described in section 2.2. The City completed bidding and contracting of construction for the perimeter LFG wells as part of the large diameter dual extraction well installation described in Section 1.4.

During the week of March 20, 2023 the CPVC casings for the perimeter LFG wells were delivered to the site along with other equipment and supplies required for construction. The casings delivered to site are shown in Figure 4.

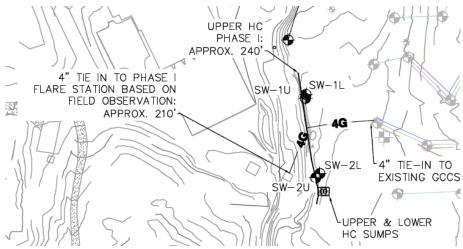
Figure 4. Chlorinated Polyvinyl Chloride Casing for Landfill Gas Extraction Wells

On March 28, 2023 a pre-construction meeting was held with SCS, SCS-CONS, and the City in attendance. Drilling of perimeter LFG wells began on March 29, 2023. Figure 5 shows drilling operations. Drilling of perimeter wells EW-69, EW-70, EW-73, EW-76, and EW-78 was completed in March. Approximately 438 vertical feet of landfill gas extraction wells were drilled during the month of March. This length represents approximately 25 percent of the total vertical length of perimeter LFG wells proposed.

Figure 5. Landfill Gas Extraction Well Drilling

SCS-CONS is utilizing a vacuum box to reduce emissions from partially drilled wells. The vacuum box is placed over partially constructed wells when drilling will not be completed during a single day. The vacuum box covers the open well and is connected to the active GCCS. Landfill gas is conveyed through the vacuum box to the GCCS so it is not emitted. The vacuum box may also be utilized during drilling to reduce emissions during drilling. The vacuum box utilized for this project is shown in Figure 6.

Figure 6. Vacuum Box at the Base of Drill Rig


Drilling of the perimeter LFG wells will continue during the month of April.

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system (SOMS) during the month of October. On October 20, 2022 SCS provided an overview of the proposed system to VDEO staff. The design of this system was prepared and submitted to VDEQ on November 1, 2022. A project manual detailing the specifications of the system was developed concurrently with the design of the system.

2.3 PILOT SYSTEM CONSTRUCTION

SCS-CONS completed substantial construction of Phase 1 of the SOMS during the month of February, and began monitoring Phase 1 connected Horizontal Collector (HC) wellheads during the month of March. Phase 1 is considered the pilot system portion of the SOMS. SCS submitted a design engineer certification to VDEO on February 10, 2023 that documented the substantial completion of Phase 1 of the SOMS. Figure 7 shows the Phase 1 as-built, which includes the locations of the HC wellheads and HC sumps installed in Phase I, as well as the 4" header connection to the existing LFGCCS.

SOMS Phase I Approximate As-Built Figure 7.

measurements of gas quality were taken on a weekly basis during the month of March. A summary

Phase 1 was initially connected to an auxiliary flare located near the system. HC wellhead of those measurements is shown in Table 3. Table 3. Sidewall HC Wellhead Gas Quality Measurements

Device ID	Date/Time	CH ₄ (%)	CO ₂ (%)	O ₂ (%)
SW1L	3/9/2023 9:50:28 AM	6.4	14.7	15.2
SW1L	3/10/2023 12:10:17 PM	22.4	30.9	7.5
SW1L	3/15/2023 3:16:41 PM	14.2	23.8	11.0
SW1L	3/17/2023 3:30:52 PM	34.9	45.3	0.8

Device ID	Date/Time	CH ₄ (%)	CO ₂ (%)	O ₂ (%)
SW1L	3/20/2023 1:40:23 PM	4.0	12.3	15.4
SW1L	3/23/2023 9:34:25 AM	9.0	22.7	11.3
SW1L	3/28/2023 9:33:52 AM	8.2	30.5	11.3
SW1U	3/9/2023 9:54:02 AM	0.1	1.3	23.0
SW1U	3/10/2023 12:06:59 PM	1.3	4.1	19.1
SW1U	3/17/2023 3:34:03 PM	13.0	26.9	12.2
SW1U	3/23/2023 9:36:43 AM	1.1	3.4	19.5
SW1U	3/28/2023 9:36:22 AM	0.8	11.0	21.7
SW2L	3/9/2023 9:57:28 AM	18.4	28.0	10.4
SW2L	3/10/2023 12:00:09 PM	42.6	50.0	0.8
SW2L	3/15/2023 3:09:57 PM	30.2	43.8	4.8
SW2L	3/17/2023 3:38:53 PM	40.6	56.7	0.0
SW2L	3/20/2023 1:45:05 PM	24.8	42.1	6.3
SW2L	3/23/2023 9:39:47 AM	28.0	46.1	4.4
SW2L	3/28/2023 9:39:12 AM	28.3	54.5	4.5
SW2U	3/9/2023 10:06:59 AM	0.6	2.2	22.8
SW2U	3/10/2023 12:03:14 PM	30.0	55.7	1.7
SW2U	3/15/2023 2:59:18 PM	17.2	35.5	9.3
SW2U	3/17/2023 3:41:57 PM	32.0	63.3	0.2
SW2U	3/20/2023 1:49:35 PM	10.6	25.1	14.2
SW2U	3/23/2023 9:42:07 AM	13.2	31.3	11.5
SW2U	3/28/2023 9:41:32 AM	13.5	45.4	11.1

Sidewall wellhead lower collector 1 (SW1L) is connected to the horizontal collector placed in waste inside the landfill liner close to the northern limit of Phase 1. Measurements of gas composition taken at SW1L indicate that methane levels are low, but that landfill gas is being captured by the system. Sidewall wellhead upper collector 1 (SW1U) is connected to the horizontal collector placed outside of the liner and waste. SW1U is close to the northern limit of Phase 1. Measurements of gas composition taken at SW1U indicate that ambient air is being pulled in at this location. This is expected for the proximity of this section of the horizontal collector to the Phase 1 temporary termination.

Sidewall wellhead lower collector 2 (SW2L) is connected to the horizontal collector placed in waste inside the landfill liner close to the center of Phase 1. Measurements of gas composition taken at SW1L indicate that methane levels are lower than typical of landfill gas collection systems, but that landfill gas is being captured by the system. Sidewall wellhead upper collector 2 (SW2U) is connected to the horizontal collector placed outside of the liner and waste. SW2U is close to the center of Phase 1. Measurements of gas composition taken at SW2U indicate that methane levels are low, but that landfill gas is being captured by the system.

The fact that landfill gas is being collected by both the upper and lower collectors is evidence that the system is capturing fugitive emissions. This data supports the construction of Phase 2 utilizing the same general configuration. SCS-FS will continue to monitor Phase 1 of the system during the month of April.

Soil cover was installed on top of Phase 1 of the system during the remainder of March. Figure 8 shows soil placement on Phase 1 of the system. Phase 1 collectors were connected to the existing LFG system via a 4-inch HDPE pipe with isolation valves on February 16, 2023. Wellheads were installed at 4 locations on Phase 1 of the SOMS. Gas collected from the SOMS is currently routed to the primary flare and power generation facility. On March 2, 2023, SCS-CON made repairs to the 4-inch HDPE pipe layout to correct fall for proper condensate drainage.

Figure 8. Phase 1 Sidewall Odor Mitigation System Construction

2.4 FULL SYSTEM CONSTRUCTION

SCS-CONS continued construction of Phase 2 of the SOMS. Lower horizontal collector placement has been completed along the west sidewall south of Phase 1, the south sidewall, the southern portion of the east sidewall, and now further toward the northeastern sidewall. Figure 9 shows Phase 2 construction activities. The crew continued the installation of liquids collection sumps at low elevation points, and wellheads were installed every 100'. Phase 2 lower collector construction progress, including HC wellhead and sump locations, is shown in the approximate as-built depicted as Figure 10.

Figure 9. Phase 2 SOMS Construction

Some sections of sidewall were found to have discontinuities in the existing liner. Work proceeded along the inconsistent liner conditions based on the procedures proposed as a result of discussions between SCS, the City, and VDEQ.

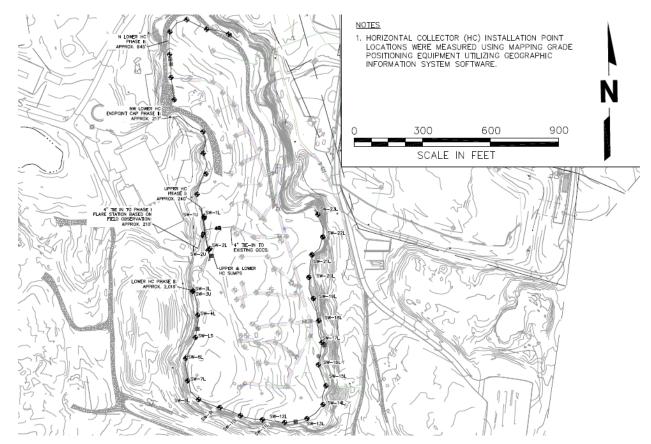


Figure 10. Phase 2 Sidewall Odor Mitigation System Progress As-Built

Throughout the month of March, SCS-CON continued trenching for Phase 2 installation. During the week of March 13, 2023 SCS-CON began placing the geomembrane on top of the lower collector. This installation process continued during the remainder of the month.

3.0 WASTE TEMPERATURE MONITORING

On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are described in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing was placed in each borehole and the hole was backfilled around the casing with aggregate. A series of temperature sensors was placed inside the steel casing. At the top of each borehole, an IIoT transmitter collects the data from the sensors and transmits it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

Installation of the in-situ Landfill Temperature Monitoring System began in October of 2022 and installation of replacement sensors was completed in February of 2023. Details of construction progress can be found in the monthly compliance reports for the SWP #588 Landfill.

SCS began collecting temperature data on a daily basis on February 15, 2023. The temperature sensors continued to transmit temperature data from all 9 casings during the month of March. Average daily temperatures recorded by the sensors for the Month of March are included in Appendix D. Each week the average temperatures from Wednesday of that week are downloaded and compared to temperatures recorded during the previous week. The average daily temperatures recorded on Wednesdays during the month of March are shown in Figures 9 through 17 on the following pages. For reference average temperatures recorded on February 15, 2023 (the first day that the sensors collected data) are also shown.

Figure 11 shows daily average temperatures in Temperature Probe 1 (TP-1) on February 15, 2023; March 1, 2023; March 2, 2023; March 2, 2023; March 29, 2023. On average, during the month of March the average variation in temperatures along the length of the probe was approximately 2 degrees Fahrenheit. TP-1 was originally drilled to a depth of 180 feet, but the contractor was unable to install the casing beyond a depth of 160 feet. TP-1 is equipped with an ambient temperature sensor above the waste surface, but a software issue prevented that sensor from reporting during the month of February. A software update resolved the ambient temperature reporting issue and ambient temperatures were recorded during the month of March.

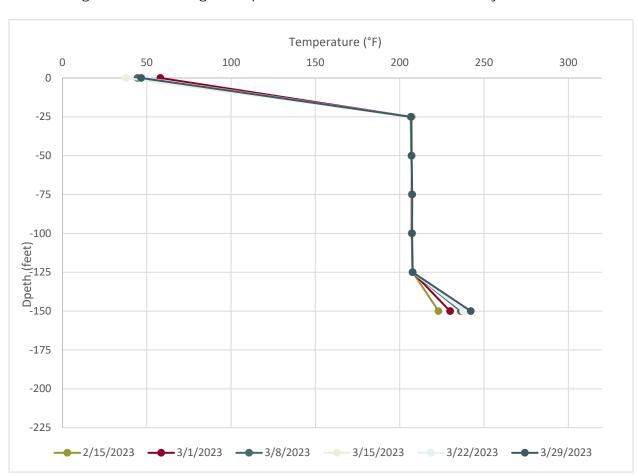


Figure 11. Average Temperatures within TP-1 on Select Days in March

Figure 12 shows daily average temperatures in Temperature Probe 2 (TP-2) on February 15, 2023; March 1, 2023; March 1, 2023; March 2, 2023; March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 42 degrees Fahrenheit. TP-2 was originally drilled to a depth of 160 feet. TP-2 is equipped with an ambient temperature sensor above the waste surface, but a software issue prevented that sensor from reporting during the month of February. A software update resolved the ambient temperature reporting issue and ambient temperatures were recorded during the month of March.

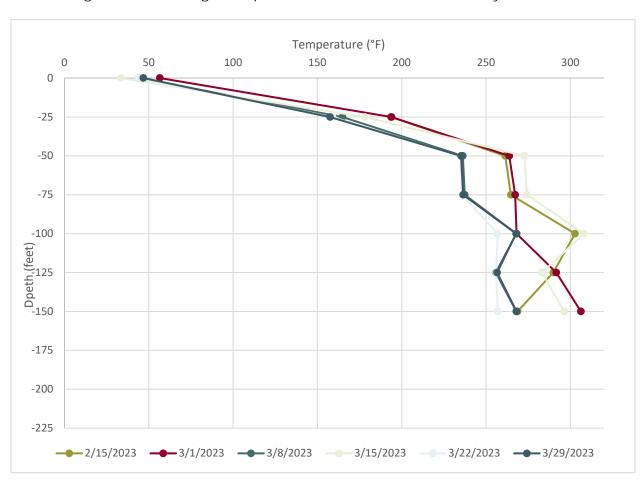
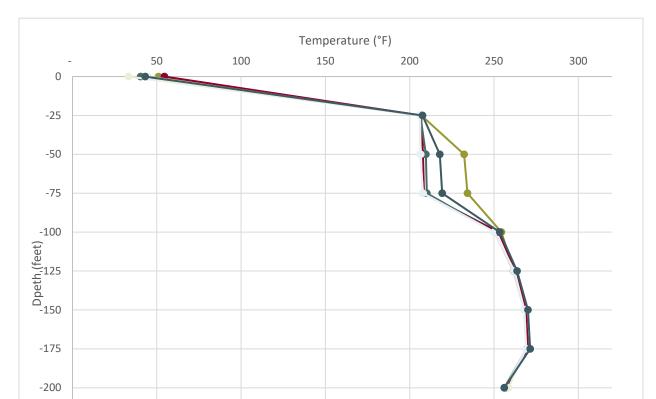



Figure 12. Average Temperatures within TP-2 on Select Days in March

Figure 13 shows daily average temperatures in Temperature Probe 3 (TP-3) on February 15, 2023; March 1, 2023; March 1, 2023; March 2, 2023; March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 5 degrees Fahrenheit.

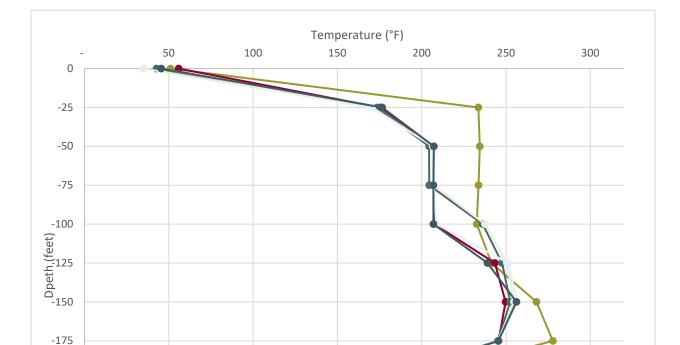

-2/15/2023 ---3/1/2023 ---3/8/2023 ---3/15/2023 ---

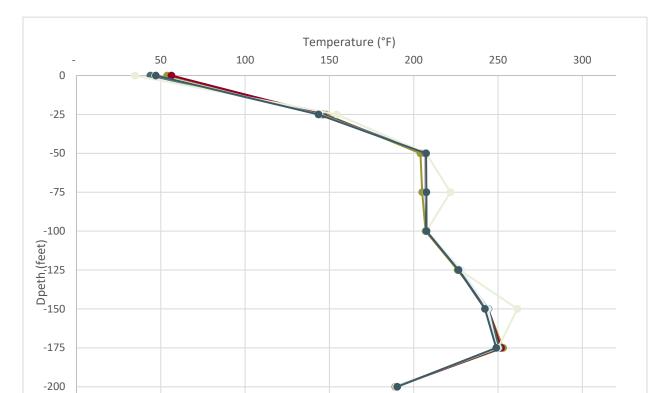
Figure 13. Average Temperatures within TP-3 on Select Days in March

-225

3/22/2023 --- 3/29/2023

Figure 14 shows daily average temperatures in Temperature Probe 4 (TP-4) on February 15, 2023; March 1, 2023; March 1, 2023; March 2, 2023; March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 8 degrees Fahrenheit.

-2/15/2023 ---3/1/2023 ---3/8/2023 ---3/15/2023 ---


Figure 14. Average Temperatures within TP-4 on Select Days in March

-200

-225

3/22/2023 --- 3/29/2023

Figure 15 shows daily average temperatures in Temperature Probe 5 (TP-5) on February 15, 2023; March 1, 2023; March 1, 2023; March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 6 degrees Fahrenheit.

-2/15/2023 ---3/1/2023 ---3/8/2023 ---3/15/2023 ---

Figure 15. Average Temperatures within TP-5 on Select Days in March

-225

3/22/2023 --- 3/29/2023

Figure 16 shows daily average temperatures in Temperature Probe 6 (TP-6) on February 15, 2023; March 1, 2023; March 8, 2023, March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 25 degrees Fahrenheit. TP-6 was originally drilled to a depth of 208 feet and casing was installed to the full depth. During the installation of the installation of replacement sensors, a blockage within the casing prevented placement of sensors below the 125-foot depth.

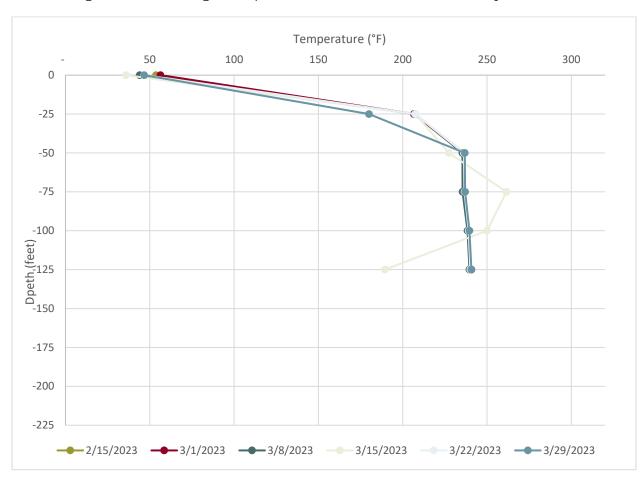


Figure 16. Average Temperatures within TP-6 on Select Days in March

Figure 17 shows daily average temperatures in Temperature Probe 7 (TP-7) on February 15, 2023; March 1, 2023; March 1, 2023; March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 2 degrees Fahrenheit.

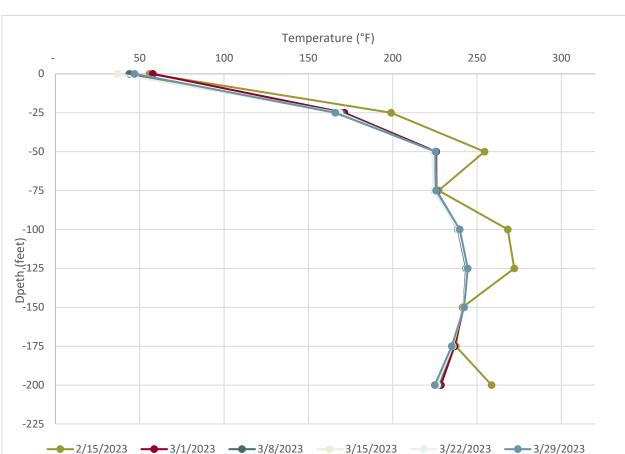
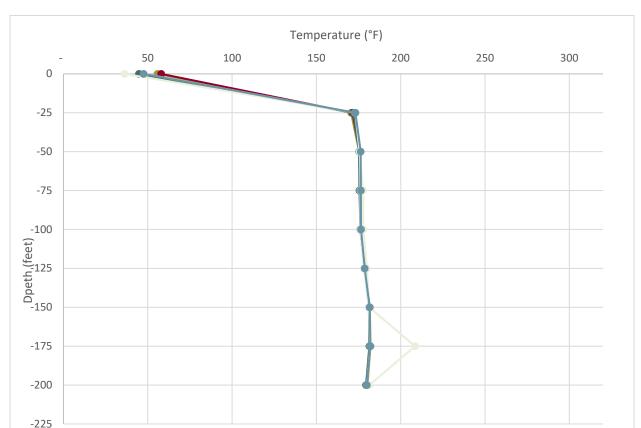



Figure 17. Average Temperatures within TP-7 on Select Days in March

Figure 18 shows daily average temperatures in Temperature Probe 8 (TP-8) on February 15, 2023; March 1, 2023; March 1, 2023; March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 5 degrees Fahrenheit.

→ 2/15/2023 **→** 3/1/2023 **→** 3/8/2023 **→** 3/15/2023 **→** 3/22/2023 **→** 3/29/2023

Figure 18. Average Temperatures within TP-8 on Select Days in March

Figure 18 shows daily average temperatures in Temperature Probe 9 (TP-9) on February 15, 2023; March 1, 2023; March 1, 2023; March 15, 2023, March 22, 2023; and March 29, 2023. During the month of March the average variation in temperatures along the length of the probe was approximately 1 degree Fahrenheit.

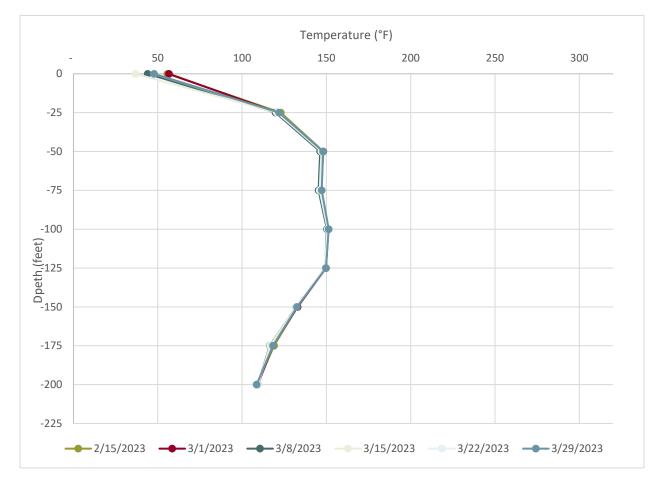


Figure 19. Average Temperatures within TP-9 on Select Days in March

4.0 LEACHATE EXTRACTION AND MONITORING

The City has begun taking steps to improve the extraction of leachate from the waste mass and collect analytical data on leachate characteristics. The following sections detail steps taken to achieve these goals.

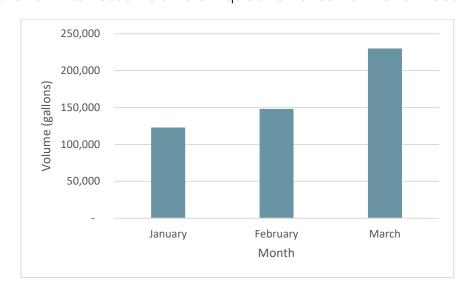
4.1 EXISTING SYSTEM OPTIMIZATION

During mobilizations to conduct surface emissions monitoring outlined in Section 1.1.1, SCS also collected stroke counter data from the pumps installed in the GCCS extraction wells. Stroke counts were collected from 18 wells on March 6, 2023; March 15, 2023; March 23, 2023; and March 29, 2023. The data collected is summarized in Table 4. Cells marked with "*" represent dates when the pump was removed from the well for maintenance.

Table 4. Summary of Dual Extraction Well Pump Stroke Counter Data

Well	March 6, 2023	March 15, 2023	March 23, 2023	March 29, 2023
EW64	98033	98033	98081	98083
EW61	212085	212085	212104	212105
EW50	785764	822928	839985	845964
EW49	439650	439671	439674	439674
EW60	*	*	*	*
EW52	*	*	*	*
EW68	1812384	1813237	1821390	1833338
EW51	*	*	240234	281076
EW67	300396	347164	347188	347190
EW54	*	*	*	170975
EW55	*	*	*	*
EW58	1615441	1615455	1615455	1758091
EW59	1103346	1224576	1366734	1371333
EW57	*	190761	224470	248610
EW65	3871	3890	3942	3950
EW63	48067	48071	48072	48073
EW62	113994	113995	114010	114011
EW53	1852600	1852600	1852617	1852618

Based on this data and stroke counts taken on March 29, 2022, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke correlates to approximately 0.3 gallons of liquid removed from the well. This data will then be used to repair or replace pumps or replace nonfunctional stroke counters. Estimates of the quantities of liquids removed between the reading dates is shown in Table 5.


Table 5. Summary of Dual Extraction Well Pump Liquids Removal

Well	Liquids Removed (gal) February 28, 2023 to March 6, 2023	Liquids Removed (gal) March 6, 2023 to March 15, 2023	Liquids Removed (gal) March 15, 2023 to March 23, 2023	Liquids Removed (gal) March 23, 2023 to March 30, 2023
EW64	0	0	15	1
EW61	0	0	6	1
EW50	2324	8826	5117	1794
EW49	1	1	1	0
EW60	0	0	0	0

Well	Liquids Removed (gal) February 28, 2023 to March 6, 2023	Liquids Removed (gal) March 6, 2023 to March 15, 2023	Liquids Removed (gal) March 15, 2023 to March 23, 2023	Liquids Removed (gal) March 23, 2023 to March 30, 2023
EW52	0	0	0	0
EW68	253	4	2446	3584
EW51	0	0	0	12253
EW67	14028	2	2	1
EW54	0	0	0	19398
EW55	0	0	0	0
EW58	0	4	0	42791
EW59	5305	31064	42647	1380
EW57	0	19697	10113	7242
EW65	0	6	16	3
EW63	1	1	1	1
EW62	0	0	5	1
EW53	10	0	5	1

SCS estimates that approximately 230,000 gallons of liquids were removed from the landfill gas collection and control system during the month of March. This is an increase of approximately 82,000 gallons when compared to the previous month. The change in landfill gas liquids removal over the last three months is depicted in Figure 20.

Figure 20. Estimated Volume of Liquids Removed from Landfill Gas Wells

The City and SCS understand that operations of dewatering pumps are critical to address issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals.

During the construction of the LFGCCS expansion outlined in Sections 1.4 and 2.1, multiple types of leachate extraction pumps will be installed. After installation, the City and SCS will evaluate the performance of those pumps. Based on that evaluation, the City will select the pump type that is most effective given the landfill conditions.

During February, six pumps were removed and taken back to the manufacturer's facility (Pump One) for cleaning and repair. These pumps were returned to the site in March and reinstalled in their respective extraction wells.

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit #588 Landfill and the plan was subsequently revised on December 1, 2022. Refer to the November and December Compliance Reports for the SWP #588 Landfill for additional information.

4.3 SAMPLING AND ANALYSIS

4.3.1 Sample Collection

On March 6, 2023, SCS collected leachate samples from two Dual Phase LFG-EWs (EW-58 and EW-59). At the time of sample collection dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded. The sample collection log is included in **Appendix F**.

SCS' field staff was not able to collect samples from the other wells for the following reasons:

- Pumps were not running at the time of sample collection in the following wells: EW-49, EW-50, EW-51, EW-53, EW-61, EW-62, EW-67, and EW-68.
- There was no pump in EW-52, EW-54, EW-56, EW-57, and EW-60 at the time of sample collection.
- The pump was not running and the well was too tall to safely remove well head on well EW-49.
- The pump was not running as there was no air supply connected to the pump for wells EW-55 and EW-63.
- The pump was disconnected for wells EW-64 and EW-65.

The samples were delivered to Enthalpy Analytical (Enthalpy) in Richmond, Virginia and Weck Laboratories, Inc (Weck) in City of Industry, California for analysis. The Enthalpy's Virginia Division of Consolidated Laboratory Services (VELAP) certifications are provided on the certificate of analysis (COA) included in **Appendix F**. The samples were analyzed for the parameters utilizing the analytical methods outlined in the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan.

4.3.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for volatile organic compound (VOC) analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A brief summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents
 and manipulations to which site samples are subjected. Positive results in the method
 blanks may indicate either contamination of the chemical reagents or the glassware and
 implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. An MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of
 interest for single parameter methods and selected parameters for multi-parameter
 methods according to the appropriate analytical method. LCS samples are prepared and
 analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to
 monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are similar to the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

Field and laboratory QA/QC also involves the routine collection and analysis of duplicate field samples. These samples are collected at a rate of one per sample event. A duplicate is a separate sample collected independently in such a manner that it equally represents the medium at a given time and location. Co-located samples provide intra-laboratory precision information for the entire measurement system, including sample collection, homogeneity, handling, shipping, storage, preparation, and analysis.

No trip blank detects were identified for the March 2023 monitoring event. A biological oxygen demand (BOD) concentration of 0.4 milligrams per liter was detected in the March 2023 method blank. The laboratory analysis report for the February 2023 monitoring event trip blank is included in

Appendix F. The March 2023 monitoring event laboratory QA/QC reports, including the method blank results, are included in the COAs in **Appendix F**.

4.3.3 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance¹. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory contaminant parameter detections less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis. No leachate results were flagged with a "B" qualifier for the March 2023 monitoring event as no constituents were detected in the March 2023 trip blank and BOD was detected in the leachate samples as concentrations greater than five times the concentration detected in the March 2023 method blank.

4.3.4 Laboratory Analytical Results

Chemical characteristics of leachate samples collected from extraction wells EW-58 and EW-59 are summarized in **Table 6**. The associated COA is included in **Appendix F**. Parameter results from the March 2023 and previous monitoring events (November 2022 – February 2023) are presented on a table in **Appendix F**.

Table 6.	Monthly	LFG-EW Leachat	o Monitorina	Evant Summary
Table 0.	IVIOLIUIIV	LI G-LW LEachai		LVEIIL JUIIIIII V

Well ID	EW-58	EW-59	LOD	100
Parameter	March 2023 C	oncentration	LOD	LOQ
Ammonia as N (mg/L)	667	1480	73.1	100
Biological Oxygen Demand (mg/L)	1570	9190	0.2	2
Chemical Owigen Demand (mg/l)	1690		500	500
Chemical Oxygen Demand (mg/L)		10600	2000	2000
Nitrate as N (mg/L)	ND	ND	1.04	5.1
Nitrite as N (mg/L)	ND	ND	1	5
Total Kjeldahl Nitrogen (mg/L)	879	1920	33.6	100
Total Recoverable Phenolics (mg/L)	0.4		0.03	0.05

¹ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. January 2017. United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. January 2017.

Monthly LFG-EW Leachate Monitoring Event Summary Table 6.

Well ID	EW-58	EW-59	LOD	100
Parameter	March 2023 C	March 2023 Concentration		LOQ
		13.9	0.3	0.5
SEMI-VOLATILE ORGANIC COMPOU	ND (ug/L)			
Anthracene		ND	51	102
	ND		117	234
TOTAL METALS (mg/L)				
Arsenic	1.07	1	0.01	0.02
Barium	0.406	0.683	0.005	0.01
Cadmium	ND	ND	0.002	0.004
Chromium	0.213	0.188	0.008	0.01
Copper	ND	ND	0.008	0.01
Lead	ND	ND	0.006	0.01
Mercury	ND		0.0002	0.0002
		ND	0.0004	0.0004
Nickel	0.1254	0.1033	0.007	0.01
Selenium	ND	ND	0.04	0.05
TOTAL METALS (mg/L)				
Silver	ND	ND	0.005	0.01
Zinc	0.0689	0.0538	0.01	0.01
VOLATILE FATTY ACIDS (mg/L)				
Acetic Acid	ND	640		500
Butyric Acid	ND	ND		500
Propionic Acid	ND	ND		500
VOLATILE ORGANIC COMPOUNDS (L	ıg/L)			
2-Butanone	257	2770	30	100
Acetone	375		70	100
		6810	700	1000
Benzene	1540	727	4	10
Ethylbenzene	131	71.5	4	10
Tetrahydrofuran	353	464	100	100
Toluene	182	98.1	5	10
Xylenes, Total	240	111	10	30

^{--- =} not available

LOD = laboratory's Limit of Detection
LOQ = laboratory's Limit of Quantitation
mg/L = milligrams per liter
ND = Not Detected

ug/L = micrograms per liter

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS submitted a settlement monitoring and management plan to VDEQ on November 15, 2022. Refer to the November Monthly Compliance Report for the SWP #588 Landfill for additional information.

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit #588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On March 8, 2023 the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 1 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by SCS using photogrammetric methods on February 7, 2023. A drawing depicting the February 7, 2023 topography is included as Sheet 2 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 3,800 cubic yards. During that same time period approximately 6,300 cubic yards of construction related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume increase of approximately 2,500 cubic yards.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 21. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 3 in Appendix E.

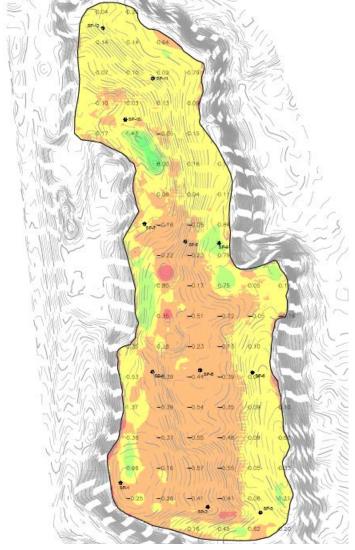


Figure 21. 1-Month Elevation Change Color Map

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 0.5 feet or more in some areas. Settlement in the northern portion of the landfill was generally less substantial. The eastern side of the landfill exhibited an increase in elevation, likely due to sediment deposition during storm events and waste relocation associated with construction of the Sidewall Odor Mitigation System. Increases in elevation along the western edge of the landfill are most likely due to installation of the Sidewall Odor Mitigation System. Soil stockpile locations associated with the Sidewall Odor Mitigation System showed a negative elevation change due to material removal from the stockpiles.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation change within the waste was less than 0.1 feet.

SCS also compared the topographic data collect in March to the topographic data collected on December 2, 2022. Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 18,700 cubic

yards. During that same time period approximately 6,200 cubic yards of construction related fill were placed on the landfill. This fill was primarily soil placed as part of the sidewall odor mitigation system construction. This resulted in a net volume decrease of approximately 12,500 cubic yards.

The largest settlement occurred primarily in the southern end of the landfill where the waste settled by approximately 2 feet or more in some areas. Settlement in the northern portion of the landfill was generally less substantial. The eastern side of the landfill exhibited an increase in elevation, likely due to sediment deposition during storm events and waste relocation associated with construction of the Sidewall Odor Mitigation System. Increases in elevation along the western edge of the landfill are most likely due to installation of the Sidewall Odor Mitigation System. There were some large variations in elevation associated with soil stockpiling.

A visual depiction of settlement and filling at the landfill during this time is depicted in Figure 22. Areas in red indicate where elevations decreased and areas in green indicate areas where elevations have increased. Darker colors indicate greater changes in elevation. This drawing is also included as Sheet 4 in Appendix E.

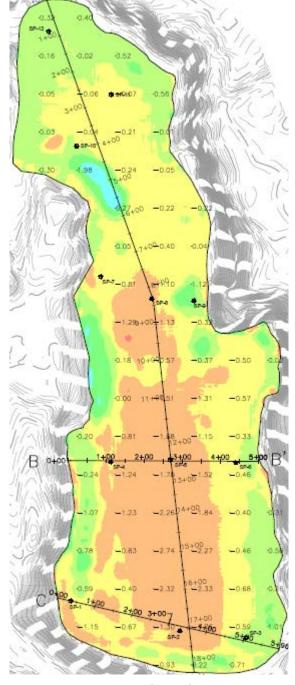


Figure 22. 3-Month Elevation Change Color Map

SCS will collect topographic data covering the landfill surface again in April using photogrammetric methods via UAV. This data will be compared to the data collected in February.

5.2.2 Settlement Plate Surveys

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit #588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were spray painted orange to improve visibility.

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plates were surveyed again on December 13, 2022; January 3, 2023; February 6, 2023; and March 8, 2023. The settlement plate locations are depicted in Figure 23 on Sheet 1 in Appendix E. The surveyed coordinates² and elevation changes of the settlement plates are shown in Table 7.

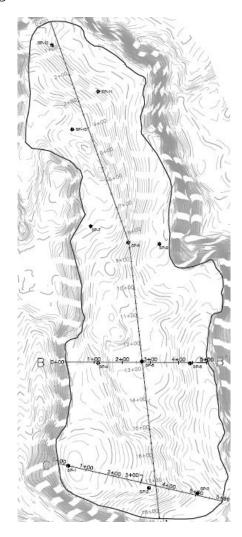


Figure 23. Settlement Plate Locations

² Settlement plate locations and coordinates are based on a local coordinate system.

Table 7. Settlement Plate Locations

Settlement Plate	Northing	Easting	Elevation on March 8, 2023	Elevation Change Since February 6, 2023	Elevation Change Since Installation
SP-1	3,397,886.2	10,412,078.1	1,833.0	-0.4	-1.5
SP-2	3,397,806.5	10,412,364.3	1,807.8	-0.5	-2.8
SP-3	3,397,787.3	10,412,536.7	1,783.4	-0.1	-0.3
SP-4 ³	3,398,250.2	10,412,185.2	1,814.3	-0.8	-3.2
SP-5	3,398,256.3	10,412,338.7	1,798.5	-0.3	-2.2
SP-6	3,398,249.4	10,412,510.8	1,777.0	-0.1	-0.7
SP-74	3,398,737.4	10,412,157.3	1,826.8	-1.4	-1.8
SP-8	3,398,679.2	10,412,290.7	1,805.6	-0.4	-1.7
SP-9	3,398,673.1	10,412,400.6	1,785.2	-0.2	-0.7
SP-10	3,399,080.4	10,412,092.2	1,839.6	-0.1	-0.6
SP-11	3,399,216.1	10,412,183.7	1,816.1	0.0	-0.3
SP-12	3,399,382.0	10,412,019.6	1,810.4	0.0	-0.3

The settlement plates will be surveyed again during the month of April. The elevations surveyed will be compared to the elevations surveyed the previous months.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch thick intermediate cover across the entire landfill prior to October 10, 2022. The cover was placed in accordance with 9VAC20-81-140(B)(1)(d). SCS coordinated with the City to dig a series of test holes to verify cover thickness in select locations. Details of these verifications were discussed in the October Monthly Compliance Report for the SWP #588 Landfill.

6.2 EVOH COVER SYSTEM DESIGN

SCS submitted responses, including revised documents, on March 20, 2023 to comments received from VDEQ concerning the Interim EVOH Cover System Preliminary Design Plans. The submitted

³ Based on field observations SP-4 appears to have been disturbed during grading on an adjacent roadway.

⁴ Based on field observations SP-7 appears to have been disturbed during grading on an adjacent stockpile.

documents included a revised operations manual and settlement calculations for the proposed stormwater basin.

SCS is preparing construction drawings for the EVOH Cover System, including revisions discussed in the response to comments letter. The construction drawings build upon the preliminary design plans. Additions to the construction drawings include additional design cross sections, pre and post stormwater management plans, landfill gas management plans and details, access road design, and other items.

SCS is also drafting specifications and contract documents for the construction of the EVOH Cover System.

6.3 EVOH COVER SYSTEM PROCUREMENT

Drawings used for the purposes of bidding, procurement and construction of the EVOH cover system will generally conform to the layout and details in the drawings described in section 6.2. SCS also prepared and submitted to VDEQ a specification for the EVOH geomembrane on January 30, 2023 based upon industry standards and discussions with material manufacturers. This specification and drawing set represent the first steps in the procurement process. SCS and the City have coordinated with potential suppliers to specify a product that is not currently anticipated to have long lead times.

6.4 EVOH COVER SYSTEM INSTALLATION

Installation of the EVOH cover system will begin after the installation of other infrastructure is complete.

7.0 STORMWATER MANAGEMENT

The stormwater volume calculations, assumptions, design, and control measures will be addressed by the stormwater management plan, which is currently in progress. The stormwater management plan will be submitted to VDEQ on or before April 30, 2023.

SCS is designing a stormwater pumping system to convey stormwater collected atop the EVOH cover system to an adequate discharge point in compliance with VPDES permit VAR050053. The proposed system includes the construction of a collection basin in the southeast corner of the quarry and the installation of a nearby long-term stormwater pump. The stormwater will be conveyed by pipe up and out of the quarry via the northern access point.

SCS is evaluating perimeter run-on control measures, including stormwater diversion berms and drainage swales. However, run-on control measures may be significantly limited by the quarry sidewall topography and the natural slope of top areas adjacent to the sidewalls.

8.0 MISCELLANEOUS

8.1 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit #588 landfill prior to September 12, 2022.

8.2 LONG-TERM PLAN

SCS submitted the Monitoring, Maintenance, and Repair Plan to VDEQ for the SWP #588 landfill on December 30, 2022. Refer to the December Monthly Compliance Report for the SWP #588 Landfill for additional information. The City has taken steps to implement the plan including the following actions:

- Performing quarterly inspections
- Performing surface emission monitoring
- Maintaining the existing intermediate cover
- Monitoring and repairing landfill gas liquids extraction pumps
- Monitoring and repairing components of the landfill gas collection system

These steps were summarized in a letter submitted to VDEQ on March 31, 2023. A copy of that letter is included in Appendix G.

8.3 MONTHLY COMPLIANCE REPORTS

As outlined in the introduction this report is intended to provide comprehensive updates regarding progress towards completion of each item outlined in Appendix A of the Consent Decree between the City and VDEQ,

8.4 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, outlined the actions taken as part of their community outreach efforts. For the month of March, those actions include:

- March ongoing basis: Seven posts on the BristalVALandfill.org site and the existing City
 of Bristol Landfill Notifications and Information page covering several important updates
 including:
 - Progress updates during construction of the Sidewall Odor Mitigation System (SOMS).
 - Provided information about the gas well expansion project to ensure residents were aware of when the projects would begin and what they should expect once drilling for the wells began. An update was provided several days prior to the start of drilling as well as again the day drilling was scheduled to begin.
 - City published statement related to remediation costs and potential funding sources following the City's budget briefing on March 28th
 - Provided links to news articles chronicling construction updates and information related to how Bristol, VA is funding current and future work at the landfill.
- E-mail communication sent to the list of members of the public signed up through the Bristol, VA website, the BristolVALandfill.org website, or at the November 1 Open House to receive information via e-mail
 - E-mails sent that included weekly remediation progress update and links to website updates and latest news articles on the following days:
 - Friday, March 3rd

- Monday, March 20th
- Monday, March 27th
- Wednesday, March 29th
- Friday, March 31st
- All e-mails sent in March had over a 50 percent open rate

Appendix A

Surface Emissions Monitoring Summary Letters

March 15, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – March 9, 2023

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on March 9, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	149
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	49
Number of Exceedances ¹	0
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	0

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	3/9/23 Event	3/9/23 Event Result	Comments		
No Ongoing Exceedances						

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Will Fabrie Associate Staff Professional

SCS Engineers

Lucas S. Nachman Project Professional SCS Engineers

Lucus D. Nachman

LSN/WJF/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	13.7 PPM	OK			Start Serpentine
2	4.2 PPM	OK			Route
3	11.9 PPM	OK			
4	25 PPM	OK			
5	62.8 PPM	OK			
6	11.5 PPM	OK			
7	103 PPM	OK			
8	141 PPM	OK			
9	2.1 PPM	OK			
10	2.3 PPM	OK			
11	1.7 PPM	OK			
12	20.8 PPM	OK			
13	8.1 PPM	OK			
14	49.2 PPM	OK			
15	5.7 PPM	OK			
16	40.1 PPM	OK			
17	8.1 PPM	OK			
18	17.6 PPM	OK			
19	7.9 PPM	OK			
20	6.4 PPM	OK			
21	34.9 PPM	OK			
22	54.8 PPM	OK			
23	65.8 PPM	OK			
24	30 PPM	OK			
25	6.8 PPM	OK			
26	8 PPM	OK			
27	18.1 PPM	OK			
28	63.8 PPM	OK			
29	8.4 PPM	OK			
30	7.7 PPM	OK			
31	18.2 PPM	OK			
32	21.1 PPM	OK			
33	6.4 PPM	OK			
34	11 PPM	OK			
35	6.3 PPM	OK			
36	4.6 PPM	OK			
37	8 PPM	OK			
38	9.8 PPM	OK			
39	28.8 PPM	OK			
40	25.9 PPM	OK			
41	8.3 PPM	OK			
42	13.3 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
43	7.1 PPM	OK			
44	5.3 PPM	OK			
45	33.2 PPM	OK			
46	29.9 PPM	OK			
47	11.7 PPM	OK			
48	0.7 PPM	OK			
49	0.4 PPM	OK			
50	2.8 PPM	OK			
51	1.1 PPM	OK			
52	11.6 PPM	OK			
53	22.4 PPM	OK			
54	25.9 PPM	OK			
55	10.7 PPM	OK			
56	1.9 PPM	OK			
57	2.7 PPM	OK			
58	1.3 PPM	OK			
59	6.3 PPM	OK			
60	5.4 PPM	OK			
61	5.5 PPM	OK			
62	0.6 PPM	OK			
63	4.2 PPM	OK			
64	4.1 PPM	OK			
65	5.1 PPM	OK			
66	2.8 PPM	OK			
67	1.6 PPM	OK			
68	1.4 PPM	OK			
69	1.4 PPM	OK			
70	2 PPM	OK			
71	2.5 PPM	OK			
72	6.6 PPM	OK			
73	211 PPM	OK			
74	35.5 PPM	OK			
75	6.1 PPM	OK			
76	107 PPM	OK			
77	22.5 PPM	OK			
78	10.3 PPM	OK			
79	13.5 PPM	OK			
80	99.6 PPM	OK			
81	48.7 PPM	OK			
82	54.5 PPM	OK			
83	124 PPM	OK			
84	154 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
85	37.3 PPM	ОК			
86	0.7 PPM	OK			
87	6.3 PPM	OK			
88	2.3 PPM	OK			
89	1.1 PPM	OK			
90	3.3 PPM	OK			
91	1 PPM	OK			
92	22.1 PPM	OK			
93	82.8 PPM	OK			
94	133 PPM	OK			
95	230 PPM	OK			
96	3.2 PPM	OK			
97	69.9 PPM	OK			
98	6.4 PPM	OK			
99	1.7 PPM	OK			
100	PPM	OK			End Serpentine
	95.2				Route
101	40.4 PPM	OK			EW-35
102	127 PPM	OK			EW-52
103	17.2 PPM	OK			TP-4
104	43.8 PPM	OK			EW-60
105	278 PPM	OK			EW-48
106	1.4 PPM	OK			TP-6
10 <i>7</i>	4.1 PPM	OK			EW-61
108	5.5 PPM	OK			EW-36
109	82.1 PPM	OK			EW-34
110	106 PPM	OK			EW-50
111	167 PPM	OK			EW-67
112	18.3 PPM	OK			EW-47
113	461 PPM	OK			EW-54
114	23.7 PPM	OK			EW-55
115	5.1 PPM	OK			TP-2
116	7.3 PPM	OK			EW-46
11 <i>7</i>	6.5 PPM	OK			EW-66
118	276 PPM	OK			EW-58
119	115 PPM	OK			EW-57
120	23.8 PPM	OK			TP-1
121	184 PPM	OK			EW-59
122	482 PPM	OK			EW-56
123	163 PPM	OK			EW-41
124	74.4 PPM	OK			EW-53
125	11.6 PPM	OK			EW-40

126 127 128	7.3 PPM 208 PPM	Compliance	Lat.	Long.	Comme
127					
	208 PPM				TP-3
120		OK			EW-5
120	57.3 PPM	OK			EW-3
129	40.1 PPM	OK			TP-5
130	6.7 PPM	OK			EW-6
131	75 PPM	OK			EW-3
132	7.6 PPM	OK			TP-7
133	11.8 PPM	OK			EW-4
134	13 PPM	OK			EW-3
135	3.6 PPM	OK			EW-6
136	5.2 PPM	OK			EW-3
137	6.8 PPM	OK			TP-8
138	2.3 PPM	OK			EW-6
139	0.5 PPM	OK			EW-3
140	0.2 PPM	OK			EW-6
141	0.7 PPM	OK			EW-4
142	2.4 PPM	OK			TP-9
143	O PPM	OK			EW-3
144	0.1 PPM	OK			EW-6
145	O PPM	OK			EW-2
146	1.2 PPM	OK			EW-2
1 <i>47</i>	2.2 PPM	OK			EW-2
148	0.6 PPM	OK			EW-3
149	2 PPM	OK			EW-3

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - MARCH 9, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

Methane GPS Coordinates

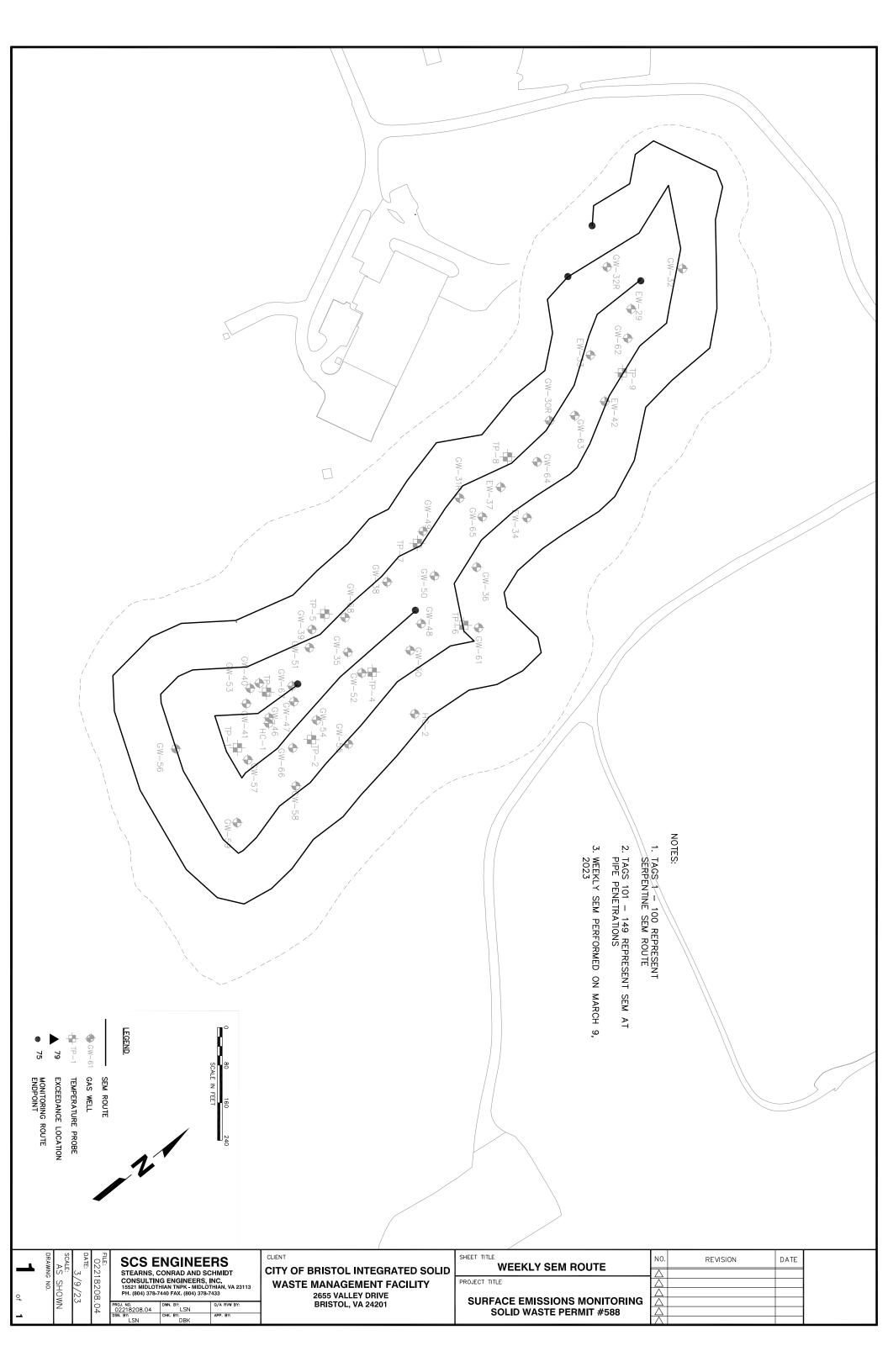
ID # Concentration Compliance Lat. Long. Comments

NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 149 represent SEM at Pipe Penetrations

Weather Conditions: Sunny, 48°F Wind: SW - 7 MPH


Wedner Conditions: Somy, 40 1 Wind: SW - 7 Mil 11

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm

3/9/2023 10:49 ZERO 0.1 PPM 3/9/2023 10:51 SPAN 500.0 PPM

Background Reading:

3/9/2023 10:53 Upwind 2.9 PPM 3/9/2023 10:56 Downwind 2 PPM

March 22, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event - March 15, 2023

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on March 15, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	149
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	49
Number of Exceedances ¹	0
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	0

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	3/15/23 Event	3/15/23 Event Result	Comments		
No Ongoing Exceedances						

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Quinn F. Bernier, PE Project Professional SCS Engineers Lucas S. Nachman Project Professional SCS Engineers

Lucus D. Nachman

LSN/QFB/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

	AA a.kl		CDS C	a v aliu avt	
ID #	Methane	C !!		ordinates	C
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	146 PPM	OK			Start Serpentine
2	16.4 PPM	OK			Route
3	8 PPM	OK			
4	18.6 PPM	OK			
5	47.4 PPM	OK			
6	4.7 PPM	OK			
7	3 PPM	OK			
8	2.8 PPM	OK			
9	2.6 PPM	OK			
10	5.2 PPM	OK			
11	7.8 PPM	OK			
12	39.7 PPM	OK			
13	30.3 PPM	OK			
14	3.7 PPM	OK			
15	12.4 PPM	OK			
16	2.8 PPM	OK			
17	42.7 PPM	OK			
18	37 PPM	OK			
19	4.5 PPM	OK			
20	39 PPM	OK			
21	5.7 PPM	OK			
22	29.7 PPM	OK			
23	101 PPM	OK			
24	41.8 PPM	OK			
25	66.6 PPM	OK			
26	5.8 PPM	OK			
27	109 PPM	OK			
28	113 PPM	OK			
29	116 PPM	OK			
30	24.4 PPM	OK			
31	9.4 PPM	OK			
32	3.4 PPM	OK			
33	10.6 PPM	OK			
34	5.9 PPM	OK			
35	44.1 PPM	OK			
36	24.4 PPM	OK			
37	6.6 PPM	OK			
38	41.8 PPM	OK			
39	11.1 PPM	OK			
40	9 PPM	OK			
41	3.5 PPM	OK			
42	53.6 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
		-			
43	30.6 PPM	OK			
44	9.3 PPM	OK			
45	4.6 PPM	OK			
46	4.1 PPM	OK			
47	1.5 PPM	OK			
48	1.5 PPM	OK			
49	2.1 PPM	OK			
50	1.6 PPM	OK			
51	3.9 PPM	OK			
52	16.8 PPM	OK			
53	9 PPM	OK			
54	11.1 PPM	OK			
55	3.8 PPM	OK			
56	7.9 PPM	OK			
57	8.7 PPM	OK			
58	9.3 PPM	OK			
59	6.1 PPM	OK			
60	2.6 PPM	OK			
61	17.4 PPM	OK			
62	8.6 PPM	OK			
63	4.9 PPM	OK			
64	2.7 PPM	OK			
65	2.7 PPM	OK			
66	5 PPM	OK			
67	1.6 PPM	OK			
68	10.4 PPM	OK			
69	9.2 PPM	OK			
70	11 PPM	OK			
<i>7</i> 1	5.6 PPM	OK			
72	5.1 PPM	OK			
73	4.1 PPM	OK			
74	2.1 PPM	OK			
75	6.8 PPM	OK			
76	5.5 PPM	OK			
77	12.5 PPM	OK			
78	2.7 PPM	OK			
79	171 PPM	OK			
80	1.8 PPM	OK			
81	3 PPM	OK			
82	84.2 PPM	OK			
83	8.8 PPM	OK			
84	5.2 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
85	16.8 PPM	ОК			
86	5.9 PPM	OK			
87	53.2 PPM	OK			
88	5.7 PPM	OK			
89	22.2 PPM	OK			
90	1.5 PPM	OK			
91	1.3 PPM	OK			
92	73.2 PPM	OK			
93	9.2 PPM	OK			
94	6.9 PPM	OK			
95	31.7 PPM	OK			
96	88 PPM	OK			
97	41.2 PPM	OK			
98	10.1 PPM	OK			
99	7.5 PPM	OK			
100	1 <i>47</i> PPM	OK			End Serpentine
					Route
101	272 PPM	OK			EW-35
102	153 PPM	OK			EW-52
103	10.9 PPM	OK			TP-4
104	251 PPM	OK			EW-60
105	212 PPM	OK			EW-48
106	3.1 PPM	OK			TP-6
107	1.5 PPM	OK			EW-61
108	1.5 PPM	OK			EW-36
109	83.5 PPM	OK			EW-34
110	56.5 PPM	OK			EW-50
111	82.7 PPM	OK			EW-67
112	4.4 PPM	OK			EW-47
113	133 PPM	OK			EW-54
114	4 PPM	OK			EW-55
115	14.6 PPM	OK			TP-2
116	3.2 PPM	OK			EW-46
117	139 PPM	OK			EW-66
118	6.4 PPM	OK			EW-58
119	290 PPM	OK			EW-57
120	5 PPM	OK			TP-1
121	356 PPM	OK			EW-59
122	427 PPM	OK			EW-56
123	6.4 PPM	OK			EW-41
124	125 PPM	OK			EW-53
125	43.9 PPM	OK			EW-40

126 127	Concentration 4.6 PPM	Compliance	Lat.	Long.	Comme
	4.6 PPM				
127		OK			TP-C
	469 PPM	OK			EW-5
128	18.7 PPM	OK			EW-3
129	102 PPM	OK			TP-S
130	3.4 PPM	OK			EW-6
131	50.3 PPM	OK			EW-3
132	22.3 PPM	OK			TP-7
133	2.3 PPM	OK			EW-4
134	1.2 PPM	OK			EW-3
135	3.1 PPM	OK			EW-6
136	0.2 PPM	OK			EW-3
137	0.3 PPM	OK			TP-8
138	0.6 PPM	OK			EW-d
139	1.5 PPM	OK			EW-3
140	1.5 PPM	OK			EW-6
141	22.1 PPM	OK			EW-4
142	9.1 PPM	OK			TP-9
143	2.2 PPM	OK			EW-3
144	1.5 PPM	OK			EW-d
145	0.3 PPM	OK			EW-2
146	29.6 PPM	OK			EW-2
147	31.5 PPM	OK			EW-2
148	4.2 PPM	OK			EW-C
149	2.8 PPM	OK			EW-3

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - MARCH 15, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

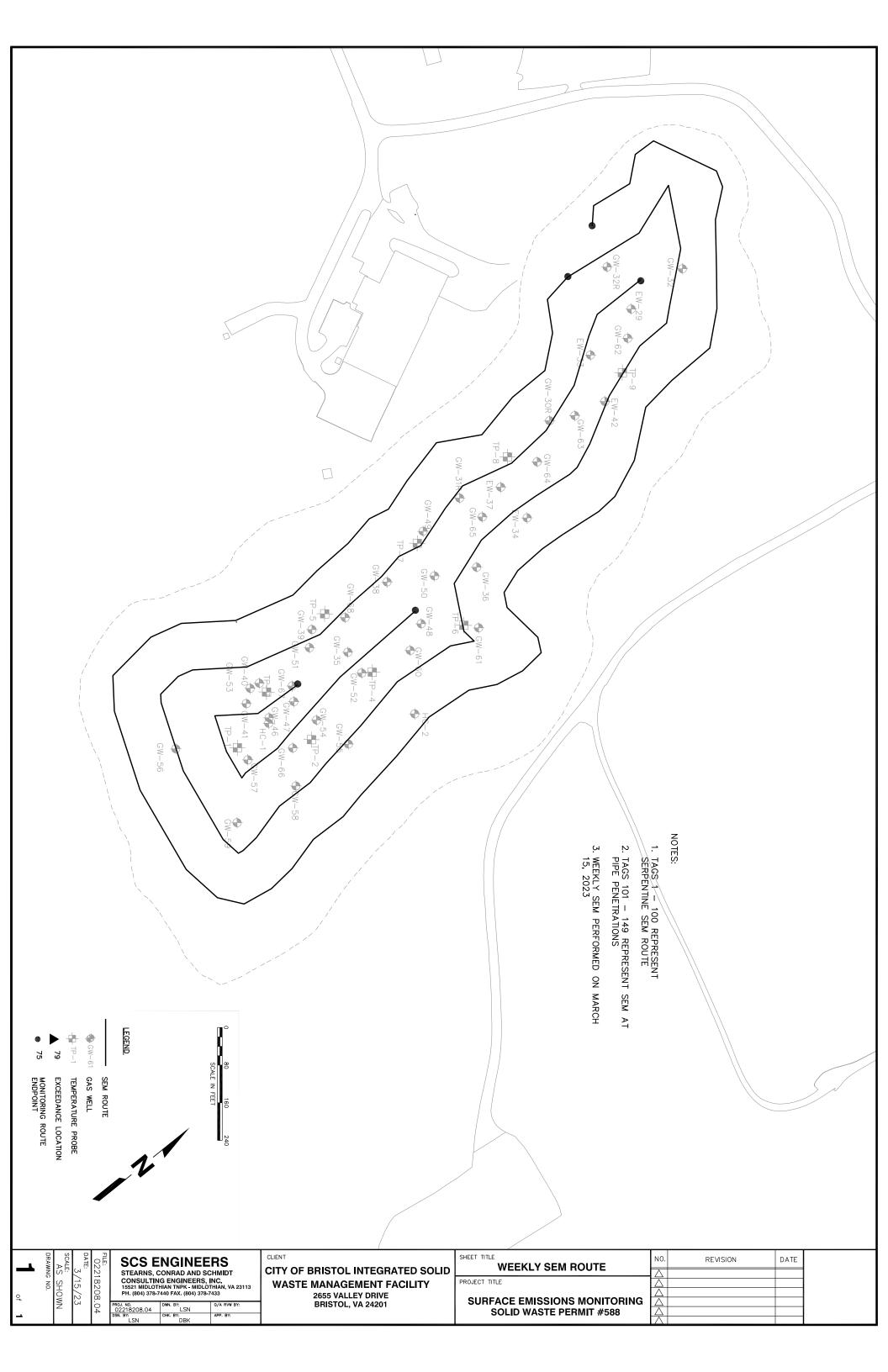
Methane GPS Coordinates

ID # Concentration Compliance Lat. Long. Comments

NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 149 represent SEM at Pipe Penetrations


Weather Conditions: Sunny, 30°F Wind: S - 5 MPH

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm

3/15/2023 8:46 ZERO 0.0 PPM 3/15/2023 8:48 SPAN 500.0 PPM

Background Reading:

3/15/2023 8:50 Upwind 2.4 PPM 3/15/2023 8:53 Downwind 1.7 PPM

March 29, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – March 23, 2023

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on March 23, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	149
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	49
Number of Exceedances ¹	0
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	0

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	3/23/23 Event	3/23/23 Event Result	Comments		
No Ongoing Exceedances						

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Nicholas Gathings Associate Staff Professional

SCS Engineers

Lucas S. Nachman Project Professional SCS Engineers

Lucus D. Nachman

LSN/NG/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

			0.55.6	1	
	Methane	_		ordinates	_
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	44.7 PPM	OK			Start Serpentine
2	29.9 PPM	OK			Route
3	34.2 PPM	OK			
4	14.2 PPM	OK			
5	74 PPM	OK			
6	6.2 PPM	OK			
7	8.1 PPM	OK			
8	9.6 PPM	OK			
9	5.8 PPM	OK			
10	12.8 PPM	OK			
11	23.9 PPM	OK			
12	49.8 PPM	OK			
13	29.7 PPM	OK			
14	6.4 PPM	OK			
15	6.9 PPM	OK			
16	9.2 PPM	OK			
1 <i>7</i>	6.5 PPM	OK			
18	17.4 PPM	OK			
19	12.5 PPM	OK			
20	5.3 PPM	OK			
21	5.1 PPM	OK			
22	3.1 PPM	OK			
23	2.6 PPM	OK			
24	2.2 PPM	OK			
25	23.5 PPM	OK			
26	19.2 PPM	OK			
27	4.9 PPM	OK			
28	4.1 PPM	OK			
29	1.4 PPM	OK			
30	1 PPM	OK			
31	25.3 PPM	OK			
32	27.3 PPM	OK			
33	53.6 PPM	OK			
34	161 PPM	OK			
35	7.5 PPM	OK			
36	10.3 PPM	OK			
37	6.7 PPM	OK			
38	15.5 PPM	OK			
39	6.9 PPM	OK			
40	65 PPM	OK			
41	5.1 PPM	OK			
42	7.3 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
43	2.6 PPM	OK			
44	2.9 PPM	OK			
45	2.5 PPM	OK			
46	3.4 PPM	OK			
47	4 PPM	OK			
48	7 PPM	OK			
49	3.5 PPM	OK			
50	3.5 PPM	OK			
51	32.8 PPM	OK			
52	5.3 PPM	OK			
53	5.4 PPM	OK			
54	6.2 PPM	OK			
55	6.9 PPM	OK			
56	8.8 PPM	OK			
57	5.3 PPM	OK			
58	4.5 PPM	OK			
59	5.2 PPM	OK			
60	5.3 PPM	OK			
61	9 PPM	OK			
62	6.9 PPM	OK			
63	8 PPM	OK			
64	5.1 PPM	OK			
65	2.8 PPM	OK			
66	3.1 PPM	OK			
67	5.8 PPM	OK			
68	6.7 PPM	OK			
69	2.4 PPM	OK			
70	2.3 PPM	OK			
71	4.7 PPM	OK			
72	5.1 PPM	OK			
73	4.9 PPM	OK			
74	4.4 PPM	OK			
75	17.2 PPM	OK OK			
76	103 PPM	OK OK			
76	7 PPM	OK OK			
78	48.6 PPM	OK OK			
79	14.4 PPM	OK OK			
80	4.3 PPM	OK OK			
81	3.4 PPM	OK			
82	282 PPM	OK			
83	9.7 PPM	OK			
84	12 PPM	OK			

Methane GPS Coordinates					
ID#	Concentration	Compliance	Lat.	Long.	Comments
85	37.6 PPM	ОК			
86	20.4 PPM	OK			
87	25.5 PPM	OK			
88	109 PPM	OK			
89	289 PPM	OK			
90	15.5 PPM	OK			
91	127 PPM	OK			
92	10 PPM	OK			
93	60.1 PPM	OK			
94	9.8 PPM	OK			
95	21.2 PPM	OK			
96	6.9 PPM	OK			
97	12.2 PPM	OK			
98	101 PPM	OK			
99	9.8 PPM	OK			
100	70.5 PPM	OK			End Serpentine
					Route
101	120 PPM	OK			EW-35
102	299 PPM	OK			EW-52
103	21.2 PPM	OK			TP-4
104	480 PPM	OK			EW-60
105	137 PPM	OK			EW-48
106	3.6 PPM	OK			TP-6
107	6.3 PPM	OK			EW-61
108	8 PPM	OK			EW-36
109	39.6 PPM	OK			EW-34
110	17.5 PPM	OK			EW-50
111	311 PPM	OK			EW-67
112	31.5 PPM	OK			EW-47
113	359 PPM	OK			EW-54
114	246 PPM	OK			EW-55
115	5.5 PPM	OK			TP-2
116	7 PPM	OK			EW-46
117	22.6 PPM	OK			EW-66
118	6.7 PPM	OK			EW-58
119	182 PPM	OK			EW-57
120	10.2 PPM	OK			TP-1
121	263 PPM	OK			EW-59
122	410 PPM	OK OK			EW-56
123	41.4 PPM	OK OK			EW-41
123	252 PPM	OK OK			EW-53
125	13.4 PPM	OK OK			EW-40

Concentration 6.5 PPM	Compliance	Lat.	Long.	_
6.5 PPM			Long.	Comme
	OK			TP-3
11 PPM	OK			EW-5
16.2 PPM	OK			EW-3
23.4 PPM	OK			TP-5
22.8 PPM	OK			EW-6
104 PPM	OK			EW-3
32.1 PPM	OK			TP-7
13.9 PPM	OK			EW-4
4.8 PPM	OK			EW-3
4.4 PPM	OK			EW-6
5 PPM	OK			EW-3
8.2 PPM	OK			TP-8
7.1 PPM	OK			EW-6
7.1 PPM	OK			EW-30
15.9 PPM	OK			EW-6
7.9 PPM	OK			EW-4
22.7 PPM	OK			TP-9
2.7 PPM	OK			EW-3
13.5 PPM	OK			EW-6
7.1 PPM	OK			EW-29
96.9 PPM	OK			EW-2
104 PPM	OK			EW-2
11.5 PPM	OK			EW-3
34.9 PPM	OK			EW-32
Number of locations	campled:	1.49		
•				
	22.8 PPM 104 PPM 32.1 PPM 13.9 PPM 4.8 PPM 4.4 PPM 5 PPM 8.2 PPM 7.1 PPM 7.1 PPM 7.9 PPM 22.7 PPM 22.7 PPM 13.5 PPM 7.1 PPM 13.5 PPM 104 PPM 104 PPM 11.5 PPM 34.9 PPM	22.8 PPM OK 104 PPM OK 32.1 PPM OK 32.1 PPM OK 13.9 PPM OK 4.8 PPM OK 4.4 PPM OK 5 PPM OK 8.2 PPM OK 7.1 PPM OK 7.1 PPM OK 7.1 PPM OK 7.9 PPM OK 22.7 PPM OK 22.7 PPM OK 3.5 PPM OK 4.13.5 PPM OK 7.1 PPM OK 7.1 PPM OK 0K	22.8 PPM OK 104 PPM OK 32.1 PPM OK 13.9 PPM OK 4.8 PPM OK 4.4 PPM OK 5 PPM OK 8.2 PPM OK 7.1 PPM OK 7.1 PPM OK 7.9 PPM OK 22.7 PPM OK 22.7 PPM OK 13.5 PPM OK 13.5 PPM OK 11.5 PPM OK 7.1 PPM OK 34.9 PPM OK	22.8 PPM OK 104 PPM OK 32.1 PPM OK 13.9 PPM OK 4.8 PPM OK 4.4 PPM OK 5 PPM OK 8.2 PPM OK 7.1 PPM OK 7.1 PPM OK 7.9 PPM OK 22.7 PPM OK 2.7 PPM OK 13.5 PPM OK 13.5 PPM OK 11.5 PPM OK 7.1 PPM OK 34.9 PPM OK

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - MARCH 23, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

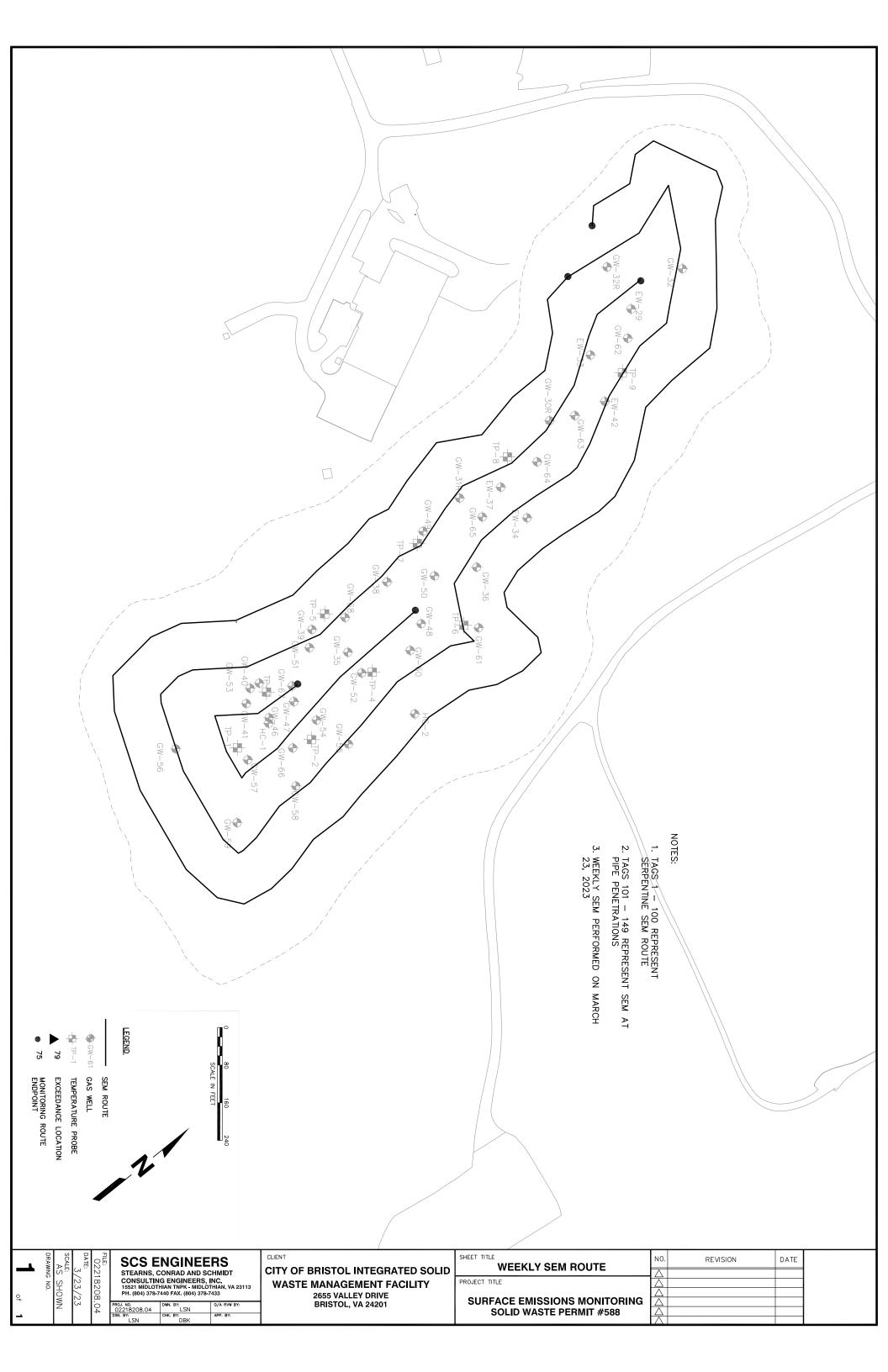
Methane GPS Coordinates

ID # Concentration Compliance Lat. Long. Comments

NOTES:

Points 1 through 100 represent serpentine SEM route.

Points 101 through 149 represent SEM at Pipe Penetrations


Weather Conditions: Cloudy, 55°F Wind: W - 5 MPH

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm

3/23/2023 9:15 ZERO 0.1 PPM 3/23/2023 9:17 SPAN 502.0 PPM

Background Reading:

3/23/2023 9:19 Upwind 2.3 PPM 3/23/2023 9:22 Downwind 1.8 PPM

April 5, 2023 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event - March 29, 2023

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on March 29, 2023. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Appendix A.1.i of the Consent Decree between the Commonwealth of Virginia and the City of Bristol.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route includes the entire waste footprint of the Permit No. 588 Landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 Landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit No. 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	147
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	47
Number of Exceedances ¹	1
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	1

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performs corrective actions, as necessary, including wellhead vacuum adjustments, the installation of well-bore seals, and addition of soil cover prior to weekly monitoring events at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations that continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

Table 2. Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	3/29/23 Event	3/29/23 Event Result	Comments		
No Ongoing Exceedances						

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Nick Gathings Associate Staff Professional

SCS Engineers

Lucas S. Nachman Project Professional SCS Engineers

Lucus D. Nachman

LSN/NG/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jonathan Hayes, City of Bristol Jake Chandler, City of Bristol Susan "Tracey" Blalock, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	13.8 PPM	ОК			Start Serpentine
2	308 PPM	OK			Route
3	14 PPM	OK			
4	14.6 PPM	OK			
5	6.8 PPM	OK			
6	2.7 PPM	OK			
7	5 PPM	OK			
8	4 PPM	OK			
9	9.4 PPM	OK			
10	4 PPM	OK			
11	11.1 PPM	OK			
12	11.6 PPM	OK			
13	4.8 PPM	OK			
14	64.3 PPM	OK			
15	14.8 PPM	OK			
16	13.9 PPM	OK			
17	8.8 PPM	OK			
18	3.9 PPM	OK			
19	19.1 PPM	OK			
20	36.5 PPM	OK			
21	402 PPM	OK			
22	81.9 PPM	OK			
23	143 PPM	OK			
24	9.3 PPM	OK			
25	335 PPM	OK			
26	96.4 PPM	OK			
27	4.8 PPM	OK			
28	6.3 PPM	OK OK			
29	15.9 PPM	OK			
30	0.7 PPM	OK OK			
31	0.5 PPM	OK OK			
32	3.8 PPM	OK OK			
33	135 PPM	OK OK			
33		OK OK			
	59.1 PPM				
35	1.6 PPM	OK OK			
36	1.4 PPM	OK OK			
37	2.3 PPM	OK			
38	7.2 PPM	OK OK			
39	376 PPM	OK			
40	5.5 PPM	OK			
41	2.3 PPM	OK			
42	1.4 PPM	OK			

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
ļ	0.5511				
43	2 PPM	OK			
44	9 PPM	OK			
45	74.4 PPM	OK			
46 47	2.9 PPM 6.4 PPM	OK OK			
48	113 PPM	OK OK			
49	3.9 PPM	OK OK			
50	3.9 PPM 3.8 PPM	OK OK			
51	18.3 PPM	OK OK			
52		OK OK			
53	9.6 PPM 3 PPM	OK OK			
54	5.6 PPM	OK OK			
55	11 PPM	OK OK			
56	2.4 PPM	OK OK			
57	1.4 PPM	OK OK			
58	2.2 PPM	OK OK			
59	2.6 PPM	OK OK			
60	6.6 PPM	OK OK			
61	2.3 PPM	OK OK			
62	0.9 PPM	OK OK			
63	0.6 PPM	OK OK			
64	1.6 PPM	OK OK			
65	1.9 PPM	OK			
66	5 PPM	OK			
67	1.7 PPM	OK OK			
68	1.9 PPM	OK			
69	36.1 PPM	OK			
70	2.3 PPM	OK			
71	117 PPM	OK			
72	4.1 PPM	OK			
73	19.3 PPM	OK			
74	46.1 PPM	OK			
75	2.6 PPM	OK			
76	2.1 PPM	OK			
77	175 PPM	OK			
78	57 PPM	OK			
79	5.5 PPM	OK			
80	1.5 PPM	OK			
81	20.5 PPM	OK			
82	119 PPM	OK			
83	224 PPM	OK			
84	4.3 PPM	OK			

	Methane		GPS Cod	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
85	84.9 PPM	OK			
86	24.8 PPM	OK			
87	11.5 PPM	OK			
88	8.3 PPM	OK			
89	2.9 PPM	OK			
90	1 PPM	OK			
91	0.3 PPM	OK			
92	0.4 PPM	OK			
93	0.9 PPM	OK			
94	61.6 PPM	OK			
95	14.8 PPM	OK			
96	7.2 PPM	OK			
97	0.8 PPM	OK			
98	1.7 PPM	OK			
99	6.2 PPM	OK			
100	2.1 PPM	OK			End Serpentine
					Route
101	1 <i>75</i> PPM	OK			EW-35
102	801 PPM	HIGH_ALRM	36.59900	-82.14749	EW-52
103	17.3 PPM	OK			TP-4
104	82.9 PPM	OK			EW-60
105	29.3 PPM	OK			EW-48
106	6.4 PPM	OK			TP-6
107	4.1 PPM	OK			EW-61
108	2.6 PPM	OK			EW-36
109	51.4 PPM	OK			EW-34
110	94.7 PPM	OK			EW-50
111	77.6 PPM	OK			EW-67
112	0.9 PPM	OK			EW-47
113	87.4 PPM	OK			EW-54
114	56.4 PPM	OK			EW-55
115	2.7 PPM	OK			TP-2
116	5.9 PPM	OK			EW-46
117	24.7 PPM	OK			EW-66
118	6.9 PPM	OK			EW-58
119	154 PPM	OK			EW-57
120	38.5 PPM	OK			TP-1
121	152 PPM	OK			EW-59
122	230 PPM	OK			EW-56
123	47.5 PPM	OK			EW-41
124	7.2 PPM	OK			EW-53
125	1.2 PPM	OK			EW-40

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comment
126	1.8 PPM	ОК			TP-3
127	7.2 PPM	OK			EW-51
128	60.3 PPM	OK			EW-39
129	15 PPM	OK			TP-5
130	5.3 PPM	OK			EW-68
131	13.2 PPM	OK			EW-38
132	2 PPM	OK			TP-7
133	0.8 PPM	OK			EW-49
134	1.4 PPM	OK			EW-31R
135	1.5 PPM	OK			EW-65
136	0.2 PPM	OK			EW-37
13 <i>7</i>	0.5 PPM	OK			TP-8
138	0.4 PPM	OK			EW-64
139	0.3 PPM	OK			EW-30R
140	0.2 PPM	OK			EW-63
141	1.5 PPM	OK			EW-42
142	0.4 PPM	OK			TP-9
143	0.3 PPM	OK			EW-33R
144	0.2 PPM	OK			EW-62
145	0.1 PPM	OK			EW-29R
7.44	23.4 PPM	OK			EW-32
146					

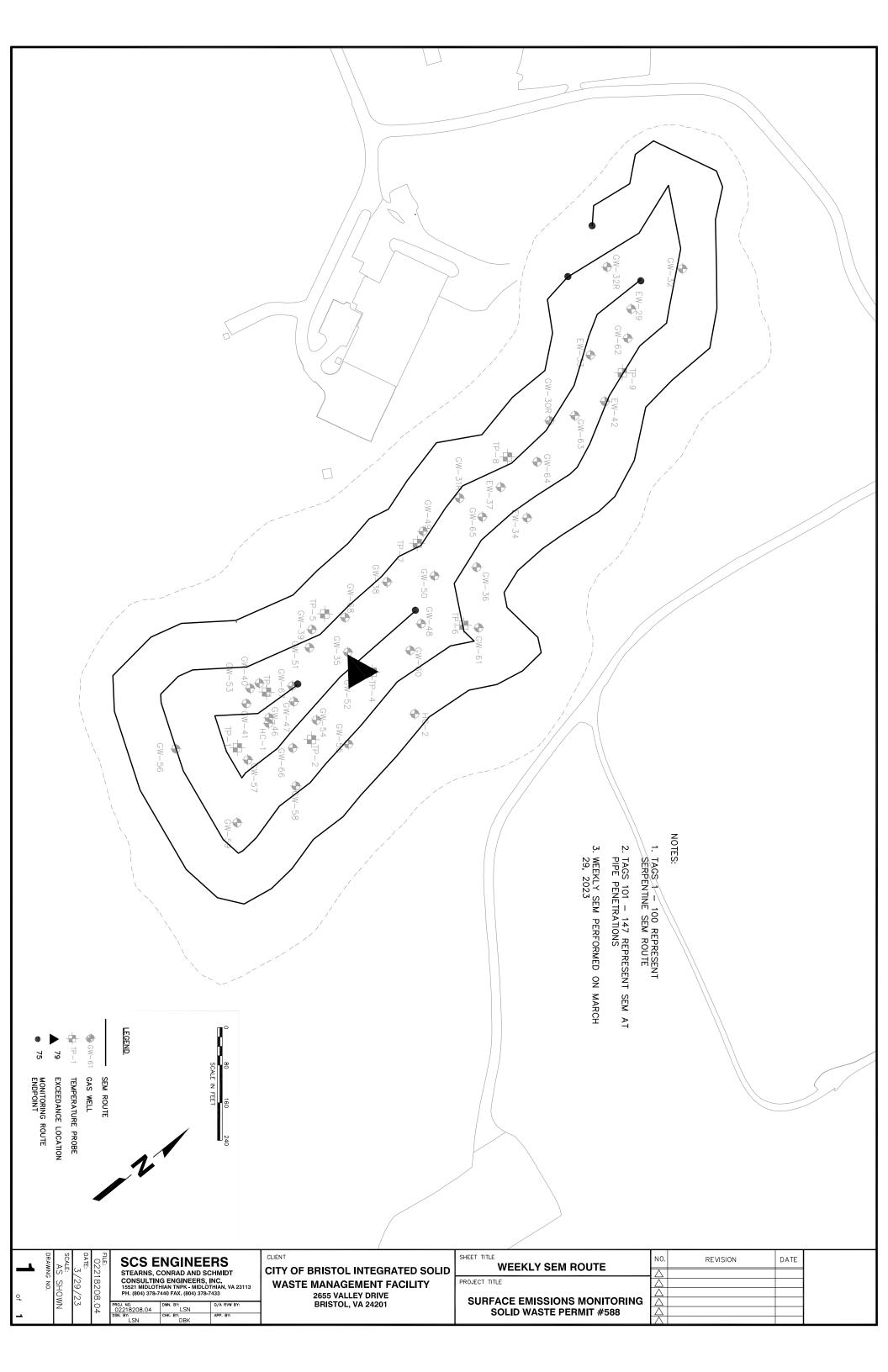
EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - MARCH 29, 2023 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

Methane GPS Coordinates

ID # Concentration Compliance Lat. Long. Comments

NOTES:

Points 1 through 100 represent serpentine SEM route.
Points 101 through 147 represent SEM at Pipe Penetrations


Weather Conditions: Sunny, 45°F Wind: E - 5 MPH

Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm

3/29/2023 8:14 ZERO 0.0 PPM 3/29/2023 8:17 SPAN 501.0 PPM

Background Reading:

3/29/2023 8:17 Upwind 4.5 PPM 3/29/2023 8:21 Downwind 22.9 PPM

Appendix B SCS-FS March Summary Report

SCS FIELD SERVICES

April 7, 2023 Job No. 07223016.00

Mr. Michael Martin City of Bristol 2125 Shakesville Road Bristol, VA 24201

Subject: Summary of Operation, Monitoring, and Maintenance (OM&M) Services

Permit Area 588 Gas Collection Control System (GCCS)

City of Bristol Integrated Solid Waste Management Facility, Bristol, Virginia

March 2023

Dear Mr. Martin:

SCS Field Services (SCS-FS) performed routine and non-routine monitoring and maintenance on the Solid Waste Permit (SWP) #588 Landfill gas collection and control system (GCCS) for the City of Bristol at the Bristol Integrated Solid Waste Management Facility (ISWMF) during the month of March, 2023. This report summarizes the work performed and presents the data collected. The monitoring data is presented in the following attachments:

Attachment 1. SWP #588 Wellfield Monitoring Data

Attachment 2. Exceedance Detail Report

Attachment 3. Enhanced Monitoring Record Form and Analytical Results

Attachment 4. Daily Logs

The tables in Attachment 1 include the March blower/flare station (BFS) monitoring data and the last three months of monitoring data for the wellheads and the leachate cleanouts.

GCCS SITE ACTIVITES

SCS-FS monitored the extraction wells (EW) each week throughout the month. Adjustments were made and wellheads were re-monitored as needed to maintain regulatory compliance and the target gas concentrations and flow rates. The blower/flare station operation was monitored each working

On March 2, SCS-FS conducted non-routine enhanced monitoring and carbon monoxide (CO) sampling (enhanced monitoring) for compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAP) at EW-37. Samples for CO and fixed gases analysis were collected and submitted to Enthalpy Analytical for analysis. Analytical results as available from the laboratory for the enhanced monitoring sampling events are included in Attachment 3.

On March 7, SCS-FS fused a 2-inch cap on an open J-trap below the north side clean-outs.

On March 8, SCS-FS found that a 4-inch valve near EW-61 was closed. With this valve closed, 12 extraction wells had lost vacuum. SCS-FS reopened the valve and restored vacuum to those wells.

On March 9, SCS-FS conducted enhanced monitoring and CO sample collection at EW-37.

Mr. Michael Martin April 7, 2023 Page 2

On March 16, SCS-FS conducted enhanced monitoring and CO sample collection at EW-37 and -57.

On March 20, SCS-FS replaced the orifice plates in side wall wells 1L, 2L, and 2U from 1.75-inch to 1.25-inch. SCS-FS unclogged an ice blockage in the air line to restore air pressure to the pumps in SWP #588.

On March 21, SCS-FS made wellhead repairs to EW-38 and -48 and wellhead and pump repairs to EW-66. SCS-FS bumped tested and verified that pumps were operating in EW-50, -58, -65, and -68.

On March 23, SCS-FS conducted enhanced monitoring at EW-37 and -51. Samples for CO analysis were collected at EW-51. No sample was collected at EW-37, as it was below the regulatory limit of 145 degrees Fahrenheit. SCS-FS also performed pump maintenance at EW-57 and -58.

On March 24, SCS-FS installed a pump and set it at 69 feet in EW-54. The stroke counter was at 106317. SCS-FS also measured depth to liquid at 27.7 feet. SCS-FS also added new flex hose and clamps to the wellhead.

On March 27, SCS-FS installed a pump and set it at 88 feet in EW-51. The stroke counter was at 244985.

On March 28, SCS-FS noted that EW-24 and-25 have been removed and abandoned in SWP #588 by the construction. SCS-FS preformed pump inspection and bump tested pumps at EW-50, -51, -54, -57, -59, -61, and -68, and got them operating. Pumps at EW-49 and -65 were shut off pending repairs due to liquid/foam in the exhaust line.

On March 29, SCS-FS conducted enhanced monitoring and CO sample collection at EW-37, -51, and -57. SCS-FS installed a pump at EW-60. The stroke counter was at 163945. SCS-FS noticed that some of the bolts on the flex coupling at the BFS had come off, so new bolts and washers were installed.

On March 30, SCS-FS installed a pump and replaced the flex hose at EW-52, and replaced the pump at EW-62.

Please contact either of the undersigned if you have any questions or need additional information regarding this report.

Very truly yours,

Mike Gibbons
Project Manager
SCS FIELD SERVICES

mil lite

Thomas M. Lock
Vice President / Northeast Region Manager
SCS FIELD SERVICES

Attachments

cc: Bob Dick, SCS Engineers

Attachments

- 1. Wellfield Monitoring Data
- 2. Exceedance Detail Report
- 3. Enhanced Monitoring Record Forms and Analytical Results
- 4. Daily Logs

Attachment 1

SWP #588 Wellfield Monitoring Data

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
30R	1/12/2023 12:22	49.0	37.1	0.5	13.4	127.2	127.3	-7.0	-6.7	-5.8	
30R	2/3/2023 09:48	18.7	20.3	8.1	52.9	128.1	128.2	-0.6	-0.5	-6.3	
30R	2/7/2023 14:32	21.7	21.0	6.1	51.2	129.2	129.8	-0.6	-0.5	-6.2	
30R	2/8/2023 08:36	20.0	20.7	6.5	52.8	128.8	129.0	-0.6	-0.5	-6.1	No Change
30R	2/14/2023 13:01	21.4	21.9	5.8	50.9	129.9	129.9	-0.6	-0.6	-0.6	No Change
30R	2/22/2023 14:46	22.4	21.1	6.4	50.1	129.7	129.8	-0.5	-0.5	-5.4	No Change
30R	3/1/2023 13:38	23.5	23.0	4.9	48.6	130.2	130.2	-0.3	-0.3	-4.7	No Change
30R	3/7/2023 11:17	19.7	21.0	6.3	53.0	128.1	128.2	-0.8	-0.8	-5.6	Decresased Flow/vacuum
30R	3/15/2023 09:28	20.8	22.2	6.2	50.8	123.2	124.5	-0.4	-0.4	-4.9	
30R	3/23/2023 10:21	24.4	51.6	1.6	22.4	132.7	132.7	-16.0	-14.7	-15.6	
30R	3/28/2023 11:52	18.3	40.2	5.8	35.7	129.0	60.8	-0.6	-0.6	-3.6	
31R	1/5/2023 13:43	21.0	38.2	2.8	38.0	138.2	138.3	-21.0	-21.0	-21.4	
31R	2/1/2023 13:30	24.7	48.5	0.6	26.2	127.5	127.6	-21.5	-20.9	-16.8	
31R	3/2/2023 09:28	17.7	35.3	8.7	38.3	103.1	103.0	-16.0	-17.6	-17.5	No Change
31R	3/15/2023 10:40	34.2	51.5	2.1	12.2	124.2	124.3	-18.6	-17.8	-19.0	No Change
31R	3/23/2023 09:56	20.4	21.9	5.7	52.0	127.8	127.7	-0.4	-0.4	-4.3	No Change
31R	3/28/2023 11:36	22.5	67.4	1.3	8.8	137.9	137.9	-15.5	-15.3	-15.9	Valve Adjustment:No Change
32R	1/5/2023 12:42	48.8	39.5	0.0	11.7	128.6	128.6	-2.4	-2.4	-6.2	
32R	2/3/2023 10:32	52.0	39.8	0.0	8.2	118.9	118.1	-1.3	-1.2	-3.2	Increased Flow/Vacuum
32R	2/8/2023 08:15	52.4	39.2	0.9	7.5	120.2	120.3	-1.0	-1.0	-3.3	Increased Flow/Vacuum
32R	2/14/2023 13:23	51.2	40.4	0.0	8.4	122.8	122.8	-0.9	-0.9	-3.4	No Change
32R	2/22/2023 15:08	49.2	36.7	2.1	12.0	120.3	120.4	-0.8	-0.8	-1.4	No Change
32R	3/1/2023 13:16	55.2	40.1	0.0	4.7	120.1	120.1	-0.6	-0.6	-1.1	No Change
32R	3/7/2023 10:38	56.0	40.2	0.3	3.5	114.6	114.6	-0.6	-0.6	-1.1	No Change
32R	3/15/2023 10:05	52.4	47.6	0.0	0.0	82.2	82.7	-0.1	0.0	0.1	No Change
32R	3/29/2023 11:45	52.6	45.8	0.0	1.6	134.4	134.4	-4.6	-4.8	-7.2	
24	1/5/2023 12:51	3.9	6.1	18.0	72.0	60.8	61.1	-0.8	-0.4	-22.8	
24	2/3/2023 11:12	0.6	1.8	21.7	75.9	44.9	44.6	-0.5	-0.4	-22.5	
24	2/8/2023 08:44	0.4	1.0	22.1	76.5	67.0	66.3	-0.5	-0.5	-22.6	No Change
24	2/22/2023 15:13	8.6	6.3	17.2	67.9	93.1	93.2	-0.3	-0.3	-21.7	No Change
24	3/1/2023 13:06	20.8	15.0	9.0	55.2	84.9	84.6	-0.2	-0.2	-21.3	No Change
24	3/7/2023 10:57	0.4	1.9	21.8	75.9	67.3	66.9	-1.2	-1.1	-22.4	No Change
24	3/15/2023 09:50	0.3	2.1	22.7	74.9	34.2	33.9	-1.9	-1.9	-21.8	
25	1/5/2023 13:02	0.4	0.7	21.0	77.9	68.1	68.1	-0.4	-0.4	-22.7	
25	2/3/2023 11:20	0.2	1.6	22.7	75.5	45.3	44.2	-6.1	-6.2	-6.2	
25	2/8/2023 08:41	0.2	0.6	22.2	77.0	64.2	63.7	-2.4	-2.4	-22.3	

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
25	2/22/2023 15:16	0.4	1.0	21.7	76.9	94.3	94.1	-0.2	-0.2	-21.9	No Change
25	3/1/2023 13:08	0.3	10.1	18.1	71.5	81.3	81.5	-0.9	-0.9	-21.3	No Change
25	3/7/2023 11:00	0.0	0.7	22.5	76.8	61.6	61.5	-1.2	-1.2	-22.6	No Change
25	3/15/2023 09:53	0.1	11.0	21.0	67.9	35.8	35.5	-1.6	-1.6	-21.8	
29	1/5/2023 12:45	56.0	38.5	1.0	4.5	100.0	100.0	-4.7	-4.4	-4.4	
29	2/3/2023 10:24	53.0	36.5	2.4	8.1	46.2	46.0	-2.1	-2.0	-2.0	
29	2/8/2023 08:21	58.0	39.7	0.9	1.4	59.9	59.8	-1.7	-1.7	-1.7	No Change
29	2/14/2023 13:17	57.1	40.1	0.5	2.3	92.7	92.8	-1.4	-1.4	-1.3	No Change
29	2/22/2023 15:05	58.6	41.0	0.4	0.0	98.3	98.3	-0.9	-0.9	-0.9	No Change
29	3/1/2023 13:19	57.7	40.2	0.3	1.8	95.7	95.7	-0.5	-0.5	-0.4	Can Not Sample due to Access/Safety
29	3/7/2023 10:47	57.8	40.1	0.8	1.3	84.6	84.3	-0.4	-0.4	-0.8	Increased Flow/Vacuum
29	3/15/2023 09:47	57.2	42.8	0.0	0.0	52.7	52.6	0.2	0.2	0.2	Can Not Sample due to Access/Safety
29	3/16/2023 13:16	58.9	39.2	0.2	1.7	66.9	66.4	-0.2	-0.3	-0.9	
29	3/29/2023 11:42	55.0	42.5	0.8	1.7	103.8	101.9	-7.2	-7.2	-8.9	Valve Adjustment:No Change
32	1/5/2023 12:47	57.1	42.9	0.0	0.0	72.0	72.3	-3.9	-3.9	-10.7	
32	2/3/2023 10:27	50.6	40.4	9.1		60.5	62.8	-2.8	-3.0	-6.6	Increased Flow/Vacuum
32	2/8/2023 08:47	57.5	42.1	0.4	0.0	75.8	77.3	-7.0	-8.1	-9.4	Increased Flow/Vacuum
32	2/14/2023 13:20	56.3	43.7	0.0	0.0	87.6	87.0	-14.5	-14.3	-15.3	Increased Flow/Vacuum
32	2/22/2023 15:21	55.7	44.3	0.0	0.0	89.6	89.6	-15.9	-16.2	-14.9	Increased Flow/Vacuum
32	3/1/2023 13:11	57.5	42.3	0.1	0.1	89.2	89.2	-15.2	-15.2	-16.8	Increased Flow/Vacuum
32	3/7/2023 10:52	56.6	43.1	0.4		88.9	88.6	-15.4	-16.1	-16.8	Increased Flow/Vacuum
32	3/15/2023 10:00	55.7	44.3	0.0	0.0	83.2	83.2	-13.0	-13.0	-13.0	Increased Flow/Vacuum
33	1/5/2023 13:11	37.0	29.5	4.2	29.3	129.4	129.5	-2.0	-2.0	-1.5	
33	2/3/2023 11:56	38.6	26.1	9.3	26.0	116.2	118.4	-1.2	-1.2	-7.0	
33	2/14/2023 13:26	36.9	30.1	3.3	29.7	118.7	118.8	-1.2	-1.2	-6.2	No Change
33	2/22/2023 15:00	36.6	28.4	4.0	31.0	115.9	116.1	-1.4	-1.3	-6.5	No Change
33	3/1/2023 13:26	37.2	27.6	3.6	31.6	119.8	119.8	-1.2	-1.1	-5.7	No Change
33	3/7/2023 11:22	31.9	24.2	5.6	38.3	116.1	116.1	-1.0	-1.0	-5.4	Decresased Flow/vacuum
33	3/15/2023 09:43	34.0	25.4	5.5	35.1	116.6	117.1	-0.9	-0.8	-5.0	
33	3/23/2023 09:43	38.3	29.6	3.1	29.0	121.2	121.4	-0.7	-0.6	-4.0	No Change
34	1/5/2023 13:37	2.8	72.8	0.1	24.3	138.0	138.0	-8.9	-8.9	-8.8	
34	2/3/2023 09:54	12.5	16.1	15.0	56.4	127.2	128.1	-2.2	-2.2	-1.4	
34	2/7/2023 14:20	2.1	67.8	0.5	29.6	128.0	128.3	-6.2	-6.2	-8.1	No Change
34	2/14/2023 12:51	1.3	74.2	0.0	24.5	136.8	136.8	-4.4	-4.4	-6.2	
34	2/22/2023 14:40	1.0	39.4	10.1	49.5	114.7	114.9	-3.2	-3.2	-5.1	No Change
34	3/1/2023 13:50	1.5	71.8	0.0	26.7	118.3	102.3	-0.1	-5.1	-5.2	Increased Flow/Vacuum

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
34	3/15/2023 09:16	0.7	72.1	0.0	27.2	45.3	44.8	-5.7	-5.6	-5.5	No Change
34	3/23/2023 10:15	1.0	71.2	0.1	27.7	124.8	125.2	-4.5	-4.5	-2.2	
34	3/28/2023 11:45	1.6	91.7	0.0	6.8	126.8	126.9	-4.5	-3.6	1.9	
35	1/5/2023 14:15	32.6	23.4	9.9	34.1	66.9	66.9	-7.1	-7.1	-20.1	
35	2/1/2023 12:39	21.7	17.2	14.2	46.9	48.0	47.7	-12.2	-11.7	-18.3	
35	2/7/2023 11:23	19.4	15.1	13.5	52.0	68.1	67.7	-13.7	-12.3	-20.9	Increased Flow/Vacuum
35	2/14/2023 12:10	3.1	7.5	19.4	70.0	77.8	76.8	-5.6	-5.6	-20.5	
35	2/22/2023 11:43	2.2	2.0	20.7	75.1	86.5	85.7	-6.8	-6.9	-17.1	No Change
35	3/1/2023 14:19	2.9	2.1	20.0	75.0	81.4	81.1	-18.7	-18.7	-19.0	No Change
35	3/15/2023 14:25	2.5	2.1	20.8	74.6	56.8	56.6	-18.2	-18.2	-19.2	
35	3/23/2023 10:46	4.3	4.4	19.5	71.9	56.0	55.8	-13.1	-13.1	-16.4	
36	1/5/2023 13:51	15.1	10.1	16.4	58.4	65.7	65.8	-22.6	-22.2	-22.1	
36	2/3/2023 09:34	11.3	9.0	18.5	61.2	48.8	48.8	-22.3	-22.3	-22.2	Can Not Sample due to Access/Safety
36	2/7/2023 14:12	21.2	14.9	14.0	49.9	76.0	75.7	-21.9	-21.9	-21.9	No Change
36	3/2/2023 09:33	21.6	15.7	14.0	48.7	85.1	84.7	-19.4	-19.3	-19.0	No Change
36	3/23/2023 10:31	18.3	13.2	14.6	53.9	77.2	76.2	-18.6	-18.3	-18.3	
36	3/28/2023 11:32	22.7	48.1	14.7	14.6	58.2	58.4	-41.6	-17.3	-36.4	
37	1/5/2023 13:34	15.5	27.4	6.3	50.8	151.9	151.8	-2.3	-2.2	-9.0	
37	1/6/2023 07:24	16.1	26.9	6.7	50.3	149.2	149.2	-2.0	-2.0	-9.1	
37	1/12/2023 12:18	15.0	24.3	6.2	54.5	149.7	149.7	-8.5	-8.5	-8.1	High Temp
37	1/18/2023 12:33	14.0	26.2	6.8	53.0	149.0	149.0	-1.8	-1.8	-8.1	High Temp
37	1/25/2023 11:53	14.2	28.4	6.1	51.3	149.7	149.8	-1.8	-1.8	-7.8	High Temp
37	2/1/2023 13:33	18.2	30.2	6.3	45.3	150.9	150.9	-1.9	-1.9	-7.4	
37	2/3/2023 10:18	14.9	27.2	7.8	50.1	148.6	149.0	-1.8	-1.6	-7.3	High Temp
37	2/7/2023 14:26	17.0	28.3	6.6	48.1	150.4	150.5	-6.2	-6.5	-6.8	No Change
37	2/8/2023 09:35	16.7	29.2	6.3	47.8	149.1	149.1	-1.5	-1.5	-6.7	No Change,High Temp
37	2/14/2023 12:54	16.2	31.5	5.9	46.4	149.6	149.6	-1.5	-1.5	-6.4	High O2
37	2/15/2023 10:32	17.1	29.3	6.5	47.1	148.6	148.6	-1.4	-1.4	-6.3	High O2
37	2/22/2023 14:36	17.5	30.9	6.1	45.5	149.1	149.5	-1.5	-1.5	-6.7	High Temp,No Change
37	2/23/2023 09:25	16.1	30.3	6.0	47.6	149.0	148.9	-1.4	-1.4	-6.0	
37	3/1/2023 13:44	16.4	31.1	5.6	46.9	149.6	149.7	-1.3	-1.3	-5.5	No Change
37	3/2/2023 08:46	16.2	31.4	6.2	46.2	148.6	148.6	-1.5	-1.5	-6.0	No Change
37	3/7/2023 11:27	17.1	31.0	6.5	45.4	149.1	149.1	-1.5	-1.4	-5.9	Decresased Flow/vacuum
37	3/9/2023 11:24	19.4	32.5	6.4	41.7	149.0	149.0	-1.3	-1.3	-5.6	High O2
37	3/15/2023 09:21	16.1	33.0	6.2	44.7	147.7	147.7	-1.3	-1.3	-5.7	Increased Flow/Vacuum
37	3/16/2023 09:53	13.1	25.8	9.9	51.2	148.6	148.6	-1.3	-1.3	-5.4	

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
37	3/23/2023 10:12	15.6	32.8	5.8	45.8	149.3	149.3	-1.2	-1.2	-4.6	High Temp
37	3/23/2023 13:01	16.4	33.9	5.5	44.2	144.9	144.4	-1.1	-1.1	-4.3	
37	3/28/2023 11:42	15.2	43.3	6.1	35.4	151.0	151.0	-1.1	-1.1	-4.0	
37	3/29/2023 11:52	15.1	35.4	6.4	43.2	150.6	150.6	-3.1	-3.1	-13.9	Valve Adjustment:No Change
38	1/5/2023 14:06	34.6	23.0	9.5	32.9	104.2	104.1	-13.3	-13.3	-13.3	
38	2/1/2023 13:20	15.9	12.6	16.8	54.7	47.7	47.8	-23.0	-22.9	-22.9	
38	2/7/2023 11:54	28.1	19.0	11.3	41.6	105.7	105.7	-11.9	-11.9	-11.9	No Change
38	2/14/2023 12:31	2.6	3.2	20.7	73.5	101.1	101.3	-8.5	-8.5	-7.7	
38	2/22/2023 12:01	0.5	0.7	21.7	77.1	99.7	100.0	-7.5	-7.7	-7.1	
38	3/1/2023 14:00	0.3	1.0	20.7	78.0	99.6	99.6	-12.3	-12.4	-10.3	No Change
38	3/15/2023 14:45	33.7	22.2	9.8	34.3	93.6	93.6	-11.0	-11.0	-11.0	
38	3/23/2023 10:40	0.0	0.5	21.3	78.2	96.7	97.3	-7.2	-7.9	-6.8	No Change
38	3/28/2023 11:20	34.3	24.6	9.5	31.6	100.8	100.9	-10.0	-10.0	0.5	
39	1/5/2023 14:21	29.4	20.0	11.0	39.6	60.2	60.3	-18.1	-18.4	-17.7	
39	2/1/2023 12:48	0.9	1.8	22.2	75.1	40.9	40.9	-16.5	-17.1	-16.7	
39	2/7/2023 11:32	0.7	1.5	21.1	76.7	63.9	64.2	-21.5	-21.5	-21.4	
39	2/14/2023 12:16	1.2	10.0	19.0	69.8	69.6	67.8	-15.3	-15.5	-15.6	Increased Flow/Vacuum
39	2/22/2023 11:49	1.9	3.4	20.5	74.2	78.0	78.0	-12.3	-13.1	-13.0	No Change
39	3/1/2023 14:25	3.8	3.8	19.4	73.0	84.6	87.3	-12.5	-12.9	-13.5	Increased Flow/Vacuum
39	3/15/2023 14:18	2.2	3.1	20.7	74.0	56.6	55.4	-12.6	-12.3	-12.6	Decresased Flow/vacuum
39	3/23/2023 10:49	1.7	3.7	20.0	74.6	58.8	58.5	-12.0	-11.4	-10.6	
39	3/28/2023 11:05	1.3	8.2	22.2	68.4	55.4	55.4	-10.0	-9.8	-10.1	Valve Adjustment:Closed valve 1/2 to 1 turn
40	1/5/2023 15:04	45.5	54.2	0.3	0.0	138.5	139.3	-17.7	-17.7	-18.7	
40	2/1/2023 12:17	46.1	53.4	0.5	0.0	124.2	124.0	-4.7	-4.7	-9.1	
40	2/1/2023 13:25	2.7	72.9	0.2	24.2	123.6	123.8	-7.0	-7.0	-7.0	
40	2/7/2023 10:59	49.0	50.6	0.4	0.0	127.7	128.4	-10.3	-12.7	-12.8	Increased Flow/Vacuum
40	2/14/2023 11:54	48.9	50.3	0.1	0.7	129.8	129.7	-13.0	-13.8	-15.4	Increased Flow/Vacuum
40	2/22/2023 11:09	45.2	47.0	3.6	4.2	124.1	124.0	-10.2	-11.0	-12.5	Increased Flow/Vacuum
40	3/1/2023 15:06	49.4	49.8	0.2	0.6	118.7	118.9	-7.0	-7.0	-6.2	Increased Flow/Vacuum
40	3/9/2023 10:45	32.0	63.0	0.0	5.0	139.1	139.2	-8.3	-8.1	-8.8	No Change
40	3/15/2023 13:40	31.6	63.6	0.0	4.8	141.8	142.0	-8.4	-8.8	-9.0	Increased Flow/Vacuum
40	3/23/2023 10:26	4.7	78.7	0.0	16.6	74.9	74.8	6.7	6.8	6.7	
40	3/23/2023 13:21	4.4	75.4	0.9	19.4	71.7	71.9	-7.0	-6.1	-7.3	
40	3/28/2023 10:37	5.4	94.6	0.0	0.0	71.9	73.9	-1.3	-1.3	-0.9	Valve Adjustment:Opened Valve 1/2 to 1 turn
41	1/5/2023 15:06	50.6	49.3	0.2		128.3	128.4	-6.7	-6.7	-16.6	
41	2/1/2023 12:06	55.7	42.5	1.3	0.5	46.3	46.3	-19.8	-19.8	-19.6	

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
41	2/7/2023 10:53	50.0	38.4	2.6	9.0	108.2	109.1	-19.0	-19.3	-1.6	Positive Static Press.,Increased Flow/Vacuum
41	2/14/2023 11:48	50.3	39.8	1.8	8.1	96.9	97.3	-17.1	-16.7	-1.2	
41	2/22/2023 10:48	52.6	40.2	1.7	5.5	94.3	93.9	-15.3	-15.2	-3.5	
41	3/1/2023 14:59	48.1	34.0	7.9	10.0	94.1	94.3	-13.9	-13.9	-2.3	No Change
41	3/9/2023 10:50	33.3	66.6	0.1	0.0	83.4	83.4	-4.2	-4.2	-3.4	No Change
41	3/15/2023 13:52	34.9	64.8	0.3	0.0	85.0	85.5	-4.0	-4.2	-4.9	Increased Flow/Vacuum
41	3/23/2023 10:20	23.4	20.4	11.0	45.2	69.3	69.2	-7.5	-7.7	-7.7	Valve Adjustment:Opened Valve 1/2 to 1 turn
41	3/28/2023 10:30	21.8	27.4	12.0	38.9	75.5	75.6	-9.0	-8.9	-9.2	
42	1/5/2023 13:13	36.4	27.4	7.5	28.7	120.0	119.9	-1.5	-0.9	-0.9	
42	2/3/2023 09:59	57.8	42.2	0.0	0.0	105.5	107.7	-0.9	-0.8	-0.8	Decresased Flow/vacuum
42	2/8/2023 08:30	0.3	0.7	21.9	77.1	111.1	111.3	-0.1	-0.1	-0.1	No Change
42	2/14/2023 13:10	57.5	41.0	0.5	1.0	111.5	111.4	-0.4	-0.4	-0.3	No Change
42	2/22/2023 14:56	56.4	43.6	0.0	0.0	115.2	115.6	-0.4	-0.4	-0.4	No Change
42	3/1/2023 13:31	56.7	41.3	0.1	1.9	90.7	98.4	-0.9	-1.4	-5.1	Increased Flow/Vacuum
42	3/7/2023 11:10	50.7	39.1	0.2	10.0	121.4	121.7	-3.8	-4.2	-5.5	Increased Flow/Vacuum
42	3/15/2023 09:36	46.8	37.4	0.4	15.4	119.1	119.3	-7.4	-7.4	-5.9	
42	3/23/2023 09:46	50.2	38.9	0.0	10.9	119.4	119.3	-4.4	-4.4	-4.8	
42	3/28/2023 14:00	50.5	41.5	0.0	7.9	119.2	120.0	-3.8	-3.8	-4.4	Valve Adjustment:No Change
46	1/5/2023 14:51	54.0	46.0	0.0	0.0	143.9	143.9	-1.3	-1.2	-20.4	
46	2/1/2023 12:01	53.6	46.4	0.0	0.0	145.5	144.8	-1.3	-0.7	-20.2	
46	2/7/2023 10:48	53.0	45.0	1.0	1.0	143.4	144.0	-1.0	-1.2	-20.2	Increased Flow/Vacuum,High Temp
46	2/14/2023 11:42	51.5	43.5	0.1	4.9	143.9	143.8	-6.1	-6.2	-20.6	Increased Flow/Vacuum
46	2/22/2023 10:30	44.2	38.1	1.4	16.3	139.2	140.0	-6.9	-5.3	-19.4	Opened Valve 1/2 Turn or Less
46	3/1/2023 14:57	43.1	37.1	1.2	18.6	144.6	144.9	-7.5	-7.5	-17.1	Increased Flow/Vacuum
46	3/9/2023 10:33	44.0	38.1	1.5	16.4	145.2	144.8	-6.0	-7.1	-15.5	Increased Flow/Vacuum
46	3/15/2023 13:30	40.5	35.0	1.8	22.7	144.6	144.5	-7.2	-7.2	-16.7	No Change
46	3/23/2023 10:12	38.8	37.6	1.9	21.7	145.4	145.4	-4.8	-4.9	-14.3	
46	3/23/2023 13:24	39.8	38.7	1.8	19.7	145.4	145.8	-4.9	-4.9	-14.4	
46	3/28/2023 10:21	34.5	50.9	2.0	12.7	148.5	148.5	-4.4	-4.4	-14.3	
47	1/5/2023 15:11	54.0	36.5	3.1	6.4	63.0	62.6	-21.4	-21.3	-21.2	
47	2/1/2023 12:26	56.8	41.0	1.4	0.8	89.1	89.0	-22.3	-22.3	-21.9	
47	2/7/2023 11:07	55.3	40.3	1.1	3.3	72.9	73.4	-19.5	-19.5	-19.6	Increased Flow/Vacuum
47	2/14/2023 12:00	36.4	28.0	7.6	28.0	97.6	97.9	-20.8	-20.8	-20.7	
47	2/22/2023 11:22	55.8	40.0	1.0	3.2	98.5	98.6	-19.9	-19.9	-19.7	No Change
47	3/1/2023 14:36	56.4	40.4	0.4	2.8	102.2	102.2	-19.1	-19.1	-19.1	No Change
47	3/9/2023 10:56	56.8	36.4	1.4	5.4	91.8	91.9	-18.1	-18.1	-18.0	

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
47	3/15/2023 14:01	53.7	39.2	1.0	6.1	86.8	86.9	-19.4	-19.4	-19.3	
47	3/23/2023 10:34	53.0	41.5	1.5	4.0	86.9	86.0	-16.8	-16.6	-16.8	Valve Comment:Broken valve
47	3/28/2023 10:43	43.5	56.1	0.5	0.0	93.6	93.4	-16.5	-16.5	-16.7	Valve Adjustment:Opened Valve 1/2 to 1 turn
48	1/5/2023 14:01	3.2	2.9	20.0	73.9	65.2	65.5	-21.8	-21.8	-21.8	
48	2/1/2023 13:01	6.1	5.2	20.0	68.7	40.1	40.1	-23.1	-22.3	-22.3	
48	2/7/2023 11:57	0.6	1.3	21.2	76.9	69.2	68.7	-21.5	-21.5	-21.4	No Change
48	2/14/2023 12:26	1.7	9.2	19.1	70.0	62.6	62.5	-20.0	-20.0	-20.5	
48	2/22/2023 11:58	1.3	1.5	21.2	76.0	72.7	72.4	-19.1	-19.1	-19.4	No Change
48	3/1/2023 14:05	3.0	1.9	20.1	75.0	79.1	79.2	-0.1	-19.0	-18.9	No Change
48	3/15/2023 14:40	0.3	0.8	21.5	77.4	50.4	48.6	-16.8	-16.7	-17.0	Decresased Flow/vacuum
48	3/23/2023 10:37	0.0	1.3	20.9	77.8	59.2	59.1	-15.0	-15.2	-16.8	No Change
48	3/28/2023 11:17	3.1	16.6	21.1	59.1	56.2	56.2	-4.5	-15.7	-10.3	
49	1/5/2023 13:45	28.9	31.9	5.1	34.1	136.1	136.2	-9.0	-9.0	-9.0	
49	2/3/2023 09:40	40.9	37.1	3.1	18.9	133.0	133.2	-3.9	-3.9	-3.9	Can Not Sample due to Access/Safety
49	2/7/2023 12:18	35.1	32.6	3.6	28.7	135.0	135.6	-3.9	-3.9	-3.9	No Change
49	2/14/2023 12:35	39.0	35.6	2.4	23.0	135.4	135.4	-4.4	-4.4	-4.4	
49	2/22/2023 12:12	47.1	41.0	0.9	11.0	95.8	95.6	-1.6	-1.5	-1.5	Can Not Sample due to Access/Safety
49	3/1/2023 13:54	49.0	42.4	0.5	8.1	132.1	132.2	-1.4	-1.3	-1.3	No Change
49	3/10/2023 08:38	55.0	44.8	0.2	0.0	78.6	78.7	-0.3	-0.3	-0.2	No Change
49	3/15/2023 14:56	57.5	42.0	0.5	0.0	126.6	127.6	-1.1	-1.1	-1.1	No Change
49	3/23/2023 10:25	54.2	43.2	0.3	2.3	130.9	131.0	-1.5	-1.5	-1.5	
49	3/29/2023 12:30	43.2	55.4	0.5	1.0	133.3	133.3	-1.3	-1.3	0.7	
50	1/5/2023 13:48	44.4	32.3	2.6	20.7	124.4	124.3	-2.7	-2.6	-2.4	
50	2/1/2023 13:11	50.0	35.1	1.4	13.5	123.9	124.0	-2.5	-2.5	-21.6	
50	2/7/2023 12:16	49.5	34.4	0.9	15.2	125.0	125.2	-2.1	-4.5	-0.1	Increased Flow/Vacuum
50	2/14/2023 12:38	34.8	30.2	1.4	33.6	122.7	122.7	-5.5	-5.5	-5.5	
50	2/22/2023 12:09	40.0	29.5	1.3	29.2	121.8	122.0	-5.1	-5.1	-5.1	No Change
50	3/1/2023 13:57	39.9	31.1	0.8	28.2	120.9	121.0	-4.8	-4.8	-17.3	No Change
50	3/10/2023 08:40	53.6	39.1	0.0	7.3	118.0	118.3	-1.9	-1.9	-3.0	
50	3/15/2023 14:54	51.4	36.0	0.8	11.8	124.8	124.8	-6.0	-6.0	-5.9	No Change
50	3/23/2023 10:28	23.7	20.8	7.2	48.3	118.0	118.1	-6.8	-6.8	-6.8	
50	3/28/2023 11:23	32.5	33.1	1.7	32.7	119.7	119.7	-5.9	-5.9	-13.3	Valve Comment:0839985
51	1/5/2023 14:24	39.2	53.9	0.7	6.2	130.6	130.5	-12.2	-11.5	-11.4	
51	2/1/2023 12:43	39.7	48.2	3.1	9.0	68.5	68.4	-9.1	-9.4	-8.3	
51	2/7/2023 11:27	41.1	37.0	4.7	17.2	80.4	80.8	-21.5	-21.5	-21.2	Increased Flow/Vacuum
51	2/14/2023 12:13	34.8	47.0	3.2	15.0	96.3	97.1	-9.4	-7.4	-11.0	

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
51	2/22/2023 11:45	6.3	66.1	2.8	24.8	91.2	91.1	-5.8	-6.3	-6.1	No Change
51	3/1/2023 14:29	13.2	61.0	2.3	23.5	84.3	81.5	-7.7	-7.7	-8.4	No Change
51	3/15/2023 14:13	25.2	56.9	2.5	15.4	78.9	78.7	-5.5	-5.3	-6.0	Decresased Flow/vacuum
51	3/23/2023 10:48	1.3	30.1	17.1	51.5	169.2	177.8	-3.8	-6.4	-8.1	Valve Comment:0229820
51	3/23/2023 13:13	13.7	45.6	5.0	35.7	166.4	167.3	-5.5	-4.6	-6.7	Valve Comment:0243375
51	3/29/2023 12:25	5.7	75.9	1.5	16.9	169.8	169.2	-1.6	-1.5	-0.9	Valve Comment:0281076
52	1/5/2023 14:12	42.2	56.8	0.2	0.8	144.0	144.0	-18.0	-17.5	-16.9	
52	2/1/2023 12:36	47.4	51.2	1.0	0.4	130.7	130.8	-18.2	-18.2	-18.5	
52	2/7/2023 11:19	43.0	49.8	1.0	6.2	135.1	135.8	-21.4	-21.3	-21.2	Increased Flow/Vacuum
52	2/14/2023 12:08	36.1	42.2	3.7	18.0	118.8	119.1	-19.6	-19.6	-19.5	
52	2/22/2023 11:39	35.5	38.1	6.0	20.4	115.6	117.9	-19.7	-19.7	-18.8	
52	3/1/2023 14:16	43.6	43.3	2.4	10.7	104.3	104.4	-19.0	-19.0	-19.0	No Change
52	3/15/2023 14:32	28.3	26.9	9.8	35.0	84.4	84.2	-19.0	-19.1	-19.0	Decresased Flow/vacuum
52	3/23/2023 10:43	45.4	41.9	3.3	9.5	89.9	90.6	-15.4	-15.8	-15.5	Valve Adjustment:Opened Valve 1/2 to 1 turn
52	3/28/2023 10:53	30.2	46.9	7.8	15.2	94.1	94.2	-16.4	-16.4	-16.4	
53	1/5/2023 15:02	48.6	38.7	3.9	8.8	120.0	120.9	-17.8	-17.8	-1.7	Positive Static Press
53	2/1/2023 12:13	39.7	59.7	0.6	0.0	144.6	144.5	-14.1	-13.5	-15.8	
53	2/7/2023 10:57	4.2	46.0	7.0	42.8	141.5	142.4	-14.1	-14.1	-15.7	
53	2/14/2023 11:51	23.3	49.0	4.0	23.7	144.7	144.2	-13.9	-13.2	-16.2	
53	2/22/2023 10:52	23.4	47.6	4.7	24.3	151.7	152.4	-11.4	-10.9	-14.4	High Temp,Increased Flow/Vacuum
53	2/23/2023 09:28	23.0	46.9	5.0	25.1	145.3	145.6	-12.7	-12.1	-14.0	High Temp
53	3/1/2023 15:03	29.9	59.4	0.9	9.8	141.1	141.2	-10.6	-10.6	-10.6	No Change
53	3/9/2023 10:41	29.2	26.6	8.4	35.8	73.4	73.3	-9.0	-8.9	-9.4	Can Not Sample due to Access/Safety
53	3/15/2023 13:34	23.2	19.5	10.7	46.6	68.6	68.4	-9.8	-9.9	-9.9	Decresased Flow/vacuum
53	3/23/2023 10:23	31.7	65.0	0.2	3.1	111.6	114.1	-7.1	-7.2	-7.8	Valve Comment:1852617
53	3/28/2023 10:33	28.6	71.4	0.0	0.0	143.9	144.6	-8.6	-8.5	-9.1	Valve Adjustment:Opened Valve 1/2 to 1 turn
53	3/28/2023 10:58	18.0	26.0	15.4	40.7	58.4	58.7	-13.4	-13.4	-15.4	
54	1/5/2023 15:14	35.3	64.7	0.0	0.0	61.7	62.0	-21.1	-21.1	-21.2	
54	2/1/2023 12:29	29.0	63.6	1.3	6.1	122.9	122.9	-22.0	-22.0	-21.2	
54	2/7/2023 11:12	28.1	62.0	5.9	4.0	131.2	133.8	-21.3	-21.3	-21.1	No Change
54	2/14/2023 12:02	18.5	36.5	8.5	36.5	78.1	77.6	-20.8	-20.8	-20.8	
54	2/22/2023 11:33	25.9	66.0	0.0	8.1	142.0	141.8	-19.5	-19.5	-19.8	
54	3/1/2023 14:38	24.5	66.0	0.0	9.5	132.4	132.5	-19.2	-19.1	-18.9	No Change
54	3/9/2023 10:59	24.0	65.8	0.1	10.1	112.1	112.2	-18.1	-18.0	-17.9	No Change
54	3/15/2023 14:04	21.2	65.9	0.0	12.9	97.3	97.6	-19.4	-19.4	-19.6	No Change
54	3/23/2023 10:37	20.2	66.3	0.1	13.4	94.9	94.8	-16.3	-16.4	-16.5	Valve Adjustment:Opened Valve 1/2 to 1 turn

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
54	3/28/2023 10:47	16.5	46.1	9.7	27.7	140.3	140.4	-16.5	-16.3	-16.8	Valve Comment:0152697;Valve Adjustment:Closed valve 1/2 to 1 turn
55	1/5/2023 15:16	42.2	34.0	4.2	19.6	60.8	60.5	-21.0	-20.9	-20.9	
55	2/3/2023 09:26	37.0	32.9	4.4	25.7	37.0	36.9	-21.4	-21.4	-21.4	
55	2/7/2023 10:41	40.7	34.5	3.2	21.6	74.4	74.9	-22.1	-22.1	-22.0	
55	2/7/2023 11:15	40.0	33.0	3.8	23.2	84.8	85.3	-21.5	-21.5	-21.4	No Change
55	2/14/2023 12:04	39.5	35.7	3.4	21.4	74.9	75.0	-20.9	-20.8	-20.9	
55	2/22/2023 11:29	46.4	36.6	1.8	15.2	83.5	83.3	-20.0	-20.0	-20.0	
55	3/1/2023 14:41	45.2	38.9	1.6	14.3	86.0	85.6	-19.1	-19.1	-19.3	No Change
55	3/9/2023 11:02	28.2	23.2	11.0	37.6	70.4	69.7	-18.1	-18.1	-18.0	No Change
55	3/15/2023 14:09	30.1	27.1	8.1	34.7	55.0	54.9	-19.4	-19.4	-19.4	
55	3/23/2023 10:40	46.8	45.9	1.1	6.2	57.1	57.1	-16.5	-16.6	-12.1	
55	3/28/2023 10:50	38.4	57.5	1.7	2.4	59.7	59.7	-16.7	-16.5	-14.5	
56	1/5/2023 14:38	44.3	40.0	3.6	12.1	130.4	130.4	-18.3	-18.3	-20.1	
56	2/1/2023 11:18	42.1	39.9	4.3	13.7	131.9	132.1	-19.1	-19.1	-21.2	
56	2/7/2023 10:08	42.3	38.0	4.4	15.3	130.9	130.8	-18.2	-18.1	-20.4	Increased Flow/Vacuum
56	2/14/2023 11:19	42.0	37.0	4.3	16.7	127.6	131.1	-20.0	-20.0	-20.0	
56	2/22/2023 10:11	43.2	38.7	4.1	14.0	133.4	133.4	-17.5	-17.5	-18.4	Opened Valve 1/2 Turn or Less
56	3/1/2023 15:18	42.2	39.7	3.5	14.6	134.6	134.2	-16.1	-16.2	-16.4	No Change
56	3/9/2023 10:10	47.1	44.0	2.3	6.6	134.0	134.1	-16.6	-16.6	-17.1	Increased Flow/Vacuum
56	3/15/2023 10:58	44.9	43.5	2.5	9.1	130.4	130.8	-18.2	-18.1	-18.4	No Change
56	3/23/2023 09:48	42.5	42.9	2.7	12.0	105.6	105.8	-16.1	-16.1	-16.8	
56	3/28/2023 09:47	40.4	54.7	3.4	1.5	129.8	130.2	-12.5	-12.4	-13.0	Valve Adjustment:No Change
57	1/5/2023 14:43	41.4	49.1	9.4	0.1	143.4	145.6	-20.6	-20.5	-20.4	
57	1/6/2023 07:40	48.1	51.8	0.1	0.0	148.1	148.4	-21.1	-21.0	-20.8	
57	1/12/2023 12:36	38.0	45.7	1.4	14.9	176.1	176.9	-12.8	-8.1	-12.0	High Temp
57	1/18/2023 11:59	6.4	10.5	16.9	66.2	172.4	172.4	0.0	0.0	0.1	High Temp
57	1/25/2023 12:05	31.7	59.3	0.6	8.4	170.0	170.3	-20.2	-20.2	-20.0	Opened for Sample
57	2/1/2023 11:27	43.8	55.7	0.5	0.0	155.3	155.3	-21.2	-20.9	-20.5	
57	2/3/2023 10:41	40.2	55.2	0.1	4.5	150.8	150.9	-20.3	-20.3	-18.6	High O2
57	2/7/2023 10:28	41.5	54.2	0.3	4.0	153.2	153.0	-21.0	-21.0	-20.9	Increased Flow/Vacuum,High Temp
57	2/8/2023 09:43	42.0	55.4	0.3	2.3	152.5	152.4	-20.8	-20.8	-20.5	High Temp
57	2/14/2023 11:27	34.4	56.0	0.6	9.0	147.4	147.7	-20.7	-20.8	-20.8	High Temp
57	2/15/2023 12:23	40.1	56.7	0.5	2.7	149.6	149.7	-20.4	-20.5	-20.5	High Temp
57	2/22/2023 10:19	40.3	58.2	0.0	1.5	149.7	149.7	-18.6	-18.7	-18.7	No Change
57	2/23/2023 09:38	38.9	57.8	0.4	2.9	144.3	144.5	-17.6	-16.7	-17.2	No Change
57	3/1/2023 15:10	38.5	58.9	0.0	2.6	145.3	144.5	-18.1	-0.2	-17.9	No Change

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
57	3/9/2023 10:18	33.5	62.5	0.0	4.0	143.2	143.3	-17.2	-17.1	-16.9	No Change
57	3/15/2023 11:03	1.0	74.9	0.0	24.1	170.5	170.5	-18.1	-18.3	-18.4	
57	3/16/2023 10:06	23.2	54.6	3.2	19.0	146.4	147.1	-16.4	-16.4	-16.1	High O2
57	3/23/2023 09:59	29.1	58.3	1.1	11.5	133.5	137.2	-15.3	-15.3	-15.5	
57	3/28/2023 10:14	29.6	70.4	0.0	0.0	144.1	147.2	-14.1	-14.0	-14.2	Valve Comment:0224544
57	3/29/2023 12:10	21.4	57.8	2.7	18.1	162.1	157.7	-12.2	-12.1	-12.5	Valve Adjustment:No Change;Well Comment:0248610
58	1/5/2023 14:48	26.7	36.1	2.2	35.0	119.7	120.2	-6.0	-6.0	-6.0	
58	2/1/2023 11:40	31.1	45.2	0.7	23.0	124.2	124.2	-3.0	-2.9	-0.5	
58	2/7/2023 10:37	36.3	42.3	1.6	19.8	115.8	116.4	-11.2	-11.1	-11.1	
58	2/14/2023 11:31	49.9	50.0	0.0	0.1	94.9	95.1	-20.7	-20.7	-20.6	
58	2/22/2023 10:22	2.1	2.4	19.9	75.6	71.7	70.6	-18.4	-18.4	-18.4	No Change
58	3/1/2023 14:48	1.0	1.1	20.4	77.5	79.5	79.5	-17.6	-17.6	-17.5	No Change
58	3/9/2023 10:22	9.6	8.8	19.4	62.2	68.7	68.5	-16.5	-16.5	-16.2	No Change
58	3/15/2023 11:06	37.2	54.1	0.0	8.7	112.8	112.8	-4.1	-4.0	-4.0	No Change
58	3/23/2023 10:03	38.6	57.0	0.2	4.2	90.2	89.0	-7.4	-7.5	-14.9	
58	3/28/2023 10:09	39.2	60.8	0.0	0.0	117.2	117.7	-3.7	-5.0	-14.7	Valve Comment:1753310;Valve Adjustment:Opened Valve 1/2 to 1 turn
59	1/5/2023 14:40	31.5	30.6	5.9	32.0	114.2	114.3	-1.6	-1.6	-22.3	
59	2/1/2023 11:22	30.0	31.8	6.2	32.0	115.3	115.3	-3.1	-1.9	-22.8	
59	2/7/2023 10:22	29.8	30.0	6.2	34.0	112.6	112.8	-1.8	-1.2	-21.9	
59	2/14/2023 11:22	38.6	37.3	3.3	20.8	114.0	113.9	-1.4	-1.4	-21.7	
59	2/22/2023 10:14	45.3	43.7	2.0	9.0	114.1	114.1	-3.0	-3.1	-21.2	Opened Valve 1/2 to 1 Turn
59	3/1/2023 15:14	34.3	36.5	3.7	25.5	112.5	112.5	-3.3	-3.3	-20.0	No Change
59	3/9/2023 10:14	35.9	40.6	3.7	19.8	115.6	115.3	-2.4	-2.4	-2.4	
59	3/9/2023 10:15	34.3	39.3	3.8	22.6	115.0	115.2	-2.4	-0.1	-18.7	Increased Flow/Vacuum
59	3/15/2023 10:55	28.2	34.7	4.9	32.2	112.3	112.3	-2.7	-2.7	-20.3	
59	3/23/2023 09:56	33.2	40.9	2.5	23.4	111.2	111.0	-2.8	-2.7	-17.7	Valve Comment:1366734;Valve Adjustment:Closed valve 1/2 to 1 turn
59	3/28/2023 10:05	37.5	55.3	0.0	7.2	160.7	160.3	-7.3	-7.6	-15.6	Valve Comment:1366950;Valve Adjustment:Opened Valve 1/2 to 1 turn
59	3/29/2023 12:19	31.2	49.8	2.2	16.9	119.3	119.4	-2.5	-2.5	-14.2	Valve Adjustment:No Change;Well Comment:1371333
60	1/5/2023 14:09	52.0	48.0	0.0	0.0	138.5	138.7	-5.2	-5.2	-21.5	
60	2/1/2023 12:56	56.3	43.6	0.1	0.0	112.4	112.6	-6.7	-7.4	-21.9	
60	2/7/2023 11:51	56.4	40.0	0.6	3.0	115.1	115.6	-17.2	-17.3	-21.1	Increased Flow/Vacuum
60	2/14/2023 12:23	37.1	34.3	1.8	26.8	117.1	117.2	-19.3	-19.3	-21.0	Increased Flow/Vacuum
60	2/22/2023 11:55	22.2	16.2	12.6	49.0	116.5	116.5	-16.5	-17.9	-19.9	No Change

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
60	3/1/2023 14:12	47.1	36.1	0.0	16.8	114.8	115.0	-18.0	-18.0	-19.0	Increased Flow/Vacuum
60	3/15/2023 14:37	48.6	37.1	0.0	14.3	111.1	110.9	-18.2	-18.2	-17.9	Increased Flow/Vacuum
60	3/23/2023 10:44	45.2	35.0	0.2	19.6	109.6	110.0	-16.2	-16.2	-17.0	No Change
60	3/28/2023 11:13	41.9	45.6	0.0	12.6	112.2	112.1	-15.5	-15.5	-16.5	Valve Adjustment:Opened Valve 1/2 to 1 turn
61	1/5/2023 13:54	36.2	49.9	1.9	12.0	127.3	127.3	-0.9	-0.9	-20.7	
61	2/1/2023 13:15	29.0	68.9	0.1	2.0	114.8	114.7	-1.3	-0.6	-21.8	
61	2/7/2023 12:13	39.5	56.5	0.0	4.0	120.7	120.8	-0.3	-0.2	-21.8	No Change
61	2/14/2023 12:43	35.0	60.3	0.0	4.7	120.4	123.2	-1.8	-1.8	-21.2	
61	2/22/2023 12:06	34.4	28.8	6.4	30.4	110.5	110.8	-1.4	-1.4	-19.9	No Change
61	3/2/2023 09:15	38.3	34.3	4.7	22.7	96.3	96.0	-1.6	-1.6	-17.8	No Change
61	3/15/2023 14:49	40.8	35.0	3.8	20.4	82.3	82.6	-1.4	-1.3	-17.9	No Change
61	3/23/2023 10:34	34.7	32.8	7.7	24.8	107.5	108.5	-1.2	-1.2	-17.3	No Change
61	3/28/2023 11:27	34.5	51.4	2.4	11.7	130.2	130.0	-0.7	-0.7	-16.8	Valve Adjustment:No Change
62	1/5/2023 13:06	54.2	45.8	0.0	0.0	62.5	62.6	-0.1	-0.1	-9.2	
62	2/3/2023 10:05	54.3	45.7	0.0	0.0	45.3	49.9	0.3	-0.3	-6.1	
62	2/3/2023 11:22	12.2	12.7	14.8	60.3	57.2	67.7	-1.7	-1.7	-6.6	
62	2/8/2023 08:24	33.0	33.0	2.5	31.5	116.9	117.0	-0.5	-0.4	-6.3	No Change
62	2/14/2023 13:14	38.6	35.0	1.7	24.7	117.4	117.5	-0.1	-0.2	-5.7	No Change
62	2/22/2023 15:02	47.0	38.8	1.1	13.1	117.1	117.4	-1.2	-1.2	-5.4	Increased Flow/Vacuum
62	3/1/2023 13:22	21.7	20.0	7.5	50.8	116.9	116.8	-1.3	-1.3	-5.8	No Change
62	3/7/2023 11:05	20.0	18.3	9.1	52.6	111.1	111.1	-1.6	-1.5	-5.0	Decresased Flow/vacuum
62	3/15/2023 09:40	20.4	17.1	7.1	55.4	107.8	108.3	-1.6	-1.5	-5.4	No Change
62	3/23/2023 09:40	26.4	23.0	6.9	43.7	113.4	113.4	-1.3	-1.3	-4.6	No Change
62	3/28/2023 13:57	40.7	37.5	6.4	15.4	116.2	116.2	-1.2	-1.2	-4.8	Valve Comment:0114010;Valve Adjustment:No Change
63	1/5/2023 13:16	19.3	19.4	8.7	52.6	130.2	130.1	-0.8	-0.3	-8.9	
63	2/1/2023 13:39	19.0	21.9	9.2	49.9	134.1	133.6	-1.5	-1.4	-7.3	
63	2/1/2023 13:43	21.9	21.0	8.9	48.2	121.8	121.9	-1.0	-0.6	-6.7	
63	2/8/2023 08:33	18.9	19.5	9.1	52.5	120.4	120.4	-0.4	-0.4	-6.4	
63	2/14/2023 13:06	22.6	21.9	7.4	48.1	123.0	122.8	-0.2	-0.2	-6.4	
63	2/22/2023 14:50	25.7	23.0	7.0	44.3	123.2	123.1	-0.4	-0.4	-6.4	No Change
63	3/1/2023 13:35	30.4	27.8	4.8	37.0	124.9	124.9	-0.3	-0.3	-5.3	No Change
63	3/7/2023 11:13	14.8	16.2	9.9	59.1	117.1	117.2	-0.5	-0.4	-5.6	Decresased Flow/vacuum
63	3/15/2023 09:32	10.9	11.6	13.9	63.6	88.1	88.3	-0.3	-0.3	0.2	
63	3/23/2023 09:49	16.7	19.0	7.8	56.5	113.8	113.9	-0.3	-0.3	-4.8	No Change
63	3/28/2023 14:03	19.7	27.0	7.8	45.6	112.6	110.4	-0.2	-0.1	-4.5	Valve Comment:0048073;Valve Adjustment:Closed valve 1/2 to 1 turn

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
64	1/5/2023 13:28	21.4	26.3	5.9	46.4	147.4	147.3	-0.9	-0.9	-0.9	
64	1/6/2023 07:34	20.9	25.8	6.5	46.8	145.0	145.2	-1.1	-1.0	-1.0	
64	1/12/2023 12:26	22.5	27.2	5.5	44.8	144.7	144.8	-1.0	-1.0	-1.0	
64	2/1/2023 13:47	18.2	20.0	9.8	52.0	133.9	134.1	-1.6	-1.6	-7.5	
64	2/7/2023 14:29	17.6	19.1	10.0	53.3	131.2	132.1	-1.2	-1.1	-6.6	No Change
64	2/14/2023 12:58	18.0	21.2	9.2	51.6	126.8	126.8	-0.9	-0.9	-6.2	No Change
64	2/22/2023 14:43	19.7	19.4	9.7	51.2	132.3	132.7	-1.2	-1.1	-6.6	No Change
64	3/1/2023 13:41	20.0	21.3	8.6	50.1	133.0	132.9	-0.9	-0.9	-5.4	No Change
64	3/15/2023 09:25	16.8	16.7	11.0	55.5	123.5	123.1	-0.7	-0.7	-5.8	
64	3/23/2023 10:08	21.7	26.3	5.7	46.3	137.5	138.2	-1.0	-1.0	-4.6	
64	3/28/2023 11:49	10.5	66.8	5.1	17.7	137.0	137.0	-0.8	-0.7	-3.7	Valve Comment:0099087
65	1/5/2023 13:39	8.7	14.3	10.9	66.1	135.6	135.7	-1.8	-1.2	-1.2	
65	2/3/2023 09:37	8.5	13.2	12.9	65.4	131.0	131.3	-1.2	-1.2	-1.2	Can Not Sample due to Access/Safety
65	2/7/2023 14:23	8.3	14.5	11.2	66.0	132.7	132.9	-1.3	-1.3	-1.2	Can Not Sample due to Access/Safety
65	2/14/2023 12:48	7.4	16.0	11.2	65.4	132.8	132.9	-1.2	-1.2	-1.1	No Change
65	2/22/2023 14:33	10.1	12.8	11.0	66.1	133.0	133.3	-1.2	-1.2	-1.2	No Change
65	3/1/2023 13:47	10.0	13.5	10.4	66.1	132.4	132.6	-1.3	-1.2	-1.2	No Change
65	3/15/2023 09:12	10.4	14.8	9.9	64.9	129.2	129.8	-1.2	-1.1	-1.1	
65	3/23/2023 10:18	9.5	16.0	10.2	64.3	130.2	130.5	-1.1	-1.1	-1.0	No Change
65	3/28/2023 11:39	8.8	34.9	10.4	45.9	133.6	133.6	-0.9	-0.9	-16.4	Valve Adjustment:No Change
66	1/12/2023 12:32	45.0	50.8	0.0	4.2	122.1	124.8	-6.2	-6.2	-6.2	
66	2/1/2023 11:50	44.2	55.8	0.0	0.0	116.2	116.9	-17.9	-17.8	-20.4	
66	2/7/2023 10:35	45.0	54.9	0.0	0.1	114.6	115.0	-20.5	-20.5	-20.5	
66	2/14/2023 11:33	35.5	63.5	0.0	1.0	86.1	86.4	-20.5	-20.5	-20.5	
66	2/22/2023 10:25	36.6	60.4	1.0	2.0	87.6	88.0	-17.6	-17.6	-17.7	
66	3/1/2023 14:07	35.5	35.7	4.3	24.5	124.9	125.0	-1.2	-1.2	-18.7	No Change
66	3/1/2023 14:51	24.7	42.3	7.0	26.0	79.1	77.6	-16.9	-16.6	-16.7	No Change
66	3/9/2023 10:25	19.6	35.2	10.4	34.8	58.5	58.4	-15.5	-15.4	-15.8	No Change
66	3/15/2023 11:10	14.1	24.9	13.7	47.3	40.1	40.1	-16.1	-16.0	-16.0	Can Not Sample due to Access/Safety
66	3/23/2023 10:08	34.4	65.1	0.5	0.0	55.2	55.2	-13.6	-13.5	-13.9	
66	3/28/2023 10:18	26.1	73.9	0.0	0.0	70.2	70.2	-13.1	-13.0	-13.2	
67	1/5/2023 15:09	38.0	61.6	0.1	0.3	68.6	68.5	-21.0	-21.0	-21.0	
67	2/1/2023 12:21	31.7	64.0	0.5	3.8	124.5	124.7	-21.9	-21.8	-21.8	
67	2/7/2023 11:05	29.7	63.0	0.0	7.3	85.8	85.9	-21.7	-21.6	-21.2	
67	3/1/2023 14:33	25.6	63.5	0.3	10.6	150.1	149.8	-19.0	-19.0	-19.0	High Temp
67	3/2/2023 09:38	28.1	63.3	0.1	8.5	143.9	144.2	-17.4	-17.4	-17.3	No Change

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
67	3/9/2023 10:53	21.0	60.0	1.7	17.3	143.2	143.0	-18.1	-18.0	-18.0	Increased Flow/Vacuum
67	3/15/2023 13:58	20.4	53.3	3.5	22.8	123.1	122.8	-19.3	-19.3	-19.3	Decresased Flow/vacuum
67	3/23/2023 10:30	17.6	56.6	3.9	21.9	109.2	109.8	-16.5	-16.6	-16.6	Valve Comment:0347188
67	3/28/2023 10:40	10.2	73.1	5.3	11.4	137.3	137.0	-16.6	-16.5	-16.7	Valve Comment:0347188
68	1/5/2023 14:17	58.6	41.4	0.0	0.0	129.1	129.0	-15.5	-15.1	-20.5	
68	2/1/2023 12:52	57.1	42.8	0.0	0.1	125.2	125.2	-17.3	-16.7	-20.5	
68	2/7/2023 11:41	52.5	42.5	1.1	3.9	129.3	129.8	-18.1	-18.0	-21.2	Increased Flow/Vacuum
68	2/14/2023 12:19	58.5	41.5	0.0	0.0	125.7	125.6	-18.0	-18.1	-19.1	Increased Flow/Vacuum
68	2/22/2023 11:52	57.7	42.3	0.0	0.0	125.8	125.8	-18.5	-18.5	-17.5	Increased Flow/Vacuum
68	3/1/2023 14:21	58.6	41.4	0.0	0.0	125.3	125.3	-17.1	-17.1	-17.6	Increased Flow/Vacuum
68	3/15/2023 14:20	57.5	42.5	0.0	0.0	123.4	121.6	-18.4	-18.7	-18.8	Increased Flow/Vacuum
68	3/23/2023 10:46	58.8	40.6	0.6	0.0	123.2	123.4	-15.3	-15.3	-15.7	No Change
68	3/28/2023 11:09	55.9	44.1	0.0	0.0	125.0	125.2	-14.7	-14.6	-15.1	Valve Comment:1831585
HC01	1/5/2023 14:54	26.5	20.2	12.3	41.0	62.1	61.9	-19.7	-20.2		
HC01	2/1/2023 11:55	25.6	23.2	11.3	39.9	41.4	41.3	-20.6	-20.6		
HC01	2/7/2023 10:46	16.8	15.2	14.8	53.2	64.8	64.9	-20.7	-20.7		
HC01	2/14/2023 11:37	12.5	5.0	17.5	65.0	66.7	66.7	-20.1	-20.2		
HC01	2/22/2023 10:27	0.0	0.1	21.2	78.7	79.5	79.4	-11.6	-10.4		No Change
HC01	3/1/2023 14:54	11.1	8.7	16.3	63.9	79.9	79.8	-15.6	-15.6		No Change
HC01	3/9/2023 10:30	15.5	15.1	15.8	53.6	63.9	64.0	-15.4	-15.5		No Change
HC01	3/15/2023 11:12	22.0	20.1	10.9	47.0	48.5	48.5	-16.0	-16.0		No Change
HC01	3/23/2023 10:15	20.5	18.7	11.2	49.7	55.2	55.2	-7.6	-7.6	-13.6	
HC01	3/28/2023 10:26	26.6	36.4	9.0	28.0	55.3	55.3	-12.0	-11.9	-13.2	Valve Adjustment:No Change
SW1L	3/9/2023 09:50	6.4	14.7	15.2	63.7	93.7	93.8	-0.5	-0.5	-3.8	
SW1L	3/10/2023 12:10	22.4	30.9	7.5	39.2	82.5	82.5	-0.2	-0.1	-0.7	
SW1L	3/15/2023 15:16	14.2	23.8	11.0	51.0	92.9	93.0	-0.2	-0.2	-2.5	
SW1L	3/17/2023 15:30	34.9	45.3	0.8	19.0	86.0	86.2	-0.2	-0.2	-1.6	Valve Adjustment:Closed valve 1/2 to 1 turn
SW1L	3/20/2023 13:40	4.0	12.3	15.4	68.3	96.3	96.3	-0.1	-0.1	-1.8	
SW1L	3/23/2023 09:34	9.0	22.7	11.3	56.9	100.3	100.5	-0.1	-0.1	-3.2	Valve Adjustment:Closed valve 1/2 to 1 turn
SW1L	3/28/2023 09:33	8.2	30.5	11.3	50.0	103.0	103.0	-0.1	-0.1	-3.2	Valve Adjustment:No Change
SW1U	3/9/2023 09:54	0.1	1.3	23.0	75.6	78.7	78.7	-0.2	-0.2	-4.4	
SW1U	3/10/2023 12:06	1.3	4.1	19.1	75.5	70.8	70.7	0.0	0.0	-0.6	
SW1U	3/17/2023 15:34	13.0	26.9	12.2	47.9	77.2	77.2	-0.1	-0.1	-1.4	
SW1U	3/23/2023 09:36	1.1	3.4	19.5	76.0	82.2	82.4	-0.1	-0.1	-3.2	
SW1U	3/28/2023 09:36	0.8	11.0	21.7	66.5	82.7	82.8	-0.1	-0.1	-3.1	Valve Adjustment:No Change
SW2L	3/9/2023 09:57	18.4	28.0	10.4	43.2	106.1	106.1	-0.6	-0.6	-3.3	

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	System Pressure ("H20)	Comments
SW2L	3/10/2023 12:00	42.6	50.0	0.8	6.6	99.7	99.7	-0.1	-0.1	-0.3	
SW2L	3/15/2023 15:09	30.2	43.8	4.8	21.2	107.4	107.4	-0.4	-0.4	-3.4	
SW2L	3/17/2023 15:38	40.6	56.7	0.0	2.7	107.2	107.3	-0.3	-0.3	-1.4	
SW2L	3/20/2023 13:45	24.8	42.1	6.3	26.9	110.8	110.8	-0.2	-0.2	-2.7	
SW2L	3/23/2023 09:39	28.0	46.1	4.4	21.5	109.2	109.1	-0.2	-0.2	-3.2	
SW2L	3/28/2023 09:39	28.3	54.5	4.5	12.6	109.8	109.8	-0.2	-0.2	-3.3	Valve Adjustment:No Change
SW2U	3/9/2023 10:06	0.6	2.2	22.8	74.4	59.4	59.3	-0.2	-0.1	0.0	
SW2U	3/10/2023 12:03	30.0	55.7	1.7	12.6	105.1	105.2	0.0	0.0	-0.4	
SW2U	3/15/2023 14:59	17.2	35.5	9.3	38.0	108.9	108.9	-0.2	-0.2	-1.2	
SW2U	3/17/2023 15:41	32.0	63.3	0.2	4.5	107.8	107.8	-0.2	-0.2	-0.7	
SW2U	3/20/2023 13:49	10.6	25.1	14.2	50.1	105.6	105.6	-0.1	-0.1	-2.0	Valve Adjustment:No Change
SW2U	3/23/2023 09:42	13.2	31.3	11.5	44.1	106.3	106.3	-0.1	-0.1	-2.5	
SW2U	3/28/2023 09:41	13.5	45.4	11.1	30.1	108.5	108.5	-0.1	-0.1	-1.7	Valve Adjustment:No Change

Bristol Virginia Landfill - North South Clean-Outs Data - 01/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	Comments
LC01	1/5/2023 13:49	0.9	1.1	19.7	78.3	69.8	69.4	-20.2	-20.1	
LC01	1/6/2023 07:51	50.2	48.0	1.8	0.0	52.9	52.9	-21.2	-21.2	
LC01	1/6/2023 09:42	38.8	43.5	17.8		59.1	57.6	-20.6	-20.6	
LC01	2/8/2023 09:57	54.9	44.4	0.7	0.0	57.8	57.7	-18.5	-18.5	Increased Flow/Vacuum
LC01	3/1/2023 10:51	56.7	42.0	0.0	1.3	60.7	60.6	-18.2	-18.2	Increased Flow/Vacuum
LC02	1/5/2023 13:52	45.5	47.1	1.1	6.3	57.8	57.7	-20.8	-20.8	
LC02	1/6/2023 07:53	47.3	47.7	0.1	4.9	53.3	53.3	-21.2	-21.3	
LC02	2/8/2023 09:58	47.2	48.8	4.0	0.0	55.5	56.2	-19.3	-19.4	Increased Flow/Vacuum
LC02	3/1/2023 10:53	34.3	40.5	0.0	25.2	60.5	60.5	-19.6	-19.6	No Change
LC03	1/6/2023 07:54	9.5	5.5	18.5	66.5	52.6	52.6	-22.6	-22.6	
LC03	2/8/2023 10:00	7.0	4.3	19.5	69.2	52.1	52.1	-21.9	-21.8	Decreased Flow/Vacuum
LC03	3/1/2023 10:56	8.8	4.4	18.4	68.4	73.3	73.2	-20.9	-20.8	Increased Flow/Vacuum
LC04	1/6/2023 07:56	14.4	7.1	15.3	63.2	53.1	53.5	-22.8	-22.7	
LC04	2/8/2023 10:02	16.4	9.0	14.5	60.1	52.8	52.9	-22.0	-21.9	No Change
LC04	3/1/2023 10:58	11.1	4.7	15.2	69.0	74.9	75.0	-20.9	-20.9	Increased Flow/Vacuum
LC05	1/6/2023 07:59	52.2	46.0	0.0	1.8	54.5	54.5	-21.3	-21.2	
LC05	2/8/2023 10:10	53.3	43.0	0.1	3.6	58.4	58.4	-19.8	-19.7	No Change
LC05	2/8/2023 10:10	53.3	43.0	0.1	3.6	58.4	58.4	-19.8	-19.7	No Change
LC05	3/1/2023 11:00	49.2	38.5	0.0	12.3	62.1	62.0	-18.7	-18.7	No Change
LC06	1/6/2023 08:01	27.3	21.3	11.7	39.7	53.7	53.7	-22.7	-22.6	
LC06	2/8/2023 10:08	34.0	20.4	10.0	35.6	53.4	53.5	-22.0	-21.9	No Change
LC06	3/1/2023 11:02	25.2	14.2	12.4	48.2	71.8	72.1	-20.9	-20.9	No Change
LC08	1/6/2023 07:57	47.8	46.9	0.2	5.1	54.3	54.3	-20.9	-20.9	
LC08	2/8/2023 10:04	50.9	46.0	0.3	2.8	55.8	55.9	-19.0	-19.0	Increased Flow/Vacuum
LC08	3/1/2023 11:05	39.0	39.8	0.0	21.2	59.5	59.5	-18.8	-18.7	No Change
LC09	1/6/2023 08:03	43.5	26.5	6.2	23.8	54.0	54.1	-22.7	-22.7	
LC09	2/8/2023 10:07	8.2	16.0	15.3	60.5	53.3	53.4	-21.8	-21.8	No Change
LC09	3/1/2023 11:08	41.5	28.0	5.7	24.8	75.9	76.2	-21.0	-20.9	No Change
LC10	1/6/2023 08:04	33.4	22.6	9.8	34.2	56.6	56.7	-22.6	-22.6	
LC10	2/8/2023 10:05	31.0	47.2	6.3	15.5	53.3	53.3	-21.9	-21.9	No Change
LC10	3/1/2023 11:10	36.9	23.5	7.6	32.0	78.8	79.1	-20.9	-20.9	Increased Flow/Vacuum
NC01	1/6/2023 08:21	0.2	0.3	22.1	77.4	38.2	38.1	-20.1	-20.1	
NC01	2/8/2023 10:15	0.7	2.1	20.3	76.9	67.2	67.2	-17.9	-17.9	

Bristol Virginia Landfill - North South Clean-Outs Data - 01/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Temp (F)	Adj Temp (F)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	Comments
NC01	3/1/2023 11:17	0.2	0.7	20.4	78.7	86.7	86.9	-17.8	-17.8	No Change
NC02	1/6/2023 08:23	3.4	3.4	19.6	73.6	37.3	37.2	-1.3	-1.3	
NC02	2/8/2023 10:16	3.0	3.1	20.4	73.5	67.6	67.7	-6.4	-6.4	
NC02	3/1/2023 11:21	0.2	0.4	20.5	78.9	87.7	87.9	-5.7	-5.6	No Change
NC03	1/6/2023 08:26	0.7	1.0	21.8	76.5	37.3	37.3	-20.1	-20.1	
NC03	2/8/2023 10:17	0.6	1.1	21.1	77.2	69.3	69.6	-18.1	-18.2	No Change
NC03	3/1/2023 11:23	0.1	0.3	20.6	79.0	89.1	89.2	-17.9	-17.9	No Change
NC04	1/6/2023 08:27	0.1	0.2	22.3	77.4	37.1	37.0	-18.8	-18.8	
NC04	2/8/2023 10:18	0.2	0.6	21.9	77.3	71.2	71.3	-15.5	-15.5	
NC04	3/1/2023 11:26	0.1	0.2	20.6	79.1	89.5	89.7	-15.7	-15.6	No Change
NC05	1/6/2023 08:28	0.1	0.2	22.4	77.3	37.1	37.1	-18.9	-18.9	
NC05	2/8/2023 10:19	0.2	0.7	21.8	77.3	71.9	72.0	-15.3	-15.2	No Change
NC05	3/1/2023 11:28	0.1	0.2	20.6	79.1	90.7	90.8	-15.6	-15.6	No Change
NC06	1/6/2023 08:29	0.1	0.2	22.4	77.3	37.2	37.2	-18.8	-18.8	
NC06	2/8/2023 10:20	0.2	0.8	21.8	77.2	72.8	72.9	-15.3	-15.2	No Change
NC06	3/1/2023 11:30	0.1	0.2	20.6	79.1	90.3	90.0	-15.6	-15.6	No Change
NC07	1/6/2023 08:31	6.0	5.7	16.9	71.4	37.4	37.4	-20.1	-20.1	
NC07	2/8/2023 10:21	0.2	0.7	21.8	77.3	74.5	74.5	-19.5	-19.5	No Change
NC07	3/1/2023 11:33	0.1	0.1	20.5	79.3	90.1	90.1	-18.0	-18.1	No Change
NC08	1/6/2023 08:33	7.3	6.6	13.4	72.7	37.6	37.6	-20.1	-20.1	
NC08	3/1/2023 11:35	0.1	0.1	20.6	79.2	87.3	87.4	-18.0	-18.1	No Change
NC09	1/6/2023 08:34	15.5	14.3	5.5	64.7	42.4	43.0	-20.1	-20.1	
NC09	3/1/2023 11:37	0.0	0.1	20.6	79.3	87.1	87.2	-18.2	-18.2	No Change
NC10	1/6/2023 08:36	0.2	0.3	22.3	77.2	48.3	48.5	-15.4	-15.4	
NC10	3/1/2023 11:39	0.0	0.1	20.7	79.2	87.3	87.4	-14.9	-14.9	No Change

Bristol Virginia Landfill - Blower/Flare Data - 03/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Temp (F)	Static Pressure ("H2O)	Flow (scfm)	Comments
Blower Inlet	3/1/2023 08:30	30.8	32.0	5.0	32.2	64.4	-24.4	325	
Blower Inlet	3/2/2023 08:17	33.3	33.3	4.6	28.8	58.3	-24.5	336	
Blower Inlet	3/3/2023 08:39	36.2	35.6	3.3	24.9	58.9	-24.6	325	
Blower Inlet	3/6/2023 15:02	36.2	33.6	4.2	26.0	76.7	-24.5	315	
Blower Inlet	3/7/2023 08:20	35.9	34.0	4.1	26.0	59.0	-24.6	270	
Blower Inlet	3/9/2023 08:26	30.0	30.0	6.6	33.4	59.8	-24.5	335	
Blower Inlet	3/9/2023 15:21	31.9	29.8	6.5	31.8	65.0	-24.4	762	
Blower Inlet	3/9/2023 15:23	31.6	30.1	6.4	31.9	64.0	-24.4	779	
Blower Inlet	3/10/2023 08:23	36.7	34.0	4.0	25.3	56.0	-24.6	625	
Blower Inlet	3/10/2023 12:18	34.2	33.9	4.5	27.4	68.2	-24.6	325	
Blower Inlet	3/13/2023 07:41	33.5	33.5	4.7	28.3	66.7	-24.5	695	
Blower Inlet	3/13/2023 12:02	34.5	35.0	4.2	26.3	68.4	-24.6	325	
Blower Inlet	3/14/2023 07:36	30.0	35.7	4.3	30.0	31.1	-24.6	325	
Blower Inlet	3/15/2023 08:18	32.4	33.6	4.3	29.7	42.6	-24.4	318	
Blower Inlet	3/16/2023 08:21	6.0	6.0	19.5	68.5	41.3	-24.5	403	
Blower Inlet	3/16/2023 08:31	18.5	20.1	12.3	49.1	51.6	-24.5	400	
Blower Inlet	3/16/2023 08:35	26.1	28.2	8.2	37.5	56.4	-24.6	400	
Blower Inlet	3/16/2023 12:57	30.9	30.0	6.7	32.4	72.7	-24.5	818	
Blower Inlet	3/16/2023 14:42	31.1	30.3	6.6	32.0	90.1	-24.4	820	
Blower Inlet	3/17/2023 10:38	30.4	31.3	6.2	32.1	61.5	-24.9	800	
Blower Inlet	3/17/2023 13:05	36.1	34.7	4.1	25.1	67.0	-24.7	625	
Blower Inlet	3/17/2023 14:45	35.7	34.7	3.9	25.7	68.3	-24.7	680	
Blower Inlet	3/17/2023 15:49	33.0	39.6	4.0	23.5	55.4	-24.6	795	
Blower Inlet	3/20/2023 10:06	26.6	29.3	7.1	37.0	42.6	-24.4	608	
Blower Inlet	3/20/2023 13:58	28.2	33.4	6.3	32.0	55.5	-24.4	670	
Blower Inlet	3/20/2023 15:28	29.6	33.0	5.9	31.4	55.5	-24.5	715	
Blower Inlet	3/21/2023 09:21	28.1	34.7	6.4	30.9	53.2	-24.6	770	
Blower Inlet	3/23/2023 08:38	30.3	32.8	5.4	31.4	53.3	-24.6	328	
Blower Inlet	3/23/2023 12:42	26.1	29.1	7.5	37.3	54.0	-24.6	760	
Blower Inlet	3/24/2023 09:28	31.0	31.3	5.5	32.2	60.1	-24.7	700	
Blower Inlet	3/27/2023 09:00	30.1	26.7	7.1	36.1	59.8	-24.6	220	

Bristol Virginia Landfill - Blower/Flare Data - 03/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Temp (F)	Static Pressure ("H2O)	Flow (scfm)	Comments
Blower Inlet	3/27/2023 09:13	29.3	27.6	7.1	36.0	59.8	-24.6	230	
Blower Inlet	3/27/2023 15:05	30.0	29.4	6.4	34.2	70.0	-24.9	700	
Blower Inlet	3/28/2023 08:51	28.4	37.5	6.9	27.2	64.9	-24.7	700	
Blower Inlet	3/28/2023 14:13	29.5	39.3	6.1	25.1	69.0	-25.1	740	
Blower Inlet	3/29/2023 09:29	27.6	35.8	6.4	30.2	63.0	-24.5	330	Valve Adjustment:No Change
Blower Inlet	3/29/2023 14:41	30.1	32.1	4.8	33.0	71.5	-24.9	860	
Blower Inlet	3/30/2023 08:49	26.3	28.9	6.9	37.9	58.0	-24.6	420	
Blower Inlet	3/30/2023 14:49	28.0	30.9	6.0	35.2	75.0	-24.6	850	
Blower Inlet	3/31/2023 09:02	25.4	28.9	7.0	38.7	58.0	-24.7	440	
Blower Inlet	3/31/2023 14:42	29.4	29.6	5.9	35.1	61.8	-25.6	340	

Bristol Virginia Landfill - Calibration Record Data - 01/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Comments
BRTL0000	1/5/2023 09:17	49.6	35.2	0.0	15.2	
BRTL0000	1/5/2023 11:44	0.0	0.1	20.9	79.0	
BRTL0000	1/5/2023 11:46	50.0	34.9	0.0	15.1	
BRTL0000	1/5/2023 14:16	49.9	35.0	0.0	15.1	
BRTL0000	1/6/2023 07:03	0.0	0.2	20.9	78.9	
BRTL0000	1/6/2023 07:06	50.0	35.0	0.0	15.0	
BRTL0000	1/12/2023 11:55	0.0	0.2	20.9	78.9	
BRTL0000	1/12/2023 11:57	50.0	35.0	0.0	15.0	
BRTL0000	1/18/2023 11:30	0.2	0.1	20.9	78.8	
BRTL0000	1/18/2023 11:32	49.9	34.9	0.0	15.2	
BRTL0000	1/25/2023 11:17	0.1	0.1	20.9	78.9	
BRTL0000	1/25/2023 11:18	49.9	35.0	0.0	15.1	
BRTL0000	2/1/2023 10:51	50.0	35.1	0.0	14.9	
BRTL0000	2/1/2023 11:55	0.2	0.1	20.9	78.8	
BRTL0000	2/1/2023 11:56	49.9	35.0	0.0	15.1	
BRTL0000	2/3/2023 08:57	50.0	35.2	0.0	14.8	
BRTL0000	2/3/2023 09:02	0.0	0.2	21.0	78.8	
BRTL0000	2/6/2023 10:58	0.0	0.1	20.9	79.0	
BRTL0000	2/6/2023 11:01	50.0	34.9	0.0	15.1	
BRTL0000	2/7/2023 09:03	0.0	0.1	20.9	79.0	
BRTL0000	2/7/2023 09:05	50.0	34.9	0.0	15.1	
BRTL0000	2/8/2023 07:50	0.1	0.2	20.9	78.8	
BRTL0000	2/8/2023 07:54	50.0	35.0	0.0	15.0	
BRTL0000	2/14/2023 09:20	0.0	0.1	20.9	79.0	
BRTL0000	2/14/2023 09:24	50.0	34.9	0.0	15.1	
BRTL0000	2/15/2023 09:20	0.0	0.1	20.9	79.0	
BRTL0000	2/15/2023 09:22	50.0	35.0	0.0	15.0	
BRTL0000	2/16/2023 08:21	0.0	0.2	20.9	78.9	
BRTL0000	2/16/2023 08:24	50.0	35.0	0.0	15.0	
BRTL0000	2/17/2023 08:30	0.0	0.2	20.9	78.9	
BRTL0000	2/17/2023 08:32	49.9	35.0	0.0	15.1	

Bristol Virginia Landfill - Calibration Record Data - 01/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Comments
BRTL0000	2/20/2023 13:24	0.0	0.2	20.9	78.9	
BRTL0000	2/20/2023 13:27	50.0	35.0	0.0	15.0	
BRTL0000	2/21/2023 08:11	0.0	0.2	20.9	78.9	
BRTL0000	2/21/2023 08:13	50.0	35.0	0.0	15.0	
BRTL0000	2/22/2023 08:15	0.0	0.2	20.9	78.9	
BRTL0000	2/22/2023 08:18	50.0	35.1	0.0	14.9	
BRTL0000	2/22/2023 14:26	0.0	0.0	20.9	79.1	
BRTL0000	2/22/2023 14:27	50.0	35.0	0.0	15.0	
BRTL0000	2/23/2023 08:42	0.0	0.1	20.9	79.0	
BRTL0000	2/23/2023 08:47	50.0	34.9	0.0	15.1	
BRTL0000	2/24/2023 07:47	0.0	0.1	20.9	79.0	
BRTL0000	2/24/2023 07:58	50.0	35.0	0.0	15.0	
BRTL0000	2/27/2023 14:02	0.1	0.2	20.9	78.8	
BRTL0000	2/27/2023 14:04	50.0	34.9	0.0	15.1	
BRTL0000	2/28/2023 07:45	0.0	0.2	20.9	78.9	
BRTL0000	2/28/2023 07:47	50.0	35.0	0.0	15.0	
BRTL0000	3/2/2023 08:09	0.0	0.1	20.9	79.0	
BRTL0000	3/2/2023 08:13	49.8	34.8	0.0	15.4	
BRTL0000	3/3/2023 08:18	0.0	0.2	20.9	78.9	
BRTL0000	3/3/2023 08:21	49.9	35.3	0.0	14.8	
BRTL0000	3/6/2023 07:40	49.8	35.2	0.0	15.0	
BRTL0000	3/7/2023 08:05	0.0	0.2	20.9	78.9	
BRTL0000	3/7/2023 08:11	50.0	35.0	0.0	15.0	
BRTL0000	3/7/2023 08:13	0.0	0.2	11.0	88.8	
BRTL0000	3/9/2023 08:11	0.0	0.3	20.9	78.8	
BRTL0000	3/9/2023 08:14	49.9	35.0	0.0	15.1	
BRTL0000	3/9/2023 08:17	0.0	0.2	11.0	88.8	
BRTL0000	3/10/2023 08:04	0.0	0.1	20.9	79.0	
BRTL0000	3/10/2023 08:06	50.0	35.1	0.0	14.9	
BRTL0000	3/13/2023 07:23	0.0	0.1	21.1	78.8	
BRTL0000	3/13/2023 07:27	50.2	35.1	0.0	14.7	

Bristol Virginia Landfill - Calibration Record Data - 01/01/2023 to 03/31/2023

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Comments
BRTL0000	3/14/2023 07:31	0.0	0.2	20.9	78.9	
BRTL0000	3/14/2023 07:33	50.0	34.9	0.0	15.1	
BRTL0000	3/15/2023 08:07	0.0	0.2	20.9	78.9	
BRTL0000	3/15/2023 08:10	50.1	35.0	0.0	14.9	
BRTL0000	3/16/2023 08:06	0.0	0.1	20.9	79.0	
BRTL0000	3/16/2023 08:09	50.0	35.0	0.0	15.0	
BRTL0000	3/16/2023 08:12	0.0	0.1	11.0	88.9	
BRTL0000	3/16/2023 12:43	50.1	34.9	0.0	15.0	
BRTL0000	3/23/2023 09:01	0.0	0.1	20.9	79.0	
BRTL0000	3/23/2023 09:04	0.0	0.0	11.0	89.0	
BRTL0000	3/23/2023 09:06	49.9	35.0	0.0	15.1	

Attachment 2

Exceedance Detail Report

Report Date: 04/06/2023 Site Name: Bristol Virginia Landfill

Point ID	Point Name	Record Date	Days Between Readings	n Point Status	s Effective Date	% by Volume		Temperature (°F)		Static Pressure								
						CH4	O2	Initial Temp	Adjusted Temp	Initial Static Pressure (H2O)	Adjusted Static Pressure (H2O)	Operation Comments	CO Req	Total Days Open	Corrective Action Comments	Corrective Action Due Dates		
BRTLGW29				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	29	3/15/2023 9:47:31 AM	0			57.2	0	52.7	52.6	0.18	0.20	Sample due to	N		good reading on 03/16/2023	3/19/2023	3/29/2023	7/12/2023
	29	3/16/2023 1:16:27 PM	1			58.9	0.2	66.9	66.4	-0.22	-0.28	Comments:,,,,,,	N	2				
BRTLGW37				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	37	3/30/2022 12:20:33 PM	0			13.8	6.4	150	150	-1.24	-1.75	check,,,,,	N			4/3/2022	4/13/2022	7/27/2022
	37	4/6/2022 12:14:16 PM	7			14.2	7.3	149	149	-1.98	-1.95	Change,,,,,,	N					
	37	4/13/2022 1:45:11 PM	7			16.5	7	159	159	-1.70	-1.70	Comments:,,,,,,	N					
	37	4/13/2022 1:47:58 PM	0			16	7	159	159	-2.10	-2.14	Comments:,,,,,	N					
	37	4/21/2022 7:24:55 AM	8			13.1	8.3	159	159	-2.35	-2.27	Comments:,,,,,	N					
	37	5/4/2022 12:21:07 PM	13			13	7.3	149	149	-2.57	-2.42	Open,No Change,,,,,	N					
	37	5/16/2022 10:51:43 AM	12			11.6	9.8	150	150	-2.21		Comments:Adjustment,,,,,,	N					
	37	5/16/2022 2:09:00 PM	0			14.9	9.8	159	159			Comments:,,,,,,	N					
	37	5/24/2022 10:23:52 AM	8			17	7.8	150	150	-3.44		Comments:,,,,,,	N					
	37	5/24/2022 10:26:15 AM				17.3	7.9	150	150			Comments:,,,,,,	N					
	37	6/1/2022 12:43:16 PM	8			22	6.2	150	150			Comments:,,,,,,	N					
	37	6/8/2022 11:34:45 AM	7			6.5	14.8	155.8	155.9			Comments:,,,,,	N					
	37	6/16/2022 1:35:06 PM	8			21.6	6.7	153.9	153.8			Comments:,,,,,	N					
	37	7/6/2022 12:59:43 PM	20			19.2	6.6	154.2	153.8			Comments:,,,,,	N					
	37		5					155.5					N					
		7/11/2022 1:31:12 PM				19.8	6.7		155.5			Comments:,,,,,,						
	37	7/11/2022 1:36:48 PM	0			19.6	6.5	155.7	155.8			Comments:,,,,,	N					
	37	8/3/2022 12:31:49 PM	23			20	7.3	155.5	155.5			Comments:,,,,,,	N					
	37	8/3/2022 12:35:39 PM	0			20.2	7.3	155.4	155.4			Comments:,,,,,,	N					
	37	8/3/2022 2:29:58 PM	0			19.5	6.6	152.2	152.9			Comments:,,,,,,	N					
	37	8/24/2022 11:44:07 AM				19.2	7.6	152.7	152.8			Open,,,,,,	N					
	37	9/1/2022 11:37:46 AM	8			20.8	7.6	155	154.7			Comments:,,,,,,	N					
	37	9/1/2022 12:28:35 PM	0			18.9	7.9	152.7	152.7	-15.15	-15.13	Comments:,,,,,,	N					
	37	AM	41			20.5	7.6	152	151.5	-2.69	-2.64	Comments:,,,,,,	N					
	37	10/12/2022 2:36:59 PM	0			28.3	7.1	151	151	-2.74	-2.75	Comments:,,,,,,	N					
	37	AM	7			20	7.4	149	149.1	-2.94	-2.85	Comments:,,,,,,	N					
	37	AM	22			18.2	7.1	147.6	147.7	<mark>′ -13.82</mark>	-13.78	Comments:Fully Open,,,,,,	N					
	37	AM	7			18.4	7.3	147.2	147.3	-8.91	-8.90	Comments:Fully Open,,,,,,	N					
	37	12/8/2022 12:32:15 PM	21			18.7	6.3	151.2	150.8	-1.64	-1.61	Comments:,,,,,,	N					
	37	12/9/2022 9:19:24 AM	1			19	6.7	148.5	148.5	-1.51	-1.53	Comments:High Temp,,,,,,	N					
	37	12/14/2022 8:37:04 AM	5			17.4	6.2	148.6	148.6	-1.56	-1.57	Comments:,,,,,,	N					
	37	AM	6			14.7	6.6	148.6	148.6	-1.45	-1.47	Comments:Fully Open,,,,,,	N					
	37	1/5/2023 1:34:21 PM	16			15.5	6.3	151.9	151.8	-2.26	-2.23	Comments:,,,,,,	N					
	37	1/6/2023 7:24:18 AM	1			16.1	6.7	149.2	149.2	-1.97	-1.95	Comments:,,,,,,	N					
	37	1/12/2023 12:18:14 PM	6			15	6.2	149.7	149.7	<mark>7</mark> -8.51	-8.49	Comments:High Temp,,,,,,	N					
	37	1/18/2023 12:33:18 PM	6			14	6.8	149	149	-1.84		Comments:High Temp,,,,,,						
	37	1/25/2023 11:53:12 AM	7			14.2	6.1	149.7	149.8			Comments:High Temp,,,,,,						
	37	2/1/2023 1:33:56 PM	7			18.2	6.3	150.9	150.9			Comments:,,,,,,	N					
	37	2/3/2023 10:18:21 AM	2			14.9	7.8	148.6	149			Comments:High Temp,,,,,,						
	37	2/7/2023 2:26:19 PM	4			17	6.6	150.4	150.5			Change,,,,,,	N					
	37	2/8/2023 9:35:19 AM	1			16.7	6.3	149.1	149.1			Change,High Temp,,,,,	N					
	37	2/14/2023 12:54:47 PM				16.2	5.9	149.6	149.6			Comments:High O2,,,,,,	N					

	Point Name	Record Date	Days Between Readings	ⁿ Point Status		% by Volume Temperature			ture (°F)	Static P	ressure							
Point ID					Effective Date	CH4	O2	Initial Temp	Adjusted Temp	Initial Static Pressure (H2O)	Adjusted Static Pressure (H2O)	Operation Comments	CO Req	Total Days Open	Corrective Action Comments	Corrective Action Due Dates		
	37	2/15/2023 10:32:47 AM	1			17.1	6.5	148.6	148.6	-1.42	-1.41	Comments:High O2,,,,,,	N					
	37	2/22/2023 2:36:29 PM	7			17.5	6.1	149.1	149.5	-1.51	-1.53	Change,,,,,	N					
	37	2/23/2023 9:25:10 AM	1			16.1	6	149	148.9	-1.41	-1.42	Comments:,,,,,,	N					
	37	3/1/2023 1:44:44 PM	6			16.4	5.6	149.6	149.7	-1.33	-1.33	Change,,,,,,	N					
	37	3/2/2023 8:46:55 AM	1			16.2	6.2	148.6	148.6	-1.48	-1.45	Change,,,,,,	N					
	37	3/7/2023 11:27:10 AM	5			17.1	6.5		149.1	-1.50	-1.41	,,	N					
	37	3/9/2023 11:24:19 AM	2			19.4	6.4	149	149	-1.28	-1.27	Comments:High O2,,,,,,	N					
	37	3/15/2023 9:21:07 AM	6			16.1	6.2		147.7	-1.25	-1.26	Flow/Vacuum,,,,,	N					
	37	3/16/2023 9:53:43 AM	1			13.1	9.9	148.6	148.6	-1.34	-1.34	Comments:,,,,,,	N					
	37	3/23/2023 10:12:30 AM	7			15.6	5.8	149.3	149.3	- 1.16	-1.16	Comments:High Temp,,,,,,	N					
	37	3/23/2023 1:01:44 PM	0			16.36	5.54	144.9	144.4	-1.11	-1.11		N					
	37	3/28/2023 11:42:28 AM	5			15.16	6.12	151	151	-1.12	-1.12		N					
	37	3/29/2023 11:52:12 AM	1		•	15.08	6.37	150.6	150.6	-3.10	-3.11	Change	N	367				
RTLGW40				Active	9/7/2017			>= 210	>= 210	>= 0	>= 0				NSPS AAAA HOV 210	5 Day	15 Day	120 D
	40	3/23/2023 10:26:53 AM	0			4.7	0	74.9	74.8	6.71	6.75		N	(good reading on 03/23/2023	3/27/2023	4/6/2023	7/20/20
	40	3/23/2023 1:21:43 PM	0		_	4.35	0.88	71.7	71.9	-6.98	-6.06		N	1				
RTLGW51				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 D
	51	3/23/2023 10:48:48 AM	0			1.28	17.07	169.2	177.8	-3.83	-6.41	Valve Comment:0229820	N		good reading on 04/05/2023	3/27/2023	4/6/2023	7/20/20
	51	3/23/2023 1:13:23 PM	0			13.7	5.04	166.4	167.3	-5.51	-4.58	Valve Comment:0243375	N	9	good reading on 04/05/2023			
	51	3/29/2023 12:25:40 PM	6			5.67	1.54	169.8	169.2	-1.64	-1.49	Valve Comment:0281076	N	9 (good reading on 04/05/2023			
RTLGW53				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 D
	53	3/1/2023 3:03:29 PM	0		_	29.9	0.9	141.1	141.2	-10.63	-10.62	Change,,,,,,	N	1				
RTLGW57				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 D
	57	1/5/2023 2:43:59 PM	0			41.4	9.4	143.4	145.6	-20.55	-20.54	Comments:,,,,,,	N			1/9/2023	1/19/2023	5/4/20
	57	1/6/2023 7:40:46 AM	1			48.1	0.1	148.1	148.4	-21.06	-21.04	Comments:,,,,,,	N					
	57	1/12/2023 12:36:07 PM	6			38	1.4	176.1	176.9	-12.83	-8.09	Comments:High Temp,,,,,,	N					
	57	1/18/2023 11:59:14 AM	6			6.4	16.9	172.4	172.4	0.04	0.04	Comments:High Temp,,,,,,	N					
	57	1/25/2023 12:05:49 PM	7			31.7	0.6	170	170.3	-20.15	-20.16	Sample,,,,,,	N					
	57	1/25/2023 12:05:49 PM	0			31.7	0.6	170	170.3	-20.15	-20.16	Sample,,,,,,	N					
	57	2/1/2023 11:27:35 AM	7			43.8	0.5	155.3	155.3	-21.19	-20.85	Comments:,,,,,,	N					
	57	2/3/2023 10:41:30 AM	2			40.2	0.1	150.8	150.9	-20.28	-20.29	Comments:High O2,,,,,,	N					
	57	2/7/2023 10:28:03 AM	4			41.5	0.3	153.2	153	-21.00	-20.99	Flow/Vacuum,High	N					
	57	2/8/2023 9:43:21 AM	1			42	0.3	152.5	152.4	-20.81	-20.78	Comments:High Temp,,,,,,	N					
	57	2/14/2023 11:27:21 AM	6			34.4	0.6	147.4	147.7	-20.74	-20.78	Comments:High Temp,,,,,,	N					
	57	2/15/2023 12:23:29 PM	1			40.1	0.5	149.6	149.7	-20.44	-20.46	Comments:High Temp,,,,,,	N					
	57	2/22/2023 10:19:10 AM	7			40.3	0	149.7	149.7	-18.57	-18.65	Change,,,,,,	N					
	57	2/23/2023 9:38:29 AM	1			38.9	0.4	144.3	144.5	-17.61	-16.66	Change,,,,,,	N					
	57	3/1/2023 3:10:13 PM	6			38.5	0	145.3	144.5	-18.05	-0.17	Change,,,,,,	N					
	57	3/9/2023 10:18:59 AM	8			33.5	0	143.2	143.3	-17.15	-17.14	Change,,,,,,	N					
	57	3/15/2023 11:03:49 AM	6			1	0	170.5	170.5	-18.12	-18.26	Comments:,,,,,,	N					
	57	3/16/2023 10:06:19 AM	1			23.2	3.2	146.4	147.1	-16.39	-16.39	Comments:High O2,,,,,,	N					
	37	0/10/2020 10:00:10 / tivi	•			20.2	0.2											
	57	3/23/2023 9:59:49 AM				29.1	1.09		137.2	-15.30	-15.29		N					

Report Date: 04/06/2023 Site Name: Bristol Virginia Landfill

		Record Date	Days Between Readings	n Point Status		% by Volume		Temperature (°F)		Static F	ressure							
Point ID	Point Name				s Effective Date	CH4	O2	Initial Temp	Adjusted Temp	Initial Static Pressure (H2O)	Adjusted Static Pressure (H2O)	Operation Comments	CO Req	Total Days Open	Corrective Action Comments	Corrective Action Due Dates		
	57	3/29/2023 12:10:28 PM	1		_	21.38	2.69	162.1	157.7	-12.15	-12.10	Change;Well	N	86				
BRTLGW59				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	59	3/28/2023 10:05:58 AM	0			37.48	0.04	160.7	160.3	-7.28	-7.58	Comment:1366950;Valve	N		good reading on 03/29/2023	4/1/2023	4/11/2023	7/25/2023
	59	3/29/2023 12:19:23 PM	1			31.17	2.15	119.3	119.4	-2.54	-2.54	Change;Well	N	2				
BRTLGW67				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	67	3/1/2023 2:33:06 PM	0			25.6	0.3	150.1	149.8	-18.97	-18.97	Comments:High Temp,,,,,,	N		good reading on 03/02/2023	3/5/2023	3/15/2023	6/28/2023
	67	3/2/2023 9:38:43 AM	1			28.1	0.1	143.9	144.2	-17.39	-17.36	Change,,,,,,	N	2				
F	Points with Exceedance	;	8					Parameter	exceeds ru	le (Exceedar	ıce)							
	Closed Exceedances																	
	Open Exceedance	;	3					Parameter	in compliar	ice (Exceeda	ince cleared)						

Attachment 3

Enhanced Monitoring Record Forms and Analytical Results

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS
- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS
- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)
- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfill Name: Bristol Technician: Ryan Seymour

		GE	M Read	ing	If Temp >145F					If Temp ≥165F	If Temp ≥170F	
Well ID	Date & Time		O2 (%)	Well Temp (°F)	Concerca	Pickup Scheduled?	Visible Emissions (e.g. smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	
37	2023-03-02 08:46:00	16.2	6.2	148.6	yes	yes	no	no	no	no	no	N/A

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS
- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS
- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)
- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfill Name: Bristol Technician: Ryan Seymour

		GE	M Read	ling			If Temp >145	F		If Temp ≥165F	If Temp ≥170F	
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected	Pickup Scheduled?	smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	
37	2023-03-09 11:35:00	19.4	6.4	149.0	yes	yes	no	no	no	no	no	No comment
_					_		_	_				

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS
- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS
- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)
- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfill Name: Bristol Technician: Logan Culhane

		GE	M Read	ling			If Temp >145	F		If Temp ≥165F	If Temp ≥170F	
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected	Pickup Scheduled?	smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	
37	2023-03-16 09:50:00	13.1	9.9	148.6	yes	yes	no	no	no	no	no	N/A
57	2023-03-16 10:05:00	23.2	3.2	146.4	yes	yes	no	no	no	no	no	N/A

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS
- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS
- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)
- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfill Name: Bristol Technician: Logan Culhane

		GE	M Read	ling	If Temp >145F					If Temp ≥165F	If Temp ≥170F	
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected	Pickup Scheduled?	Visible Emissions (e.g. smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	
37	2023-03-23 13:00:00	16.4	5.5	144.4	no	no	no	no	no	no	no	Second read under temp
51	2023-03-23 13:13:00	13.7	5	167.3	yes	yes	no	no	no	no	no	N/A

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS
- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS
- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)
- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfill Name: Bristol Technician: Logan Culhane

		GE	M Read	ing	If Temp >145F				If Temp ≥165F	If Temp ≥170F		
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected	Pickup Scheduled?	Visible Emissions (e.g. smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	
37	2023-03-29 11:52:00	15.08	6.37	150.6	yes	yes	no	no	no	no	no	N/A
57	2023-03-29 12:10:00	21.38	2.69	157.7	yes	yes	no	no	no	no	no	N/A
51	2023-03-29 12:25:00	5.67	1.54	169.2	yes	yes	no	no	no	no	no	N/A
-												
<u> </u>												

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued: March 10, 2023 16:26

Harrisburg, PA 17111

Project Number: 7223016

Submitted To: Tom Lock

100001415

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/03/2023 11:20. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued: March 10, 2023 16:26

Harrisburg, PA 17111

Project Number: 7223016

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C0229-01	Air	03/02/2023 08:48	03/03/2023 11:20

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

March 3, 2023 11:20

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

7223016

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 37

Sample ID: 23C0229-01 Sample Matrix: Air

Sampled: 3/2/2023 08:48

Sample Type: LFG

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00184::11073

Canister Size: 1.4

Initial Vacuum(in Hg): 26

Final Vacuum(in Hg): 3.4

Receipt Vacuum(in Hg): 3.4 Flow Controller Type: Passive

Flow Controller ID:

	Vola	tile Organ	ic Compour	nds by GC/TCD - Unadjusted, as received b	asis			
		ppmv		ALT-145				
	-						Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	152	90.0	90.0		9	1	3/7/23 12:56	MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as receive	d basis			
		Vol%		EPA 3C			B. (. (
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	11.9	0.45	0.45		9	1	3/7/23 12:56	MER
Carbon dioxide, as received	27.5	0.45	0.45		9	1	3/7/23 12:56	MER
Oxygen (O2), as received	6.58	0.45	0.45		9	1	3/7/23 12:56	MER
Hydrogen (H2), as received	2.78	0.18	0.18		9	1	3/7/23 12:56	MER
Nitrogen (N2), as received	42.5	9.00	9.00		9	1	3/7/23 12:56	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued:

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

7223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GC/TCD - Unadjusted, as r	eceived basis	Preparation Method:	No Prep VOC GC Air	
23C0229-01	1.00 mL / 1.00 mL	ALT-145	BGC0223	SGC0222	AG00026
23C0229-01	1.00 mL / 1.00 mL	EPA 3C	BGC0223	SGC0222	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued:

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

7223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0223 - No Prep VO	C GC Air									
Blank (BGC0223-BLK1)					Prep	ared & /	Analyzed	: 03/07/2	023	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Carbon Monoxide	<	10.0	ppmv							
LCS (BGC0223-BS1)					Prep	ared & /	Analyzed	: 03/07/2	023	
Methane	4020	0.05	ppmv	5000		80.3	80-120			
Methane	4020	500	ppmv	5000		80.3	0-200			
Carbon dioxide	4380	500	ppmv	5000		87.5	0-200			
Carbon dioxide	4380	0.05	ppmv	5000		87.5	80-120			
Oxygen (O2)	5120	500	ppmv	5000		102	0-200			
Oxygen (O2)	5120	0.05	ppmv	5000		102	80-120			
Hydrogen (H2)	5990	200	ppmv	5100		117	0-200			
Nitrogen (N2)	5370	2000	ppmv	5000		107	0-200			
Nitrogen (N2)	5370	1	ppmv	5000		107	80-120			
Hydrogen (H2)	5990	0.02	ppmv	5100		117	80-120			
Carbon Monoxide	4900	10	ppmv	5000		98.1	0-200			
Carbon Monoxide	4900	0.001	ppmv	5000		98.1	80-120			
Duplicate (BGC0223-DUP1)		Soi	urce: 23C	0229-01	Prep	ared & /	Analyzed	: 03/07/2	023	
Methane	121000	4500	ppmv		11900	00		1.21	25	
Methane	12.1	0.45	Vol%		11.9	ı		1.21	5	
Carbon dioxide	279000	4500	ppmv		27500	00		1.57	25	
Carbon dioxide	27.9	0.45	Vol%		27.5	i		1.57	5	
Oxygen (O2)	6.64	0.45	Vol%		6.58	;		0.826	5	
Oxygen (O2)	66400	4500	ppmv		6580	0		0.826	25	
Nitrogen (N2)	430000	18000	ppmv		42500	00		1.04	25	
Nitrogen (N2)	43.0	9.00	Vol%		42.5	i		1.04	5	
Hydrogen (H2)	28100	1800	ppmv		2780	0		0.923	25	
Hydrogen (H2)	2.81	0.18	Vol%		2.78	;		0.923	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued:

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

7223016

Client Site I.D.: Bristol Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0223 - No Prep VO	C GC Air									
Duplicate (BGC0223-DUP1)		Sou	ırce: 23C	0229-01	Prep	ared & A	Analyzed	: 03/07/20	023	
Carbon Monoxide	156	90.0	ppmv		152			2.74	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02	!		2.74	5	
Duplicate (BGC0223-DUP2)		Sou	ırce: 23C	0258-01	Prep	ared & A	Analyzed	: 03/07/20	023	
Methane	41.1	0.45	Vol%		41.0)		0.266	5	
Methane	411000	4500	ppmv		41000	00		0.266	25	
Carbon dioxide	40.2	0.45	Vol%		40.1			0.335	5	
Carbon dioxide	402000	4500	ppmv		40100	00		0.335	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00	0		NA	5	
Hydrogen (H2)	97600	1800	ppmv		9690	0		0.705	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Carbon Monoxide	<	90.0	ppmv		<90.0	0		NA	25	
Duplicate (BGC0223-DUP3)		Sou	ırce: 23C	0258-02	Prep	ared & A	Analyzed	: 03/07/20	023	
Methane	41.8	0.45	Vol%		42.2	!		0.919	5	
Methane	418000	4500	ppmv		42200	00		0.919	25	
Carbon dioxide	453000	4500	ppmv		45400	00		0.353	25	
Carbon dioxide	45.3	0.45	Vol%		45.4			0.353	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	28000	1800	ppmv		2810	0		0.437	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00	0		NA	5	
Hydrogen (H2)	2.80	0.18	Vol%		2.81			0.437	5	
Carbon Monoxide	<	90.0	ppmv		<90.0	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	19		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued:

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

7223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

	ENI			> \	Air	Chain of Cu	stody Rec	ord	Turr	n Around Ti	me (ru	sh b	y ad	vanc	nced notice only)			
		11/	ALI	II.	Lab No:				Standard:		5 Day:		Х	3	Day:			
					Page:	1	of	1	2 Day:		1 Day:			C	uston	TAT:		
Enthal	py Analytical	- Richmor	nd			CUSTOM	ER INFORI	MATION			PRO	JEC	TINE	ORN	ATIO	ON		
1941 Re	eymet Road, Richm	nond, VA 2323	37		Company:	SCS Fie	ld Services			Name:	Name:			Brist	tol Lan	dfill		
	Phone 804-358-	8295			Report To:	Tom Lo	ck / Mike Gil	obons		Number:				7.	22301	6		
Special Instructions: EPA 3C for Methane, Carbon	Diovide Ovugen I	Mitrogen and	Hydrogen		Email:	tlock@	scsengine	ers.com		P.O. #:								
CO via EPA ALT-145.	Dioxide, Oxygen, i	viciogen, and	riyarogen.		Address:	<u>mgibb</u>	ons@scse	ngineers	.com	Address:								
Returned empty canisters ma	rked (No Sample).	•			Phone:	703-254	1-4664			Global ID:								
					Fax:					Sampled By:								
	_			B2 1	07/23	- Mev								Analy	/sis Re	quest	ed	
Mar L)	ymai			U7 11	716,	Carn 7-4	#1167%.#	:11078	=>110	72								
	<i>y</i>		- (PANIX	NO OUTHO	JUL VACCIO	m = 21.04	Pacia	160,60	73 m= 3.4"	He	õ	V ₂ ,H ₂)					
		Туре	Equipm	ent Info	rmation	i de la terra	S	ampling I	nformation	M - 2	") -	ALT-145 (CO)	EPA 3C (CH4,CO2,O2,N2,H2)					
Sample ID		(I) Indoor		Size	Flow	Sample	Sample	Vacuum	Sample	Sample	Vacuum	T-14	2,4			H		
Saniple ID	(SV) Soil Vapor Canister ID (1L, 3L,				Controller	5tart	Start	Start ("Hg)	End	End	End ("Hg)	4 AL	30 (0					
		(S) Source		6L, 15L)	ID	Date	Time	(1167	Date	Time	(178)	EPA	EPA		\perp	Ш		
1 37	······································	LFG	11078	1L	063-00491	3/2/2023	8:45AM	26	3/2/2023	8:48	9	Х	х					
2 no sample taken			279												1_		\bot	
3					-									\perp	1	Ш	\bot	Ш
4														\perp				
5		 											_	\perp	_			
SCS Field Se Recd: 03/03/202	rvices 23	C0229										Ш		4				∐
Bristol										20,3°C			\perp	\perp			4	Ш
्रिट्ट Recd: 03/03/202	23 Due: 03/						-			3i0							\bot	Ш
\$	I	v130325002								ه زوی			_	4				Ш
10		•						<u> </u>		no seci			J.					
10.1		ignature			Print I			С	ompany /	*					/ Tin			
¹ Relinquished By:		n Seymour			Ryan Se	ymour			field tecl	h 			3/2	2/23	11:0	OAM		
¹ Received By:						·												_
² Relinquished By:	COCF				·- ·			-		+-	1. 1		. •	2 -				
² Received By:									-	3	(3/	23	11	20			_	
³ Relinquished By:									_		_							
¹Received By:																F	age	8 of 9

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued:

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

7223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued:

March 17, 2023 15:45

Harrisburg, PA 17111

Project Number:

07223016.00

Submitted To: Tom Lock

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/10/2023 11:15. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

100001415

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued: March 17, 2023 15:45

Harrisburg, PA 17111

Project Number: 07223016.00

Tom Lock Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C0611-01	Air	03/09/2023 11:28	03/10/2023 11:15

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued: March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 21.6

Field Sample #: 37

Sub Description/Location:

Final Vacuum(in Hg): 2.4

Sample ID: 23C0611-01

Canister ID: 063-00461::14300

Receipt Vacuum(in Hg): 2.4

Sample Matrix: Air

O---i-4--- Ci---- 4 41

Receipt Vacuum(in Hg): 2.4 Flow Controller Type: Passive

Canister Size: 1.4L

Flow Controller ID:

Sampled: 3/9/2023 11:28 Sample Type: LV

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

		рршч					Date/Time
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Analyst
Carbon Monoxide, as received	129	90.0	90.0		9	1	3/14/23 11:43 MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as recei	ved basis			
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	11.1	0.45	0.45		9	1	3/14/23 11:43	MER
Carbon dioxide, as received	23.5	0.45	0.45		9	1	3/14/23 11:43	MER
Oxygen (O2), as received	9.36	0.45	0.45		9	1	3/14/23 11:43	MER
Hydrogen (H2), as received	2.35	0.18	0.18		9	1	3/14/23 11:43	MER
Nitrogen (N2), as received	47.8	18.0	18.0		18	1	3/14/23 13:46	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	3/14/23 11:43	MER

Volatile Organic Compounds by GCMS EPA TO-15											
ppbvug/M³										Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	52800	1560	3890		170000	5000	12000	7780	1	3/15/23 13:59	DFH
Surrogate(s)		% Recovery					% Recovery Limits				
4-Bromofluorobenzene (Surr)	101 80-120							3/15/23 13:59			

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued:

March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order: 07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C0611-01	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0482	AG00026
23C0611-01	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0482	AG00026
23C0611-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0482	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23C0611-01	400 mL / 400 mL	EPA TO-15	BGC0346	SGC0540	AC30128
23C0611-01RE1	400 mL / 400 mL	EPA TO-15	BGC0346	SGC0540	AC30128

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued: Ma

March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0346 - No Prep VO	C Air									
Blank (BGC0346-BLK1)					Prep	ared &	Analyzed	: 03/09/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.90		ppbv	5.00		98.0	80-120			
LCS (BGC0346-BS1)					Prep	ared &	Analyzed	: 03/09/2	023	
1,1,1-Trichloroethane	5.38	0.5	ppbv	5.00		108	70-130			
1,1,2,2-Tetrachloroethane	5.67	0.5	ppbv	5.00		113	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	5.16	0.5	ppbv	5.00		103	70-130			
1,1,2-Trichloroethane	5.32	0.5	ppbv	5.00		106	70-130			
1,1-Dichloroethane	4.99	0.5	ppbv	5.00		99.8	70-130			
1,1-Dichloroethylene	5.17	0.5	ppbv	5.00		103	70-130			
1,2,4-Trimethylbenzene	5.64	0.5	ppbv	5.00		113	70-130			
1,2-Dibromoethane (EDB)	5.63	0.5	ppbv	5.00		113	70-130			
1,2-Dichlorobenzene	5.91	0.5	ppbv	5.00		118	70-130			
1,2-Dichloroethane	5.32	0.5	ppbv	5.00		106	70-130			
1,2-Dichloropropane	5.25	0.5	ppbv	5.00		105	70-130			
1,2-Dichlorotetrafluoroethane	5.44	0.5	ppbv	5.00		109	70-130			
1,3,5-Trimethylbenzene	5.61	0.5	ppbv	5.00		112	70-130			
1,3-Butadiene	4.79	0.5	ppbv	5.00		95.8	70-130			
1,3-Dichlorobenzene	5.86	0.5	ppbv	5.00		117	70-130			
1,4-Dichlorobenzene	5.90	0.5	ppbv	5.00		118	70-130			
1,4-Dioxane	5.41	0.5	ppbv	5.00		108	70-130			
2-Butanone (MEK)	4.57	0.5	ppbv	5.00		91.4	70-130			
4-Methyl-2-pentanone (MIBK)	5.35	0.5	ppbv	5.00		107	70-130			
Allyl chloride	4.84	0.5	ppbv	5.00		96.8	70-130			
Benzene	5.21	0.5	ppbv	5.00		104	70-130			
Benzyl Chloride	5.49	0.5	ppbv	5.00		110	70-130			
Bromodichloromethane	5.02	0.5	ppbv	5.00		100	70-130			
Bromoform	1.34	0.5	ppbv	5.00		26.8	70-130			L
Bromomethane	5.71	0.5	ppbv	5.00		114	70-130			
Carbon Disulfide	5.16	0.5	ppbv	5.00		103	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

SCS Field Services - Harrisburg, PA Client Name:

Date Received: 4330 Lewis Road, Suite 1

March 17, 2023 15:45 Date Issued:

March 10, 2023 11:15

Harrisburg, PA 17111

Submitted To: Tom Lock

Bristol

Client Site I.D.:

Project Number: 07223016.00

07-SO04485 Purchase Order:

Volatile Organic Compounds by GCMS - Quality Control

		Reporting			Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

.CS (BGC0346-BS1)					Prepared &	Analyzed: 03/09/2023
Carbon Tetrachloride	5.36	0.5	ppbv	5.00	107	70-130
Chlorobenzene	5.59	0.5	ppbv	5.00	112	70-130
Chloroethane	5.32	0.5	ppbv	5.00	106	70-130
Chloroform	5.07	0.5	ppbv	5.00	101	70-130
Chloromethane	5.06	0.5	ppbv	5.00	101	70-130
is-1,2-Dichloroethylene	5.11	0.5	ppbv	5.00	102	70-130
is-1,3-Dichloropropene	5.47	0.5	ppbv	5.00	109	70-130
Cyclohexane	5.24	0.5	ppbv	5.00	105	70-130
Dichlorodifluoromethane	5.16	0.5	ppbv	5.00	103	70-130
Ethyl acetate	5.38	0.5	ppbv	5.00	108	70-130
thylbenzene	5.53	0.5	ppbv	5.00	111	70-130
leptane	5.03	0.5	ppbv	5.00	101	70-130
lexane	5.06	0.5	ppbv	5.00	101	70-130
n+p-Xylenes	11.2	1	ppbv	10.0	112	70-130
Methylene chloride	4.67	1	ppbv	5.00	93.4	70-130
lethyl-t-butyl ether (MTBE)	5.17	0.5	ppbv	5.00	103	70-130
aphthalene	5.24	0.5	ppbv	5.00	105	60-140
-Xylene	5.55	0.5	ppbv	5.00	111	70-130
Propylene	5.02	1	ppbv	5.00	100	70-130
Styrene	5.59	0.5	ppbv	5.00	112	70-130
etrachloroethylene (PCE)	5.61	0.5	ppbv	5.00	112	70-130
- etrahydrofuran	5.16	0.5	ppbv	5.00	103	70-130
oluene	5.36	0.5	ppbv	5.00	107	70-130
rans-1,2-Dichloroethylene	5.13	0.5	ppbv	5.00	103	70-130
rans-1,3-Dichloropropene	5.55	0.5	ppbv	5.00	111	70-130
richloroethylene	5.40	0.5	ppbv	5.00	108	70-130
richlorofluoromethane	5.27	0.5	ppbv	5.00	105	70-130
inyl acetate	4.77	0.5	ppbv	5.00	95.4	70-130
/inyl bromide	4.79	0.5	ppbv	5.00	95.8	70-130
/inyl chloride	5.21	0.5	ppbv	5.00	104	70-130
Surr: 4-Bromofluorobenzene Surr)	5.14		ppbv	5.00	103	70-130

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued: March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Allalyte	Result	LITTIL	Units	Level	Result	70KEU	LIIIIIIS	KPD	LIIIIII	Quai	
Batch BGC0346 - No Prep VO	C Air										
LCS Dup (BGC0346-BSD1)					Prepa	ared &	Analyzed	: 03/09/20)23		
1,1,1-Trichloroethane	5.38	0.5	ppbv	5.00		108	70-130	0.00	25		
,1,2,2-Tetrachloroethane	5.70	0.5	ppbv	5.00		114	70-130	0.528	25		
,1,2-Trichloro-1,2,2-trifluoroetha	5.17	0.5	ppbv	5.00		103	70-130	0.194	25		
ie											
,1,2-Trichloroethane	5.35	0.5	ppbv	5.00		107	70-130	0.562	25		
,1-Dichloroethane	4.97	0.5	ppbv	5.00		99.4	70-130	0.402	25		
,1-Dichloroethylene	5.19	0.5	ppbv	5.00		104	70-130	0.386	25		
,2,4-Trimethylbenzene	5.63	0.5	ppbv	5.00		113	70-130	0.177	25		
,2-Dibromoethane (EDB)	5.60	0.5	ppbv	5.00		112	70-130	0.534	25		
,2-Dichlorobenzene	5.85	0.5	ppbv	5.00		117	70-130	1.02	25		
,2-Dichloroethane	5.31	0.5	ppbv	5.00		106	70-130	0.188	25		
,2-Dichloropropane	5.22	0.5	ppbv	5.00		104	70-130	0.573	25		
,2-Dichlorotetrafluoroethane	5.53	0.5	ppbv	5.00		111	70-130	1.64	25		
,3,5-Trimethylbenzene	5.60	0.5	ppbv	5.00		112	70-130	0.178	25		
,3-Butadiene	4.62	0.5	ppbv	5.00		92.4	70-130	3.61	25		
,3-Dichlorobenzene	5.88	0.5	ppbv	5.00		118	70-130	0.341	25		
,4-Dichlorobenzene	5.88	0.5	ppbv	5.00		118	70-130	0.340	25		
,4-Dioxane	5.43	0.5	ppbv	5.00		109	70-130	0.369	25		
-Butanone (MEK)	4.58	0.5	ppbv	5.00		91.6	70-130	0.219	25		
-Methyl-2-pentanone (MIBK)	5.42	0.5	ppbv	5.00		108	70-130	1.30	25		
allyl chloride	4.93	0.5	ppbv	5.00		98.6	70-130	1.84	25		
Benzene	5.26	0.5	ppbv	5.00		105	70-130	0.955	25		
Benzyl Chloride	5.39	0.5	ppbv	5.00		108	70-130	1.84	25		
Bromodichloromethane	5.04	0.5	ppbv	5.00		101	70-130	0.398	25		
Bromoform	1.35	0.5	ppbv	5.00		27.0	70-130	0.743	25	L	
Bromomethane	5.66	0.5	ppbv	5.00		113	70-130	0.880	25		
Carbon Disulfide	5.17	0.5	ppbv	5.00		103	70-130	0.194	25		
Carbon Tetrachloride	5.35	0.5	ppbv	5.00		107	70-130	0.187	25		
Chlorobenzene	5.59	0.5	ppbv	5.00		112	70-130	0.00	25		
Chloroethane	5.28	0.5	ppbv	5.00		106	70-130	0.755	25		
Chloroform	5.08	0.5	ppbv	5.00		102	70-130	0.197	25		
Chloromethane	5.05	0.5	ppbv	5.00		101	70-130	0.198	25		
sis-1,2-Dichloroethylene	5.11	0.5	ppbv	5.00		102	70-130	0.00	25		
sis-1,3-Dichloropropene	5.42	0.5	ppbv	5.00		108	70-130	0.918	25		
o 1,0 Distilloroproporto	0.42	0.0	PPD4	0.00		100	10-100	0.010	20		

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued:

March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

LCS Dup (BGC0346-BSD1)		Prepared & Analyzed: 03/09/2023							
Cyclohexane	5.28	0.5	ppbv	5.00	106	70-130	0.760	25	
Dichlorodifluoromethane	5.15	0.5	ppbv	5.00	103	70-130	0.194	25	
Ethyl acetate	5.36	0.5	ppbv	5.00	107	70-130	0.372	25	
Ethylbenzene	5.53	0.5	ppbv	5.00	111	70-130	0.00	25	
Heptane	5.05	0.5	ppbv	5.00	101	70-130	0.397	25	
Hexane	5.05	0.5	ppbv	5.00	101	70-130	0.198	25	
m+p-Xylenes	11.2	1	ppbv	10.0	112	70-130	0.626	25	
Methylene chloride	4.71	1	ppbv	5.00	94.2	70-130	0.853	25	
Methyl-t-butyl ether (MTBE)	5.17	0.5	ppbv	5.00	103	70-130	0.00	25	
Naphthalene	5.18	0.5	ppbv	5.00	104	60-140	1.15	25	
o-Xylene	5.51	0.5	ppbv	5.00	110	70-130	0.723	25	
Propylene	5.01	1	ppbv	5.00	100	70-130	0.199	25	
Styrene	5.63	0.5	ppbv	5.00	113	70-130	0.713	25	
etrachloroethylene (PCE)	5.62	0.5	ppbv	5.00	112	70-130	0.178	25	
「etrahydrofuran	5.17	0.5	ppbv	5.00	103	70-130	0.194	25	
Toluene	5.34	0.5	ppbv	5.00	107	70-130	0.374	25	
trans-1,2-Dichloroethylene	5.13	0.5	ppbv	5.00	103	70-130	0.00	25	
trans-1,3-Dichloropropene	5.58	0.5	ppbv	5.00	112	70-130	0.539	25	
Trichloroethylene	5.42	0.5	ppbv	5.00	108	70-130	0.370	25	
Trichlorofluoromethane	5.12	0.5	ppbv	5.00	102	70-130	2.89	25	
/inyl acetate	4.80	0.5	ppbv	5.00	96.0	70-130	0.627	25	
Vinyl bromide	4.81	0.5	ppbv	5.00	96.2	70-130	0.417	25	
/inyl chloride	5.23	0.5	ppbv	5.00	105	70-130	0.383	25	
Surr: 4-Bromofluorobenzene	5.12		ppbv	5.00	102	70-130			

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

131

90.0

ppmv

Date Issued: March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Carbon Monoxide

Purchase Order: 07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0500 - No Prep VC	OC GC Air									
Blank (BGC0500-BLK1)					Prep	pared & A	Analyzed	: 03/14/20)23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
litrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
CS (BGC0500-BS1)					Prep	pared & A	Analyzed	: 03/14/20)23	
Methane	4690	500	ppmv	5000		93.9	0-200			
Methane	4690	0.05	ppmv	5000		93.9	80-120			
Carbon dioxide	5230	500	ppmv	5000		105	0-200			
Carbon dioxide	5230	0.05	ppmv	5000		105	80-120			
Oxygen (O2)	5110	500	ppmv	5000		102	0-200			
Oxygen (O2)	5110	0.05	ppmv	5000		102	80-120			
Nitrogen (N2)	5370	2000	ppmv	5000		107	0-200			
Hydrogen (H2)	5910	200	ppmv	5100		116	0-200			
Hydrogen (H2)	5910	0.02	ppmv	5100		116	80-120			
Nitrogen (N2)	5370	1	ppmv	5000		107	80-120			
Carbon Monoxide	4880	10	ppmv	5000		97.7	0-200			
Carbon Monoxide	4880	0.001	ppmv	5000		97.7	80-120			
Duplicate (BGC0500-DUP1)		So	urce: 23C	0611-01	Prep	pared & A	Analyzed	: 03/14/20)23	
Methane	11.0	0.45	Vol%		11.1	1		0.199	5	
Methane	110000	4500	ppmv		11100	00		0.199	25	
Carbon dioxide	23.7	0.45	Vol%		23.5	5		1.06	5	
Carbon dioxide	237000	4500	ppmv		2350	00		1.06	25	
Oxygen (O2)	9.38	0.45	Vol%		9.36	3		0.200	5	
Oxygen (O2)	93800	4500	ppmv		9360	00		0.200	25	
Hydrogen (H2)	2.34	0.18	Vol%		2.35	5		0.278	5	
Nitrogen (N2)	469000	18000	ppmv		4690	00		0.0733	25	
Hydrogen (H2)	23400	1800	ppmv		2350	00		0.278	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01	1		1.39	5	

129

1.39

25

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued:

March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: Bristol Purchase Order: 07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

side of established acceptance limits
side of established acceptance limit

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor MDL Method Detection Limit LOQ Limit of Quantitation ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10%

of the absolute.

formerly Air, Water & Soil Laboratories

AIR ANALYSIS

	•						CHAIN	OF CUS	TODY	E	nqiup	ent due	≥ 3/30/20	23					
COMPANY NAME:	SCS Field	d Servi	ces - Harri	isbu	rg IN	VOICE TO	: Same				PROJ	ECT NAM	E/Quote #	Bristo	1				
CONTACT:					IN'	VOICE CC	NTACT:				SITE NAME: Bristol								
ADDRESS:					IN,	VOICE AD	DRESS:				PROJECT NUMBER: D1225016.00								
PHONE #:					IN'	VOICE PH	ONE #:				P.O. #:								
FAX #:		_	EM	1AIL	:						Pretre	atment Pr	ogram:						
Is sample for comp	liance repo	orting?	YES NO)	Regulat	ory State:	VA Is:	sample fro	m a chlori	nated supp	oly?	YES 春	PV PV	VS I.D. #:					
SAMPLER NAME ((PRINT):	Kyar	Seyn	NO	// SA	MPLER S	IGNATUR	E: Pyan	$\nu \mathcal{S}$	ymor	Turn .	Around T	ime: Circ	de: 10 C	5 Days	>	or	_	Day(s)
Matrix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill/V	ent Gas OT	=Other				0		063	3-23B-001	4					
	Regulator I	nfo	Canister In	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	ation		88	AN.	ALY	/SIS
CLIENT						LAB	LAB	Barometric	Pres. (in Ho	g):	,	Barometri	Pres. (in H	g):		e Codes)			þ
SAMPLE I.D.	Flow Controller ID	Cal Flow (mUmin)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in Hg)	Starting Sample Temp *F	Stop Date	Stop Time	Final Canister Vacuum (in Hg)	Ending Sample Temp *F	Matrix (See	Alt 145 CO	EPA 3C	Benzene t TO-15
1) 37	063-0041		14300	1.4	230126-02	21.6	2.4	3/9/23	11:24 Am	28	149	3/1/23	11:28 Am	9	149			- 1	x
2)			14308	1.4	230126-02	21.6										LG	x	x	x
3)														٤					
4)	→		·																
RELINQUISHED:				loco.	E0.455								310	20.3	no	Ser	<u> </u>	μþ	اک
KELINQUISHED.				KEC	EIVED: Feer &	× G	DAT	E / TIME	QC Data P	ackage LA	B USE	ONLY							
RELINQUISHED: Fred Lex G		DAT	E / TIME		EIVED: USILI	~ 3	10/23	E / TIME	Level II		Field	Servic	es 23	C0611					
RELINQUISHED:		DAT	E / TIME	L	EIVED:			E / TIME	Level III Level IV	□ Brist	ol		Due: 03/	17/2023 v130325002	···				

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA Date Received: March 10, 2023 11:15

4330 Lewis Road, Suite 1 Date Issued: March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: 07223016.00

Client Site I.D.: Bristol Purchase Order: 07-S004485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA Date Received: March 17, 2023 11:14

4330 Lewis Road, Suite 1 Date Issued: March 23, 2023 17:20

Harrisburg, PA 17111 Project Number: 07223016.00

Submitted To: Tom Lock Purchase Order: 07-S004485

Client Site I.D.: Bristol

100001415

Enclosed are the results of analyses for samples received by the laboratory on 03/17/2023 11:14. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued: March 23, 2023 17:20

Harrisburg, PA 17111

Project Number: 07223016.00

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C1038-01	Air	03/16/2023 10:00	03/17/2023 11:14
57	23C1038-02	Air	03/16/2023 10:10	03/17/2023 11:14

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Date Issued:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location: Field Sample #: 37 Sample Description/Location: Sub Description/Location: Canister ID: 063-00306::11293 Initial Vacuum(in Hg): 21.6 Final Vacuum(in Hg): 3.8

Sample ID: 23C1038-01 Sample Matrix: Air

Receipt Vacuum(in Hg): 3.8 Flow Controller Type: Passive

Canister Size: 1.4L

Flow Controller ID:

Sampled: 3/16/2023 10:00

Sample Type: LV

Volatile Organic Co	mpounds by GC/TCD -	Unadjusted,	as received basis
	ALT-145		

		ppmv		ALI-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	168	90.0	90.0		9	1	3/17/23 16:02	MER

	Vol	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	3			
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	13.4	0.45	0.45		9	1	3/17/23 16:02	MER
Carbon dioxide, as received	31.0	0.45	0.45		9	1	3/17/23 16:02	MER
Oxygen (O2), as received	6.22	0.45	0.45		9	1	3/17/23 16:02	MER
Hydrogen (H2), as received	3.08	0.18	0.18		9	1	3/17/23 16:02	MER
Nitrogen (N2), as received	41.1	9.00	9.00		9	1	3/17/23 16:02	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	3/17/23 16:02	MER

Volatile Organic Compounds by GCMS EPA TO-15											
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	62500	1560	3890		200000	5000	12000	7780	1	3/21/23 14:41	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			94.6		8	30-120				3/21/23 14:41	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

SCS Field Services - Harrisburg, PA Client Name:

Date Received: Date Issued:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Sample Matrix: Air

Project Location: Field Sample #: 57

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00322::12383

Initial Vacuum(in Hg): 21.6 Final Vacuum(in Hg): 3.4

Sample ID: 23C1038-02

ppmv

Result

855

Receipt Vacuum(in Hg): 3.4 Flow Controller Type: Passive

Canister Size: 1.4L

Flow Controller ID:

Sampled: 3/16/2023 10:10

Analyte

Carbon Monoxide, as received

Sample Type: LV

Volatile Organic Compounds by GC/TCD -	Unadjusted, as received basis

ALT-145

Date/Time MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 9 90.0 90.0 1 3/17/23 16:56 MER

	Vola	atile Organi	c Compour		usted, as received basis				
		Vol%		EPA 3C				Data/Time	
Analyte	Result	MDL	LOQ	Flag/Qual		Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	20.1	0.45	0.45			9	1	3/17/23 16:56	MER
Carbon dioxide, as received	55.1	0.45	0.45			9	1	3/17/23 16:56	MER
Oxygen (O2), as received	1.27	0.45	0.45			9	1	3/17/23 16:56	MER
Hydrogen (H2), as received	13.5	1.08	1.08			54	1	3/20/23 15:24	MER
Nitrogen (N2), as received	ND	9.00	9.00			9	1	3/17/23 16:56	MER
Carbon Monoxide, as received	0.09	0.009	0.009			9	1	3/17/23 16:56	MER

		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	208000	2330	5830		670000	7500	19000	11700	1	3/21/23 16:14	DFH
Surrogate(s)		% Ra	COVERV		% Ra	covery Lir	nite				

95.8 3/21/23 16:14 4-Bromofluorobenzene (Surr) 80-120

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C1038-01	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0658	AG00026
23C1038-02	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0658	AG00026
23C1038-01	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0658	AG00026
23C1038-02	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0658	AG00026
23C1038-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGC0718	SGC0713	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23C1038-01	400 mL / 400 mL	EPA TO-15	BGC0743	SGC0734	AC30195
23C1038-02	400 mL / 400 mL	EPA TO-15	BGC0743	SGC0734	AC30195

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep VO	C Air									
Blank (BGC0743-BLK1)					Prep	ared &	Analyzed	: 03/21/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.90		ppbv	5.00		98.0	80-120			
LCS (BGC0743-BS1)					Prep	ared &	Analyzed	: 03/21/2	023	
1,1,1-Trichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
1,1,2,2-Tetrachloroethane	5.19	0.5	ppbv	5.00		104	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.64	0.5	ppbv	5.00		92.8	70-130			
1,1,2-Trichloroethane	4.93	0.5	ppbv	5.00		98.6	70-130			
1,1-Dichloroethane	4.59	0.5	ppbv	5.00		91.8	70-130			
1,1-Dichloroethylene	4.66	0.5	ppbv	5.00		93.2	70-130			
1,2,4-Trimethylbenzene	5.23	0.5	ppbv	5.00		105	70-130			
1,2-Dibromoethane (EDB)	5.12	0.5	ppbv	5.00		102	70-130			
1,2-Dichlorobenzene	5.48	0.5	ppbv	5.00		110	70-130			
1,2-Dichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
1,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130			
1,2-Dichlorotetrafluoroethane	4.70	0.5	ppbv	5.00		94.0	70-130			
1,3,5-Trimethylbenzene	5.20	0.5	ppbv	5.00		104	70-130			
1,3-Butadiene	4.57	0.5	ppbv	5.00		91.4	70-130			
1,3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130			
1,4-Dichlorobenzene	5.37	0.5	ppbv	5.00		107	70-130			
1,4-Dioxane	5.47	0.5	ppbv	5.00		109	70-130			
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130			
4-Methyl-2-pentanone (MIBK)	5.13	0.5	ppbv	5.00		103	70-130			
Allyl chloride	4.49	0.5	ppbv	5.00		89.8	70-130			
Benzene	4.93	0.5	ppbv	5.00		98.6	70-130			
Benzyl Chloride	4.84	0.5	ppbv	5.00		96.8	70-130			
Bromodichloromethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Bromoform	0.98	0.5	ppbv	5.00		19.6	70-130			L
Bromomethane	4.81	0.5	ppbv	5.00		96.2	70-130			
Carbon Disulfide	4.50	0.5	ppbv	5.00		90.0	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

		Reporting	Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

CS (BGC0743-BS1)					Prepared &	Analyzed: 03/21/2023	
arbon Tetrachloride	4.91	0.5	ppbv	5.00	98.2	70-130	
nlorobenzene	5.05	0.5	ppbv	5.00	101	70-130	
nloroethane	4.62	0.5	ppbv	5.00	92.4	70-130	
nloroform	4.66	0.5	ppbv	5.00	93.2	70-130	
nloromethane	4.61	0.5	ppbv	5.00	92.2	70-130	
s-1,2-Dichloroethylene	4.69	0.5	ppbv	5.00	93.8	70-130	
s-1,3-Dichloropropene	5.12	0.5	ppbv	5.00	102	70-130	
yclohexane	4.95	0.5	ppbv	5.00	99.0	70-130	
chlorodifluoromethane	4.66	0.5	ppbv	5.00	93.2	70-130	
hyl acetate	4.90	0.5	ppbv	5.00	98.0	70-130	
hylbenzene	5.17	0.5	ppbv	5.00	103	70-130	
eptane	4.82	0.5	ppbv	5.00	96.4	70-130	
exane	4.82	0.5	ppbv	5.00	96.4	70-130	
+p-Xylenes	10.3	1	ppbv	10.0	103	70-130	
ethylene chloride	4.91	1	ppbv	5.00	98.2	70-130	
ethyl-t-butyl ether (MTBE)	4.81	0.5	ppbv	5.00	96.2	70-130	
phthalene	4.58	0.5	ppbv	5.00	91.6	60-140	
Kylene	5.10	0.5	ppbv	5.00	102	70-130	
opylene	4.57	1	ppbv	5.00	91.4	70-130	
yrene	5.18	0.5	ppbv	5.00	104	70-130	
trachloroethylene (PCE)	5.05	0.5	ppbv	5.00	101	70-130	
trahydrofuran	4.93	0.5	ppbv	5.00	98.6	70-130	
luene	4.97	0.5	ppbv	5.00	99.4	70-130	
ns-1,2-Dichloroethylene	4.72	0.5	ppbv	5.00	94.4	70-130	
ans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00	105	70-130	
ichloroethylene	4.95	0.5	ppbv	5.00	99.0	70-130	
ichlorofluoromethane	4.68	0.5	ppbv	5.00	93.6	70-130	
nyl acetate	4.76	0.5	ppbv	5.00	95.2	70-130	
nyl bromide	4.66	0.5	ppbv	5.00	93.2	70-130	
nyl chloride	4.65	0.5	ppbv	5.00	93.0	70-130	
ırr: 4-Bromofluorobenzene urr)	5.10		ppbv	5.00	102	70-130	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	Reporting			Spike	Source	Q	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

,	rtesuit	Liiiiii	Office	LCVCI	TRESUIT /OTTE	O Liiiillo	1111111	Liiiiii	Quai
Batch BGC0743 - No Prep VO	C Air								
CS Dup (BGC0743-BSD1)					Prepared 8	& Analyzed	: 03/21/20	023	
,1,1-Trichloroethane	5.00	0.5	ppbv	5.00	100	70-130	0.803	25	
,1,2,2-Tetrachloroethane	5.12	0.5	ppbv	5.00	102	70-130	1.36	25	
,1,2-Trichloro-1,2,2-trifluoroetha ne	4.68	0.5	ppbv	5.00	93.6	70-130	0.858	25	
,1,2-Trichloroethane	5.02	0.5	ppbv	5.00	100	70-130	1.81	25	
,1-Dichloroethane	4.62	0.5	ppbv	5.00	92.4	70-130	0.651	25	
,1-Dichloroethylene	4.68	0.5	ppbv	5.00	93.6	70-130	0.428	25	
,2,4-Trimethylbenzene	5.18	0.5	ppbv	5.00	104	70-130	0.961	25	
,2-Dibromoethane (EDB)	5.08	0.5	ppbv	5.00	102	70-130	0.784	25	
,2-Dichlorobenzene	5.42	0.5	ppbv	5.00	108	70-130	1.10	25	
,2-Dichloroethane	4.98	0.5	ppbv	5.00	99.6	70-130	0.402	25	
,2-Dichloropropane	4.90	0.5	ppbv	5.00	98.0	70-130	0.00	25	
,2-Dichlorotetrafluoroethane	4.84	0.5	ppbv	5.00	96.8	70-130	2.94	25	
,3,5-Trimethylbenzene	5.11	0.5	ppbv	5.00	102	70-130	1.75	25	
,3-Butadiene	4.48	0.5	ppbv	5.00	89.6	70-130	1.99	25	
3-Dichlorobenzene	5.35	0.5	ppbv	5.00	107	70-130	0.00	25	
,4-Dichlorobenzene	5.32	0.5	ppbv	5.00	106	70-130	0.935	25	
4-Dioxane	5.57	0.5	ppbv	5.00	111	70-130	1.81	25	
-Butanone (MEK)	4.55	0.5	ppbv	5.00	91.0	70-130	0.00	25	
-Methyl-2-pentanone (MIBK)	5.25	0.5	ppbv	5.00	105	70-130	2.31	25	
llyl chloride	4.41	0.5	ppbv	5.00	88.2	70-130	1.80	25	
enzene	4.96	0.5	ppbv	5.00	99.2	70-130	0.607	25	
enzyl Chloride	4.77	0.5	ppbv	5.00	95.4	70-130	1.46	25	
romodichloromethane	4.66	0.5	ppbv	5.00	93.2	70-130	0.862	25	
romoform	0.97	0.5	ppbv	5.00	19.4	70-130	1.03	25	L
romomethane	4.96	0.5	ppbv	5.00	99.2	70-130	3.07	25	
arbon Disulfide	4.51	0.5	ppbv	5.00	90.2	70-130	0.222	25	
arbon Tetrachloride	4.95	0.5	ppbv	5.00	99.0	70-130	0.811	25	
hlorobenzene	5.03	0.5	ppbv	5.00	101	70-130	0.397	25	
hloroethane	4.70	0.5	ppbv	5.00	94.0	70-130	1.72	25	
chloroform	4.67	0.5	ppbv	5.00	93.4		0.214	25	
chloromethane	4.58	0.5	ppbv	5.00	91.6	70-130	0.653	25	
is-1,2-Dichloroethylene	4.76	0.5	ppbv	5.00	95.2	70-130	1.48	25	
is-1,3-Dichloropropene	5.14	0.5	ppbv	5.00	103		0.390	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting			Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

LCS Dup (BGC0743-BSD1)					Prepared & Analyzed: 03/21/2023				
Cyclohexane	4.96	0.5	ppbv	5.00	99.2	70-130	0.202	25	
Dichlorodifluoromethane	4.65	0.5	ppbv	5.00	93.0	70-130	0.215	25	
Ethyl acetate	4.88	0.5	ppbv	5.00	97.6	70-130	0.409	25	
Ethylbenzene	5.14	0.5	ppbv	5.00	103	70-130	0.582	25	
Heptane	4.83	0.5	ppbv	5.00	96.6	70-130	0.207	25	
Hexane	4.78	0.5	ppbv	5.00	95.6	70-130	0.833	25	
m+p-Xylenes	10.3	1	ppbv	10.0	103	70-130	0.777	25	
Methylene chloride	4.88	1	ppbv	5.00	97.6	70-130	0.613	25	
Methyl-t-butyl ether (MTBE)	4.79	0.5	ppbv	5.00	95.8	70-130	0.417	25	
Naphthalene	4.32	0.5	ppbv	5.00	86.4	60-140	5.84	25	
o-Xylene	5.06	0.5	ppbv	5.00	101	70-130	0.787	25	
Propylene	4.75	1	ppbv	5.00	95.0	70-130	3.86	25	
Styrene	5.15	0.5	ppbv	5.00	103	70-130	0.581	25	
「etrachloroethylene (PCE)	5.02	0.5	ppbv	5.00	100	70-130	0.596	25	
Tetrahydrofuran	4.96	0.5	ppbv	5.00	99.2	70-130	0.607	25	
Toluene	5.05	0.5	ppbv	5.00	101	70-130	1.60	25	
trans-1,2-Dichloroethylene	4.71	0.5	ppbv	5.00	94.2	70-130	0.212	25	
trans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00	105	70-130	0.00	25	
Trichloroethylene	5.03	0.5	ppbv	5.00	101	70-130	1.60	25	
Trichlorofluoromethane	4.72	0.5	ppbv	5.00	94.4	70-130	0.851	25	
Vinyl acetate	4.69	0.5	ppbv	5.00	93.8	70-130	1.48	25	
Vinyl bromide	4.70	0.5	ppbv	5.00	94.0	70-130	0.855	25	
/inyl chloride	4.73	0.5	ppbv	5.00	94.6	70-130	1.71	25	
Surr: 4-Bromofluorobenzene	5.07		ppbv	5.00	101	70-130			

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

131

90.0

ppmv

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Carbon Monoxide

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0500 - No Prep VC	OC GC Air									
Blank (BGC0500-BLK1)					Prep	ared &	Analyzed	: 03/14/20	23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
LCS (BGC0500-BS1)					Prep	ared &	Analyzed	: 03/14/20	23	
Methane	4690	500	ppmv	5000		93.9	0-200			
Methane	4690	0.05	ppmv	5000		93.9	80-120			
Carbon dioxide	5230	500	ppmv	5000		105	0-200			
Carbon dioxide	5230	0.05	ppmv	5000		105	80-120			
Oxygen (O2)	5110	500	ppmv	5000		102	0-200			
Oxygen (O2)	5110	0.05	ppmv	5000		102	80-120			
Hydrogen (H2)	5910	200	ppmv	5100		116	0-200			
Nitrogen (N2)	5370	2000	ppmv	5000		107	0-200			
Nitrogen (N2)	5370	1	ppmv	5000		107	80-120			
Hydrogen (H2)	5910	0.02	ppmv	5100		116	80-120			
Carbon Monoxide	4880	10	ppmv	5000		97.7	0-200			
Carbon Monoxide	4880	0.001	ppmv	5000		97.7	80-120			
Ouplicate (BGC0500-DUP1)		Soi	urce: 23C	0611-01	Prep	ared &	Analyzed	: 03/14/20	23	
Methane	11.0	0.45	Vol%		11.1			0.199	5	
Methane	110000	4500	ppmv		11100	00		0.199	25	
Carbon dioxide	237000	4500	ppmv		23500	00		1.06	25	
Carbon dioxide	23.7	0.45	Vol%		23.5	5		1.06	5	
Oxygen (O2)	93800	4500	ppmv		9360	0		0.200	25	
Oxygen (O2)	9.38	0.45	Vol%		9.36	;		0.200	5	
Hydrogen (H2)	2.34	0.18	Vol%		2.35	5		0.278	5	
Nitrogen (N2)	469000	18000	ppmv		46900	00		0.0733	25	
Hydrogen (H2)	23400	1800	ppmv		2350	0		0.278	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01			1.39	5	

129

1.39

25

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Duplicate (BGC0500-DUP2)		So	urce: 23C1038-01	Prepared & A	nalyzed: 03/17/202	23
Methane	134000	4500	ppmv	134000	0.654	25
Methane	13.4	0.45	Vol%	13.4	0.654	5
Carbon dioxide	30.7	0.45	Vol%	31.0	0.911	5
Carbon dioxide	307000	4500	ppmv	310000	0.911	25
Oxygen (O2)	6.21	0.45	Vol%	6.22	0.209	5
Oxygen (O2)	62100	4500	ppmv	62200	0.209	25
Hydrogen (H2)	3.00	0.18	Vol%	3.08	2.63	5
Nitrogen (N2)	40.9	9.00	Vol%	41.1	0.473	5
Hydrogen (H2)	30000	1800	ppmv	30800	2.63	25
Nitrogen (N2)	409000	18000	ppmv	411000	0.473	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	0.428	5
Carbon Monoxide	169	90.0	ppmv	168	0.428	25
Duplicate (BGC0500-DUP3)		So	urce: 23C1038-02	Prepared & A	nalyzed: 03/17/202	23
Methane	204000	4500	ppmv	201000	1.59	25
Methane	20.4	0.45	Vol%	20.1	1.59	5
Carbon dioxide	55.9	0.45	Vol%	55.1	1.40	5
Carbon dioxide	559000	4500	ppmv	551000	1.40	25
Oxygen (O2)	1.28	0.45	Vol%	1.27	0.951	5
Oxygen (O2)	12800	4500	ppmv	12700	0.951	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	138000	1800	ppmv	136000	1.74	25
Nitrogen (N2)	43900	18000	ppmv	43400	1.19	25
Carbon Monoxide	874	90.0	ppmv	855	2.27	25

Batch BGC0718 - No Prep VOC GC Air

Blank (BGC0718-BLK1)		Prepared & Analyzed: 03/20/2023		
Methane	<	0.05	Vol%	
Carbon dioxide	<	0.05	Vol%	
Oxygen (O2)	<	0.05	Vol%	
Hydrogen (H2)	<	0.02	Vol%	
Nitrogen (N2)	<	1.00	Vol%	
Carbon Monoxide	<	0.001	Vol%	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received: N

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0718 - No Prep VC	OC GC Air										
LCS (BGC0718-BS1)					Prep	ared &	Analyzed	: 03/20/20	023		
Methane	4760	0.05	ppmv	5000		95.2	80-120				
Carbon dioxide	5840	0.05	ppmv	5000		117	80-120				
Oxygen (O2)	5190	0.05	ppmv	5000		104	80-120				
Nitrogen (N2)	5430	1	ppmv	5000		109	80-120				
Hydrogen (H2)	5830	0.02	ppmv	5100		114	80-120				
Carbon Monoxide	4950	0.001	ppmv	5000		99.0	80-120				
Duplicate (BGC0718-DUP1)		Soi	urce: 230	1051-01	Prep	ared &	Analyzed	: 03/20/20	023		
Methane	38.3	0.45	Vol%		38.5	;		0.499	5		
Carbon dioxide	42.1	0.45	Vol%		42.3	;		0.546	5		
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5		
Nitrogen (N2)	11.4	9.00	Vol%		11.5	i		0.554	5		
Hydrogen (H2)	2.39	0.18	Vol%		2.40)		0.567	5		
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5		
Duplicate (BGC0718-DUP2)		Soi	urce: 230	1051-02	Prep	ared &	Analyzed	: 03/20/20	023		
Methane	38.3	0.45	Vol%		38.4			0.171	5		
Carbon dioxide	38.6	0.45	Vol%		38.6	i		0.0315	5		
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5		
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5		
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5		
Duplicate (BGC0718-DUP3)		Soi	urce: 230	1051-03	Prep	ared &	Analyzed	: 03/21/20	023		
Methane	36.9	0.45	Vol%		37.2	!		0.658	5		
Carbon dioxide	38.2	0.45	Vol%		38.4			0.498	5		
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5		
Nitrogen (N2)	14.1	9.00	Vol%		14.2	!		0.849	5		
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5		

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

Batch BGC0718 - No Prep VOC GC Air

Duplicate (BGC0718-DUP4)		Sou	ırce: 23C1051-04	Prepared & A	nalyzed: 03/21/202	3
Methane	37.3	0.45	Vol%	37.7	0.902	5
Carbon dioxide	45.2	0.45	Vol%	45.6	0.771	5
Oxygen (O2)	0.53	0.45	Vol%	0.55	2.83	5
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	4.46	0.18	Vol%	4.51	1.11	5
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

SCS Field Services - Harrisburg, PA Client Name:

March 17, 2023 11:14 Date Received: Date Issued:

4330 Lewis Road, Suite 1

March 23, 2023 17:20

07-SO04485

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: 07223016.00

Bristol Purchase Order:

Qualifiers and Definitions

L LCS recovery is outside of established acceptance limits

RPD Relative Percent Difference

Qualifers Qual

TIC

Client Site I.D.:

-RE Denotes sample was re-analyzed

PF Preparation Factor Method Detection Limit MDL LOQ Limit of Quantitation ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

AIR ANALYSIS

CHAIN OF CUSTODY Equipment due 3/30/2023 COMPANY NAME: SCS Field Services - Harrisburg INVOICE TO: PROJECT NAME/Quote #: Same Bristol CONTACT: SITE NAME: POST INVOICE CONTACT: ADDRESS: INVOICE ADDRESS: PROJECT NUMBER: PHONE #: **INVOICE PHONE #:** P.O. #: FAX #: EMAIL: Pretreatment Program: Is sample for compliance reporting? YES NO Regulatory State: VA Is sample from a chlorinated supply? YES (NO PWS I.D. #: SAMPLER SIGNATURE: SAMPLER NAME (PRINT): Turn Around Time: Circle: 10 5 Days or __ Day(s) Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Gas OT=Other 063-23B-0014 Regulator Info Canister Information Sampling Start Information Sampling Stop Information **ANALYSIS** Barometric Pres. (in Hg): 30.04 Barometric Pres. (in Hg): 30.09 by LAB LAB 8 CLIENT Outgoing Receiving Initial Final SAMPLE I.D. Matrix (s Alt 145 (Flow Cal Canister Canister Canister Canister Starting Controller Size EPA Flow Start Time Vacuum (in Vacuum (ir Vacuum (in Stop Time Vacuum (in Cleaning Sample (mL/min) Canister ID Batch ID Hg) Hg) Start Date (24hr clock) Temp °F Stop Date (24hr clock) Hg) Temp °F 10:00 9:58 148 11293 21.6 230202-02 LG x Х Am AM 10:08 196 12383 21.6 10:10 1.4 230202-02 LG x X AM 3) 12418 230202-02 21.6 LG x X 4) 14294 1.4 230126-02 21.6 _G x X X 20.3% noite noseal RELINQUISHED RECEIVED: DATE / TIME QC Data Package LAB USE ONLY Level I П DATE / TIME RECEIVED: DATE / TIME **SCS Field Services** 23C1038 5:250 Level II **Bristol** RELINQUISHED: DATE / TIME DATE / TIME Level III \Box Recd: 03/17/2023 Due: 03/24/2023 Level IV v130325002

Page 15 of 16

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA Date Received: March 17, 2023 11:14

Date Issued: March 23, 2023 17:20

Harrisburg, PA 17111

4330 Lewis Road, Suite 1

Submitted To: Tom Lock Project Number: 07223016.00

Client Site I.D.: Bristol Purchase Order: 07-S004485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

SCS Field Services - Harrisburg, PA Client Name:

March 24, 2023 10:00 Date Received:

4330 Lewis Road, Suite 1

March 29, 2023 16:48 Date Issued:

[none]

Harrisburg, PA 17111

Project Number:

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.:

Submitted To:

Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/24/2023 10:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

100001415

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued: March 29, 2023 16:48

Harrisburg, PA 17111

Project Number: [none]

Submitted To: Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
51	23C1352-02	Air	03/23/2023 13:33	03/24/2023 10:00

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol**

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location: Sub Description/Location:

Initial Vacuum(in Hg): 21.6 Final Vacuum(in Hg): 12

Field Sample #: 51

Canister ID: 063-00084::12418

Receipt Vacuum(in Hg): 6.4

Sample ID: 23C1352-02 Sample Matrix: Air

Canister Size: 1.4L

Flow Controller Type: Passive

Sampled: 3/23/2023 13:33

Flow Controller ID:

Sample Type: LV

Vol	atile Organio	Compour	nds by GC/TCD -	Unadjusted, as received basis				
	ppmv		ALT-145					
ocult	MDI	100	Flag/Ougl	n	Nilution	DE	Date/Time Analyzed	Δι

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Analys	it
Carbon Monoxide, as received	554	90.0	90.0		9	1	3/27/23 12:20 MER	

	Vol	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	3			
		Vol%		EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	12.6	0.45	0.45		9	1	3/27/23 12:20	MER
Carbon dioxide, as received	44.3	0.45	0.45		9	1	3/27/23 12:20	MER
Oxygen (O2), as received	5.35	0.45	0.45		9	1	3/27/23 12:20	MER
Hydrogen (H2), as received	8.90	0.54	0.54		27	1	3/27/23 15:04	MER
Nitrogen (N2), as received	19.2	9.00	9.00		9	1	3/27/23 12:20	MER
Carbon Monoxide, as received	0.06	0.009	0.009		9	1	3/27/23 12:20	MER

			Volatile (Organic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Data/Tima	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	162000	2330	5830		520000	7500	19000	11700	1	3/28/23 10:50	DFH
Surrogate(s)		% Re	covery		% Red	covery Lir	nits				
4-Bromofluorobenzene (Surr)			101		8	30-120				3/28/23 10:50	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order: 07-

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GC/TCD - Unadjusted	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C1352-02	1.00 mL / 1.00 mL	ALT-145	BGC0954	SGC0940	AG00026
23C1352-02	1.00 mL / 1.00 mL	EPA 3C	BGC0954	SGC0940	AG00026
23C1352-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGC0954	SGC0940	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GCMS		Preparation Method:	No Prep VOC Air	
23C1352-02	400 mL / 400 mL	EPA TO-15	BGC0743	SGC0974	AC30195

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep VO	C Air									
Blank (BGC0743-BLK1)					Prep	ared &	Analyzed	: 03/21/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.90		ppbv	5.00		98.0	80-120			
LCS (BGC0743-BS1)					Prep	ared &	Analyzed	: 03/21/2	023	
1,1,1-Trichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
1,1,2,2-Tetrachloroethane	5.19	0.5	ppbv	5.00		104	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.64	0.5	ppbv	5.00		92.8	70-130			
1,1,2-Trichloroethane	4.93	0.5	ppbv	5.00		98.6	70-130			
1,1-Dichloroethane	4.59	0.5	ppbv	5.00		91.8	70-130			
1,1-Dichloroethylene	4.66	0.5	ppbv	5.00		93.2	70-130			
1,2,4-Trimethylbenzene	5.23	0.5	ppbv	5.00		105	70-130			
1,2-Dibromoethane (EDB)	5.12	0.5	ppbv	5.00		102	70-130			
1,2-Dichlorobenzene	5.48	0.5	ppbv	5.00		110	70-130			
1,2-Dichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
1,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130			
1,2-Dichlorotetrafluoroethane	4.70	0.5	ppbv	5.00		94.0	70-130			
1,3,5-Trimethylbenzene	5.20	0.5	ppbv	5.00		104	70-130			
1,3-Butadiene	4.57	0.5	ppbv	5.00		91.4	70-130			
1,3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130			
1,4-Dichlorobenzene	5.37	0.5	ppbv	5.00		107	70-130			
1,4-Dioxane	5.47	0.5	ppbv	5.00		109	70-130			
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130			
4-Methyl-2-pentanone (MIBK)	5.13	0.5	ppbv	5.00		103	70-130			
Allyl chloride	4.49	0.5	ppbv	5.00		89.8	70-130			
Benzene	4.93	0.5	ppbv	5.00		98.6	70-130			
Benzyl Chloride	4.84	0.5	ppbv	5.00		96.8	70-130			
Bromodichloromethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Bromoform	0.98	0.5	ppbv	5.00		19.6	70-130			L
Bromomethane	4.81	0.5	ppbv	5.00		96.2	70-130			
Carbon Disulfide	4.50	0.5	ppbv	5.00		90.0	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	F	Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

LCS (BGC0743-BS1)					Prepared &	Analyzed: 03/21/2023	
Carbon Tetrachloride	4.91	0.5	ppbv	5.00	98.2	70-130	
Chlorobenzene	5.05	0.5	ppbv	5.00	101	70-130	
Chloroethane	4.62	0.5	ppbv	5.00	92.4	70-130	
Chloroform	4.66	0.5	ppbv	5.00	93.2	70-130	
Chloromethane	4.61	0.5	ppbv	5.00	92.2	70-130	
cis-1,2-Dichloroethylene	4.69	0.5	ppbv	5.00	93.8	70-130	
cis-1,3-Dichloropropene	5.12	0.5	ppbv	5.00	102	70-130	
Cyclohexane	4.95	0.5	ppbv	5.00	99.0	70-130	
Dichlorodifluoromethane	4.66	0.5	ppbv	5.00	93.2	70-130	
Ethyl acetate	4.90	0.5	ppbv	5.00	98.0	70-130	
Ethylbenzene	5.17	0.5	ppbv	5.00	103	70-130	
Heptane	4.82	0.5	ppbv	5.00	96.4	70-130	
Hexane	4.82	0.5	ppbv	5.00	96.4	70-130	
m+p-Xylenes	10.3	1	ppbv	10.0	103	70-130	
Methylene chloride	4.91	1	ppbv	5.00	98.2	70-130	
Methyl-t-butyl ether (MTBE)	4.81	0.5	ppbv	5.00	96.2	70-130	
Naphthalene	4.58	0.5	ppbv	5.00	91.6	60-140	
o-Xylene	5.10	0.5	ppbv	5.00	102	70-130	
Propylene	4.57	1	ppbv	5.00	91.4	70-130	
Styrene	5.18	0.5	ppbv	5.00	104	70-130	
Tetrachloroethylene (PCE)	5.05	0.5	ppbv	5.00	101	70-130	
Tetrahydrofuran	4.93	0.5	ppbv	5.00	98.6	70-130	
Toluene	4.97	0.5	ppbv	5.00	99.4	70-130	
trans-1,2-Dichloroethylene	4.72	0.5	ppbv	5.00	94.4	70-130	
trans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00	105	70-130	
Trichloroethylene	4.95	0.5	ppbv	5.00	99.0	70-130	
Trichlorofluoromethane	4.68	0.5	ppbv	5.00	93.6	70-130	
/inyl acetate	4.76	0.5	ppbv	5.00	95.2	70-130	
Vinyl bromide	4.66	0.5	ppbv	5.00	93.2	70-130	
Vinyl chloride	4.65	0.5	ppbv	5.00	93.0	70-130	
Surr: 4-Bromofluorobenzene (Surr)	5.10		ppbv	5.00	102	70-130	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bris

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	

y	rtesuit	Littile	Office	LCVCI	TOSUIT /01 CE	Limito	INID	Liitiit	Quai
Batch BGC0743 - No Prep VO	C Air								
.CS Dup (BGC0743-BSD1)					Prepared &	Analyzed	: 03/21/20)23	
,1,1-Trichloroethane	5.00	0.5	ppbv	5.00	100	70-130	0.803	25	
,1,2,2-Tetrachloroethane	5.12	0.5	ppbv	5.00	102	70-130	1.36	25	
,1,2-Trichloro-1,2,2-trifluoroetha e	4.68	0.5	ppbv	5.00	93.6	70-130	0.858	25	
,1,2-Trichloroethane	5.02	0.5	ppbv	5.00	100	70-130	1.81	25	
,1-Dichloroethane	4.62	0.5	ppbv	5.00	92.4	70-130	0.651	25	
,1-Dichloroethylene	4.68	0.5	ppbv	5.00	93.6	70-130	0.428	25	
,2,4-Trimethylbenzene	5.18	0.5	ppbv	5.00	104	70-130	0.961	25	
,2-Dibromoethane (EDB)	5.08	0.5	ppbv	5.00	102	70-130	0.784	25	
,2-Dichlorobenzene	5.42	0.5	ppbv	5.00	108	70-130	1.10	25	
,2-Dichloroethane	4.98	0.5	ppbv	5.00	99.6	70-130	0.402	25	
,2-Dichloropropane	4.90	0.5	ppbv	5.00	98.0	70-130	0.00	25	
,2-Dichlorotetrafluoroethane	4.84	0.5	ppbv	5.00	96.8	70-130	2.94	25	
3,5-Trimethylbenzene	5.11	0.5	ppbv	5.00	102	70-130	1.75	25	
3-Butadiene	4.48	0.5	ppbv	5.00	89.6	70-130	1.99	25	
3-Dichlorobenzene	5.35	0.5	ppbv	5.00	107	70-130	0.00	25	
4-Dichlorobenzene	5.32	0.5	ppbv	5.00	106	70-130	0.935	25	
4-Dioxane	5.57	0.5	ppbv	5.00	111	70-130	1.81	25	
-Butanone (MEK)	4.55	0.5	ppbv	5.00	91.0	70-130	0.00	25	
-Methyl-2-pentanone (MIBK)	5.25	0.5	ppbv	5.00	105	70-130	2.31	25	
llyl chloride	4.41	0.5	ppbv	5.00	88.2	70-130	1.80	25	
enzene	4.96	0.5	ppbv	5.00	99.2	70-130	0.607	25	
enzyl Chloride	4.77	0.5	ppbv	5.00	95.4	70-130	1.46	25	
romodichloromethane	4.66	0.5	ppbv	5.00	93.2	70-130	0.862	25	
romoform	0.97	0.5	ppbv	5.00	19.4	70-130	1.03	25	L
romomethane	4.96	0.5	ppbv	5.00	99.2	70-130	3.07	25	
arbon Disulfide	4.51	0.5	ppbv	5.00	90.2	70-130	0.222	25	
arbon Tetrachloride	4.95	0.5	ppbv	5.00	99.0	70-130	0.811	25	
hlorobenzene	5.03	0.5	ppbv	5.00	101	70-130	0.397	25	
hloroethane	4.70	0.5	ppbv	5.00	94.0	70-130	1.72	25	
hloroform	4.67	0.5	ppbv	5.00	93.4	70-130	0.214	25	
hloromethane	4.58	0.5	ppbv	5.00	91.6	70-130	0.653	25	
s-1,2-Dichloroethylene	4.76	0.5	ppbv	5.00	95.2	70-130	1.48	25	
is-1,3-Dichloropropene	5.14	0.5	ppbv	5.00	103	70-130	0.390	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued: March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

LCS Dup (BGC0743-BSD1)					Prepared &	Analyzed	03/21/20	23
Cyclohexane	4.96	0.5	ppbv	5.00	99.2	70-130	0.202	25
Dichlorodifluoromethane	4.65	0.5	ppbv	5.00	93.0	70-130	0.215	25
Ethyl acetate	4.88	0.5	ppbv	5.00	97.6	70-130	0.409	25
Ethylbenzene	5.14	0.5	ppbv	5.00	103	70-130	0.582	25
Heptane	4.83	0.5	ppbv	5.00	96.6	70-130	0.207	25
Hexane	4.78	0.5	ppbv	5.00	95.6	70-130	0.833	25
m+p-Xylenes	10.3	1	ppbv	10.0	103	70-130	0.777	25
Methylene chloride	4.88	1	ppbv	5.00	97.6	70-130	0.613	25
Methyl-t-butyl ether (MTBE)	4.79	0.5	ppbv	5.00	95.8	70-130	0.417	25
Naphthalene	4.32	0.5	ppbv	5.00	86.4	60-140	5.84	25
o-Xylene	5.06	0.5	ppbv	5.00	101	70-130	0.787	25
Propylene	4.75	1	ppbv	5.00	95.0	70-130	3.86	25
Styrene	5.15	0.5	ppbv	5.00	103	70-130	0.581	25
Tetrachloroethylene (PCE)	5.02	0.5	ppbv	5.00	100	70-130	0.596	25
Tetrahydrofuran	4.96	0.5	ppbv	5.00	99.2	70-130	0.607	25
Toluene	5.05	0.5	ppbv	5.00	101	70-130	1.60	25
trans-1,2-Dichloroethylene	4.71	0.5	ppbv	5.00	94.2	70-130	0.212	25
rans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00	105	70-130	0.00	25
Trichloroethylene	5.03	0.5	ppbv	5.00	101	70-130	1.60	25
Trichlorofluoromethane	4.72	0.5	ppbv	5.00	94.4	70-130	0.851	25
Vinyl acetate	4.69	0.5	ppbv	5.00	93.8	70-130	1.48	25
Vinyl bromide	4.70	0.5	ppbv	5.00	94.0	70-130	0.855	25
Vinyl chloride	4.73	0.5	ppbv	5.00	94.6	70-130	1.71	25
Surr: 4-Bromofluorobenzene	5.07		ppbv	5.00	101	70-130		

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

0.06

0.009

Vol%

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Carbon Monoxide

Purchase Order: 07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0954 - No Prep VC	OC GC Air									
Blank (BGC0954-BLK1)					Prep	pared & /	Analyzed	: 03/27/20)23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
CS (BGC0954-BS1)					Prep	pared & /	Analyzed	: 03/27/20)23	
Methane	4640	500	ppmv	5000		92.8	0-200			
Methane	4640	0.05	ppmv	5000		92.8	80-120			
Carbon dioxide	5400	500	ppmv	5000		108	0-200			
Carbon dioxide	5400	0.05	ppmv	5000		108	80-120			
Oxygen (O2)	5060	500	ppmv	5000		101	0-200			
Oxygen (O2)	5060	0.05	ppmv	5000		101	80-120			
litrogen (N2)	5300	2000	ppmv	5000		106	0-200			
Hydrogen (H2)	5910	200	ppmv	5100		116	0-200			
Hydrogen (H2)	5910	0.02	ppmv	5100		116	80-120			
Nitrogen (N2)	5300	1	ppmv	5000		106	80-120			
Carbon Monoxide	4840	10	ppmv	5000		96.8	0-200			
arbon Monoxide	4840	0.001	ppmv	5000		96.8	80-120			
uplicate (BGC0954-DUP1)		So	urce: 23C	1352-02	Prep	pared & /	Analyzed	: 03/27/20)23	
/lethane	125000	4500	ppmv		12600	00		1.28	25	
l ethane	12.5	0.45	Vol%		12.6	3		1.28	5	
Carbon dioxide	43.3	0.45	Vol%		44.3	3		2.29	5	
Carbon dioxide	433000	4500	ppmv		44300	00		2.29	25	
xygen (O2)	53000	4500	ppmv		5350	0		0.925	25	
Oxygen (O2)	5.30	0.45	Vol%		5.35	5		0.925	5	
lydrogen (H2)	91700	1800	ppmv		9180	0		0.0737	25	
Nitrogen (N2)	190000	18000	ppmv		19200	00		0.971	25	
litrogen (N2)	19.0	9.00	Vol%		19.2	2		0.971	5	
Carbon Monoxide	552	90.0	ppmv		554			0.407	25	

0.06

0.407

5

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Reporting

Date Issued: March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

RPD

Client Site I.D.: Bristol

Purchase Order:

%REC

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

		1 5									
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0954 - No Prep VC	C GC Air										
Duplicate (BGC0954-DUP2)	Source: 23C1480			1480-01	Prepared & Analyzed: 03/28/2023						
Methane	183000	4500	ppmv		1800	00		1.38	25		
Methane	18.3	0.45	Vol%		18.0)		1.38	5		
Carbon dioxide	208000	4500	ppmv		2070	00		0.499	25		
Carbon dioxide	20.8	0.45	Vol%		20.7	7		0.499	5		
Oxygen (O2)	52500	4500	ppmv		5200	0		0.938	25		
Oxygen (O2)	5.25	0.45	Vol%		5.20)		0.938	5		
Hydrogen (H2)	<	1800	ppmv		<180	00		NA	25		
Nitrogen (N2)	516000	18000	ppmv		5090	00		1.41	25		
Hydrogen (H2)	<	0.18	Vol%		<0.1	8		NA	5		
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25		
Carbon Monoxide	<	0.009	Vol%		<0.00)9		NA	5		
Ouplicate (BGC0954-DUP3)		Soi	urce: 23C	1480-02	Pre	pared & A	Analyzed	1: 03/28/20	023		
Methane	325000	4500	ppmv		3280	00		0.944	25		
Methane	32.5	0.45	Vol%		32.8	3		0.944	5		
Carbon dioxide	348000	4500	ppmv		3520	00		1.05	25		
Carbon dioxide	34.8	0.45	Vol%		35.2	2		1.05	5		
Oxygen (O2)	6030	4500	ppmv		604	0		0.0403	25		
Oxygen (O2)	0.60	0.45	Vol%		0.60)		0.0403	5		
lydrogen (H2)	76600	1800	ppmv		7750	0		1.19	25		
litrogen (N2)	156000	18000	ppmv		1570	00		1.04	25		
litrogen (N2)	15.6	9.00	Vol%		15.7	7		1.04	5		
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25		
Carbon Monoxide	<	0.009	Vol%		<0.00	09		NA	5		

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code Description		Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L	LCS recovery is outside of established acceptance limits
RPD	Relative Percent Difference
Qual	Qualifers
-RE	Denotes sample was re-analyzed
PF	Preparation Factor
MDL	Method Detection Limit
LOQ	Limit of Quantitation
ppbv	parts per billion by volume

TIC

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

ANALYTICAL		RANALYSIS							
formerly Air, Water & Soil Laboratories		OF CUSTODY	Equir	oment due 3/30/20	023				
COMPANY NAME: SCS Field Services - Harrisburg	INVOICE TO: Same		PROJECT NAME/Quote #: Bristol						
	INVOICE CONTACT:		SIT	E NAME:					
	INVOICE ADDRESS:			OJECT NUMBER:					
	NVOICE PHONE #:		P.C						
FAX #: EMAIL:	· ··	· · · · · · · · · · · · · · · · · · ·	Pre	treatment Program:					
Is sample for compliance reporting? (YES) NO Regul	atory State: VA Is	sample from a chlorir	nated supply?	YES (NO) PI	WS I.D. #:				
SAMPLER NAME (PRINT):	SAMPLER SIGNATUR	RE:	Tur	n Around Time: Cir	rcle: 10 5 Days	or	Day(s		
Matrix Codes: AA=indoor/Ambient Air SG=Soil Gas LV=Landfili/Vent Gas	OT=Other	-V		063-23B-001	14				
Regulator Info Canister Information		Sampling Start Inform	ation	Sampling Stop Inform	nation	a AN	IALYSIS		
CLIENT	LAB LAB	Barometric Pres. (in Hg	ı):	Barometric Pres. (in I		٥١	<u>a</u>		
SAMPLE I.D. Flow Cal Controller Flow ID (mL/min) Canister ID Cleanin		Start Time Start Date (24hr clock)	Initial Canister Starti Vacuum (in Sam) Hg) Temp		Final Canister Vacuum (in Hg) Canister Ending Sample Temp *F	Matrix (See C	EPA 3C Benzene I TO-15		
1) 11293 1.4 230202-		EDN'T	SAM	PLE.					
2) 37 4308 1.4 230126	T 1 (0W4)	3/23/23	DIQ NOT SAMPLE	3/23/29	omp 143	LG x	x x		
3) 5 / 12418 1.4 230202-	2 01/	3/	27 166	.43/23/ 1:89 pm	12 165	LG x	x x		
4) 4 7 14294 1.4 230126-	21.6	3/23/13 1:25 DM	27 14:	3/23/12Bpm	10 153	LG x	x x		
		CANCEL ANAL	<u> </u>	SPOSE. THANKS	5: 310				
	d ex E	Level I	ckage LAB U	20.9					
RELINQUISHED: DATE / TIME RECEIVED:		E / TIME 23 [000 Level II	- No 25		Services 2	3C13	52		
RELINQUISHED: DATE / TIME RECEIVED:				Bristol		J (13)	JE		

Level IV

Recd: 03/24/2023 Due: 03/31/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

SCS Field Services - Harrisburg, PA Client Name:

March 24, 2023 10:00 Date Received: Date Issued:

4330 Lewis Road, Suite 1

March 29, 2023 16:48

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number: [none]

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	20.90°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Analysis for sample -03: 46 not required per Tom Lock via email. MRS 03/24/213 1332

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Ma

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued:

April 6, 2023 17:34

Harrisburg, PA 17111

Project Number:

07223016.00

Submitted To: Tom Lock

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/30/2023 16:03. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

100001415

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued: April 6, 2023 17:34

Harrisburg, PA 17111

Project Number: 07223016.00

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	ple ID Laboratory ID Matrix		Date Sampled	Date Received
51	23C1681-01	Air	03/29/2023 12:25	03/30/2023 16:03
57	23C1681-02	Air	03/29/2023 12:14	03/30/2023 16:03
37	23C1681-03	Air	03/29/2023 11:59	03/30/2023 16:03

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

March 30, 2023 16:03

Issued: April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 51

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00475::15039 Canister Size: 1.4 Initial Vacuum(in Hg): 27 Final Vacuum(in Hg): 2.2

Receipt Vacuum(in Hg): 2.2

Flow Controller Type: Passive

Flow Controller ID:

Sample ID: 23C1681-01 Sample Matrix: Air

Sampled: 3/29/2023 12:25

Sample Type: LG

Volatile Organic Compounds by GC/TCD -	Unadjusted, as received basis
A1 T 44E	

•••		 ~,	
р	pmv		ALT-145

		ppiliv					Date/Time		
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst	
rbon Monoxide, as received	1430	90.0	90.0		9	1	4/3/23 11:17	MER	Ī

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis											
		Vol%		EPA 3C			Data/Time				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst			
Methane, as received	4.48	0.45	0.45		9	1	4/3/23 11:17	MER			
Carbon dioxide, as received	62.3	0.45	0.45		9	1	4/3/23 11:17	MER			
Oxygen (O2), as received	1.84	0.45	0.45	С	9	1	4/3/23 11:17	MER			
Hydrogen (H2), as received	25.8	1.62	1.62		81	1	4/3/23 14:25	MER			
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/3/23 11:17	MER			
Carbon Monoxide, as received	0.14	0.009	0.009		9	1	4/3/23 11:17	MER			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received: 4330 Lewis Road, Suite 1

April 6, 2023 17:34 Date Issued:

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: 07223016.00

Client Site I.D.: **Bristol** Purchase Order: 07-SO04485

ANALYTICAL RESULTS

Project Location:

Analyte

Carbon Monoxide, as received

Initial Vacuum(in Hg): 27

Sample Description/Location: Field Sample #: 57 Sub Description/Location:

Final Vacuum(in Hg): 4.6

Canister ID: 063-00473::15043 Sample ID: 23C1681-02 Canister Size: 1.4

Receipt Vacuum(in Hg): 4.6

March 30, 2023 16:03

Flow Controller Type: Passive

Flow Controller ID:

Sample Matrix: Air

Sampled: 3/29/2023 12:14

Sample Type: LG

Vol	atile Organi	c Compoun	ds by GC/TCD - ALT-145	Unadjusted, as received basis					
ppmv			ALI-140				Date/Time		
Result	MDL	LOQ	Flag/Qual	С	Dilution	PF	Analyzed	Analyst	
884	90.0	90.0			9	1	4/3/23 12:08	MER	•

	Vola	atile Organi	c Compou	nds by GC/TCD - Unadjusted, as received bas	is			
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	18.5	0.45	0.45		9	1	4/3/23 12:08	MER
Carbon dioxide, as received	48.2	0.45	0.45		9	1	4/3/23 12:08	MER
Oxygen (O2), as received	3.57	0.45	0.45	С	9	1	4/3/23 12:08	MER
Hydrogen (H2), as received	11.1	1.08	1.08		54	1	4/3/23 14:10	MER
Nitrogen (N2), as received	16.9	9.00	9.00		9	1	4/3/23 12:08	MER
Carbon Monoxide, as received	0.09	0.009	0.009		9	1	4/3/23 12:08	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

March 30, 2023 16:03

ate Issued: April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location: Sub Description/Location: Initial Vacuum(in Hg): 28 Final Vacuum(in Hg): 3.0

Field Sample #: 37

Canister ID: 063-00268::13370

Receipt Vacuum(in Hg): 3.0
Flow Controller Type: Passive

Sample ID: 23C1681-03 Sample Matrix: Air

Canister Size: 1.4

nnmv

Flow Controller ID:

Sampled: 3/29/2023 11:59

Sample Type: LG

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst	
arbon Monoxide, as received	167	90.0	90.0		9	1	4/3/23 13:00	MER	•

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received ba	ısis			
		Vol%		EPA 3C			-	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	12.3	0.45	0.45		9	1	4/3/23 13:00	MER
Carbon dioxide, as received	28.6	0.45	0.45		9	1	4/3/23 13:00	MER
Oxygen (O2), as received	6.13	0.45	0.45	С	9	1	4/3/23 13:00	MER
Hydrogen (H2), as received	3.07	0.18	0.18		9	1	4/3/23 13:00	MER
Nitrogen (N2), as received	43.1	9.00	9.00		9	1	4/3/23 13:00	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	4/3/23 13:00	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

SCS Field Services - Harrisburg, PA Client Name:

Date Received: 4330 Lewis Road, Suite 1

March 30, 2023 16:03 April 6, 2023 17:34 Date Issued:

07223016.00

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

> Purchase Order: 07-SO04485

Client Site I.D.: **Bristol**

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjust	ed, as received basis	Preparation Method:	No Prep VOC GC Air	
23C1681-01	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-02	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-03	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-01	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-02	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-03	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued:

April 6, 2023 17:34

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC1179 - No Prep VO	C GC Air									
Blank (BGC1179-BLK1)					Prep	pared & A	Analyzed	: 03/31/20	023	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
LCS (BGC1179-BS1)					Prep	pared &	Analyzed	: 03/31/20	023	
Methane	4740	500	ppmv	5000		94.9	0-200			
Methane	4740	0.05	ppmv	5000		94.9	80-120			
Carbon dioxide	4400	500	ppmv	5000		88.0	0-200			
Carbon dioxide	4400	0.05	ppmv	5000		88.0	80-120			
Oxygen (O2)	5150	500	ppmv	5000		103	0-200			
Oxygen (O2)	5150	0.05	ppmv	5000		103	80-120			
Hydrogen (H2)	5880	200	ppmv	5100		115	0-200			
Nitrogen (N2)	5450	2000	ppmv	5000		109	0-200			
Nitrogen (N2)	5450	1	ppmv	5000		109	80-120			
Hydrogen (H2)	5880	0.02	ppmv	5100		115	80-120			
Carbon Monoxide	4940	10	ppmv	5000		98.8	0-200			
Carbon Monoxide	4940	0.001	ppmv	5000		98.8	80-120			
Duplicate (BGC1179-DUP1)		Soi	urce: 23C	1537-01	Prep	pared &	Analyzed	: 03/31/20	023	
Methane	325000	4500	ppmv		32800	00		0.935	25	
Methane	32.5	0.45	Vol%		32.8	3		0.934	5	
Carbon dioxide	372000	4500	ppmv		37600	00		1.15	25	
Carbon dioxide	37.2	0.45	Vol%		37.6	5		1.15	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	151000	1800	ppmv		15200	00		0.704	25	
Nitrogen (N2)	10.9	9.00	Vol%		11.0)		0.809	5	
Nitrogen (N2)	109000	18000	ppmv		11000	00		0.809	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

Date Issued:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: Bristol Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC1179 - No Prep VC	OC GC Air									
Duplicate (BGC1179-DUP1)		Soi	urce: 23C	1537-01	Prep	pared & /	Analyzed	: 03/31/20	023	
Carbon Monoxide	182	90.0	ppmv		180			1.19	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02	2		1.19	5	
Duplicate (BGC1179-DUP2)		Soi	urce: 23C	1537-02	Prep	pared & /	Analyzed	: 03/31/20	023	
Methane	354000	4500	ppmv		3560			0.576	25	
Methane	35.4	0.45	Vol%		35.6	6		0.576	5	
Carbon dioxide	368000	4500	ppmv		3670	00		0.218	25	
Carbon dioxide	36.8	0.45	Vol%		36.7	,		0.218	5	
Oxygen (O2)	4500	4500	ppmv		450)		0.0320	25	
Oxygen (O2)	0.45	0.45	Vol%		0.45	5		0.0320	5	
Hydrogen (H2)	103000	1800	ppmv		1040	00		0.362	25	
Nitrogen (N2)	98700	18000	ppmv		9920	0		0.445	25	
Nitrogen (N2)	9.87	9.00	Vol%		9.92	2		0.445	5	
Carbon Monoxide	0.01	0.009	Vol%		0.01	I		3.98	5	
Carbon Monoxide	113	90.0	ppmv		118			3.98	25	
Duplicate (BGC1179-DUP3)		Soi	urce: 23C	1537-03	Prep	pared & /	Analyzed	: 03/31/20	023	
Methane	51100	4500	ppmv		4960	0		2.91	25	
Methane	5.11	0.45	Vol%		4.96	6		2.91	5	
Carbon dioxide	365000	4500	ppmv		3660	00		0.168	25	
Carbon dioxide	36.5	0.45	Vol%		36.6	3		0.168	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	656000	1800	ppmv		6540	00		0.289	25	
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5	
Carbon Monoxide	545	90.0	ppmv		545	i		0.0825	25	
Carbon Monoxide	0.05	0.009	Vol%		0.05	5		0.0825	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

- Harrisburg, PA

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Reporting

Date Issued: April 6, 2023 17:34

RPD

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

%REC

Date Received:

07223016.00

Client Site I.D.: Bristol

Purchase Order: 07-

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC1179 - No Prep VC	OC GC Air									
Duplicate (BGC1179-DUP4)		Soi	urce: 23C	1537-04	Prep	ared & A				
Methane	495000	4500	ppmv		49400	00		0.197	25	
Methane	49.5	0.45	Vol%		49.4			0.197	5	
Carbon dioxide	358000	4500	ppmv		35800	00		0.0120	25	
Carbon dioxide	35.8	0.45	Vol%		35.8			0.0119	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		< 0.45	5		NA	5	
Hydrogen (H2)	51000	1800	ppmv		5040	0		1.03	25	
Nitrogen (N2)	<	18000	ppmv		<1800	0		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00)		NA	5	
Carbon Monoxide	100	90.0	ppmv		103			2.13	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01			2.13	5	
Duplicate (BGC1179-DUP5)		Soi	urce: 23C	1681-01	Prep	ared & A	Analyzed	: 04/03/20)23	
Methane	44500	4500	ppmv		4480	0		0.529	25	
Methane	4.45	0.45	Vol%		4.48			0.529	5	
Carbon dioxide	61.7	0.45	Vol%		62.3			0.827	5	
Carbon dioxide	617000	4500	ppmv		62300	00		0.827	25	
Oxygen (O2)	1.82	0.45	Vol%		1.84			0.913	5	
Oxygen (O2)	18200	4500	ppmv		1840	0		0.913	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00)		NA	5	
Nitrogen (N2)	62700	18000	ppmv		6350	0		1.24	25	
Hydrogen (H2)	261000	1800	ppmv		26400	00		0.954	25	
Carbon Monoxide	1420	90.0	ppmv		1430)		0.785	25	
Carbon Monoxide	0.14	0.009	Vol%		0.14			0.785	5	
Duplicate (BGC1179-DUP6)		Soi	urce: 23C	1681-02	Prep	ared & A	Analyzed	: 04/03/20)23	
Methane	185000	4500	ppmv		18500	00		0.0304	25	
Methane	18.5	0.45	Vol%		18.5			0.0304	5	
Carbon dioxide	484000	4500	ppmv		48200	00		0.269	25	
Carbon dioxide	48.4	0.45	Vol%		48.2			0.269	5	
Oxygen (O2)	35800	4500	ppmv		3570	0		0.0408	25	
Oxygen (O2)	3.58	0.45	Vol%		3.57			0.0408	5	
Hydrogen (H2)	119000	1800	ppmv		11900	0		0.0497	25	
Nitrogen (N2)	168000	18000	ppmv		16900	00		0.0671	25	
Nitrogen (N2)	16.8	9.00	Vol%		16.9			0.0671	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued:

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

Duplicate (BGC1179-DUP6)		Soi	urce: 23C1681-02	Prepared & A	nalyzed: 04/03/202	23
Carbon Monoxide	890	90.0	ppmv	884	0.629	25
Carbon Monoxide	0.09	0.009	Vol%	0.09	0.629	5
Duplicate (BGC1179-DUP7)		Soi	urce: 23C1681-03	Prepared & A	nalyzed: 04/03/202	23
Methane	12.3	0.45	Vol%	12.3	0.00188	5
Methane	123000	4500	ppmv	123000	0.00187	25
Carbon dioxide	284000	4500	ppmv	286000	0.721	25
Carbon dioxide	28.4	0.45	Vol%	28.6	0.721	5
Oxygen (O2)	60900	4500	ppmv	61300	0.625	25
Oxygen (O2)	6.09	0.45	Vol%	6.13	0.625	5
Hydrogen (H2)	30700	1800	ppmv	30700	0.201	25
Nitrogen (N2)	429000	18000	ppmv	431000	0.466	25
Nitrogen (N2)	42.9	9.00	Vol%	43.1	0.466	5
Hydrogen (H2)	3.07	0.18	Vol%	3.07	0.201	5
Carbon Monoxide	166	90.0	ppmv	167	0.216	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	0.216	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued:

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

C Continuing calibration verification response for this analyte is outside specifications.

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10%

of the absolute.

AIR ANALYSIS

CHAIN OF CHETODY

Equipment due 4/11/2023

Page 2 of 2

	-					_		CHAIN	UF CUS	IODI		quipiii	ent aue	4/11/20	20			ay	<u> </u>	01 2
CON	MPANY NAME:	SCS Field	l Servi	ces - Harri	sbu	rg IN\	INVOICE TO: Same						PROJECT NAME/Quote #: Bristol							
COI	NTACT:					IN\	INVOICE CONTACT:						SITE NAME:							
ADE	RESS:					IN\	INVOICE ADDRESS:						PROJECT NUMBER: 077236/6,00							
PHO	ONE #:					IN\	INVOICE PHONE #:						P.O. #:							
FAX	(#:			EM	IAIL	•						Pretreatment Program:								
ls sa	ample for comp	liance rep	orting?	(YES) NO		Regulato	ory State:	VA Iss	sample fro	m a chlorir	nated sup	ply?	YES (N	D PW	/S I.D. #:					
SAN	IPLER NAME (PRINT): (, 209an	Culha	ine	SA	SAMPLER SIGNATURE:						Turn Around Time: Circle: 10 5 Days or _ Day(s)							Day(s)
Matri	x Codes: AA=Indoo	/Ambient Air	SG=Soil	Gas LV=Land	fill/V	ent Gas OT:	=Other					063	-23C-0004	4						
		Regulator	nfo	Canister In	form	ation							Sampling	Stop Inform	nation		les)	AN	ALY	'SIS
	CLIENT						LAB	LAB	Barometric Pres. (in Hg):				Barometric	Pres. (in H	g):		1 81			3
	SAMPLE I.D.	Flow Cal Controller Flow ID (mL/min) Cal	Canister ID	ster ID	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time	Initial Canister Vacuum (ir Hg)	Starting Sample Temp *F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp *F	Matrix (See	Alt 145 CO	30	HYORAEN	
1)	51			15039	1.4	230307-01	20	2.2	3/29/23	12:23 pm	21	169.3	3/29/13	12:25 pm	9	169.8				χ
2)	57			15043	1.4	230307-01	20	4.6	3/19	1212 em @1	U	The state of the s	3/29/23	12:14 PM	9	157.	LG	x	x	χ
3)	37			13370	1.4	230307-01	20	3.0	3/29	11:54	78	ط 150	3/27/23	11:59	10	8	LG	x	x	X
4)																				
			•				•	·	-		310	noice	nos	rai 2	1.00					
(RELI	NOUISHED:	- 3. lex		4:1500 E / TIME	1 REC	EIVED:	DATE / TIME QC Data Package LAB USE C Level II						S Field Services 23C1681							
											Ì									

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued: Ap

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	21.00°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Attachment 4

Daily Logs

SCS FIELD SERVICES

DAILY LOG

JOB NO. 072	07223016.00		O. 0000	DATE	3.2.2	2023	PRO NAM	ROJECT AME BRISTOL					
TEMP 60		WEATH	ER overd	R overcast		29.8	84 WI		IND 7mph NE				
SCS-FS L	ABOR	HOURS	ОТ						HOUF	RS	OT		
Ryan Seymou	r	9											
Logan Culhane		9											
							DAILY TOTA	۸L	18				
EQUIP, SVC	S, , MLG	QTY	UNITS							ſ	UNITS		
GEM 5	000	2	Day			MX4			4		Day		
Truc	k	2	Day		G	enerat	or		1		Day		
INSTRUME	NT CALIBRA	TION (CAL. GA	S)	CH4	CH4		02 LOW CALI			2			
MOE	EL	S/N	(0	%-VOL)	(%-LEL)		%-VOL)		CO2 (%-VOL)		H2S (PPM)		
5000		500399		50		2		35					
OLIMANA DV		 on site for month	ly monitoring	and blower	flare chec	l _r							
SUMMARY		ed my gem. I bui			naie chec	Λ.							
Diaman					DAL 00	00/	1/40-	04.5		FI O	AL 220 DOEM		
Blower reading				2: 4.6%	BAL: 28.8% BAL: 41.3%		VAC:		FLOW: 336 SCFM FLOW: 336 SCFM				
221 reading: 0	7H4: 28.5%	CO2: 20.	3% O	2: 9.9%	BAL: 41.	3%	VAC: -24	1.52	FLOW	V: 336 S	SCFIM		
Today we mor	nitored the re	st of the quarry.	The usual e	yceedance w	vas 37 at 1	49 dec	Irees						
		es so we did not						ler 14	.5				
Shipped off sa			porioriii a oc	ampio for oid	1101 11011 50	<u>ouuoo</u>	arey were are	<u> </u>					
Also shipped	•												
••	•												
Prepared b Ryan Seyn			ACC	EPTED BY	′ :								

I understand that when performing a one person job assignment, I am acting as my own supervisor.

SCS FIELD SERVICES

Prepared by:

DAILY LOG

JOB NO. 0722	3016.00	TASK N	O . 00001		DATE	3/7/2		OJECT ME BRIS	TOL		
TEMP 55		WEATH	ER Clear		B.P.	30.0	4 WIN	ND 11 S	SE		
SCS-FS LA	BOR	HOURS	OT					HOURS	ОТ		
Ryan Seymour		8									
Billy Bellew											
Logan Culhane		8									
Zack Barton							DAILY TOTAL	16			
EQUIP, SVCS,	, MLG	QTY	UNITS					QTY	UNITS		
GEM 500	00	2	Day			MX4		4	Day		
Truck		2	Day		Ge	nerato	or	1	Day		
		ATION (CAL. GA	- 	H4	CH4		02 LOW CALE	CO2	1100 (DD14)		
MODE		S/N	,	-VOL)	(%-LEI	L)	%-VOL)	(%-VOL)	H2S (PPM)		
5000)	500399		50			20.9	35			
	Blower/fla	are check. Tune 2	221 wellfield. S	Start 588 w	rellfield tunir	ng. We	eld 2" cap on open	J trap below nor	thside cleanouts.		
SUMMARY	Break do	wn and clean usa	able fittings. U	pdate GEN	/I comments	and v	vellhead sizes				
Blower reading:	CH4: 35.9	% CO2: 34%	% O2:	4.1%	BAL: 26%		VAC: 24.58	FLOW: 270 SCFM			
221 reading:	CH4: 25.5	% CO2: 18.9	9% O2:	10.6%	BAL: 45	%	VAC: 24.43	FLOW: 270 S	CFM		

ACCEPTED BY:

I understand that when performing a one person job assignment, I am acting as my own supervisor.

SCS FIELD SERVICES

DAILY LOG

JOB NO.	072230)16.00	TASK N	Ο.	00001		DATE	3.8.	23	PRO NA	OJECT Me br	RISTO	L	
TEMP	37		WEATH	ER	clear		B.P.	30.0)7	WIN	ND 5 r	nph S	W	
SCS-FS LABOR			HOURS		ОТ						HOURS		OT	
Ryan Se	eymour		8											
Logan C	Calhane		8											
								DAIL		OTAL	16			
EQUI	P, SVCS, , M	/ILG	QTY	l	JNITS								UNITS	
	SEM 5000		2	Day		MX4					4		Day	
	Truck		2	Day		Generator					1		Day	
INSTRUMENT CALIBE			TION (CAL. GAS)		CH4 (%-VOL)		CH (%-L		02 LOW CALE %-VOL)		CO2 (%-VOL)		H2S (PPM)	
	5000		500399		50		(**	20.		•	35		- ()	
SUMMA			on site for monthly monitoring and blower flare check.											
		l calibrate	ed my gem. I bu	np te	sted Mx4.									
Blower r	reading: C	H4: 34.5°	% CO2: 31.	7%	02: 4	1.3%	BAL: 29	0.5%	V	AC: -24.4	14 F	LOW:	0 SCFM	
221 read	ding: CH4:	24.3%	CO2: 19.	0%	02: 1	10.7%	BAL: 4	6.0%	VA	C: -24.35	FLOW:	0 SCF	M	
We are	investigati	ng why th	ne flow is zero a	t the f	lare. We h	ave a ver	y small fla	ame co	ming out o	f the flare	9.			
Billy and	d Zack are	looking i	nto the sumps in	the o	quarry.									
While m	onitoring t	he 588 w	ve lost vacuum to	12 v	vells in the	south sic	de.							
			utterfly valve by											
			the flare having			orning is	because	of that v	valve being	g closed	by GW 61.			
			est port. (not rep		• /									
			g the 588 becau	se we	had to inv	vestigate	pressure.							
	all to make	•												
54 and 55 need new temperature test port. 55 needs a new well head														
Blower r	reading fin	ish: CH4	: 35.9% CC)2: 37	7.5%	O2: 4.1%	<u>′6</u>	BAL: 2	22.5%	VAC:	-24.48 F	LOW:	450 SCFM	
	Prepared by: ACCEPTED BY: Ryan Seymour													

I understand that when performing a one person job assignment, I am acting as my own supervisor.

DAILY LOG

JOB NO.	07223016.00	TASK N	O	00001		DATE	3.9.2		OJECT ME B	RISTO	DL	
TEMP	57	WEATH	ER	clear		B.P.	30.2	7 W I	ND 3	mph S	SW	
SCS-	FS LABOR	HOURS		OT					HOURS		OT	
Ryan Sey	mour	8										
Logan Cu	ulhane	8										
								DAILY TOTAL	16			
EQUIP,	, SVCS, , MLG	QTY	UI	NITS					QTY		UNITS	
GE	EM 5000	2		Day			MX4		4		Day	
	Truck	2		Day		G	enerato	or	1		Day	
	UMENT CALIBRA MODEL	S/N	S)	CH (%-V	OL)	CH (%-L		02 LOW CALE %-VOL)	CO2 (%-VOL	_)	H2S (PPM)	
	5000	500399		50)			20.9	35			
									<u> </u>			
SUMMA	I calibrat	on site for month	np tes	ted Mx4.				VAQ.	04.50	FI	OW 205 005M	
	eading: CH4: 30				2: 6.6%		: 33.4%		-24.52		OW: 335 SCFM	
	ing: CH4: 25.7% tored the rest of t		8%	02:1	11.1%	BAL: 4	14.5%	VAC: -24.4	42 F	LOW:	335 SCFM	
	as the only excee		grees									
			adjustı	ment and	brought	the tempe	rature c	lown to 144.8 deg	rees			
	eeds new exhaus eeds a new flex h											
	eeds updated sar											
107	e (1 (1)	-00 14		1.0	1 0)4/	04 1		00			
	ook the new colle							that seemed to so	live the O2 p	roblem.	•	
	econvene tomorro			Juuiii 30 l	no leak R	3 301110WII	ore on t	nat iino.				
Prepare Ryan S	ed by: Seymour		A	ACCEP	TED BY	′ :						

Logan Culhane

DAILY LOG

JOB NO.	0722	3016.00	TASK	10.	00001		DATE	3/16	/23	PRO NAM	JECT E BRIS ⁻	ΓOL	
TEMP			WEATH	IER			B.P.			WINI)		
SCS	-FS LA	BOR	HOURS		OT						HOURS	ОТ	
Logan C	ulhane		8										
Billy Bell	ew												
Ryan Se	ymour												
Zack Ba	rton								DAILY TOTA	۸L			
EQUIF	P, SVCS,	, MLG	QTY	ι	JNITS						QTY	UNITS	
G	EM 500	0	2		Day			MX4			4	Day	
	Truck 2		2		Day		G	enerato	or		1	Day	
INSTRUMENT CALIBRATION (CA		ATION (CAL. GA	NS)	CH (%-V		CH- (%-LE		02 LOW CALE %-VOL)		CO2 (%-VOL)	H2S (PPM)		
	5000		500399		50	,	(70 LI	- - /	20.9		35	1120 (11111)	
SUMMA	\RY			•					@ GW29. Wal	Ikthrou	ıgh 588 bumpin	g pumps and gathe	ring
		notes fo	r the 3pm call. 3	om ca	ll. Finish b	uilding ID	set for En	vision.					
Blower r	eading:	CH4: %	CO2: %	02:	% E	BAL: %	VAC	:	FLOW: SCFM	M			
221 read	ding:	CH4: %	CO2: %	02:	% E	BAL: %	VAC	:	FLOW: SCFM	M			
Prepa	red by	:			ACCEP ¹	TED BY	' :						

DAILY LOG

JOB NO. 0722	3016.00	TASK N	O 0	00001		DATE	3/20		OJECT ME BRIST	OL	
TEMP		WEATH	ER			B.P.		WIN	ND		
SCS-FS LA	BOR	HOURS	С)T					HOURS	OT	
Logan Culhane		5									
Billy Bellew											
Ryan Seymour											
Zac Barton		5						DAILY TOTAL	10		
EQUIP, SVCS	, , MLG	QTY	UN	IITS					QTY	UNITS	
GEM 50	00	2	D	ay			MX4		4	Day	
Truck	Truck 2 Day					G	enerato	or	1	Day	
INSTRUMENT CALIBRATION (CAL. GAS MODEL S/N				CH (%-V		CH (%-Ll		02 LOW CALE %-VOL)	CO2 (%-VOL)	H2S (PPM)	
5000		500399		50 50	,	(/0-Li	LL)	20.9	35	1120 (1 1 111)	
0000	,	000000			,			20.5	00		
SUMMARY	Blower/fla	are check. Bump	test mx	4s. High	02 at fla	re. Replac	e 1.75	orifice plates with	1.25 at side slope	wells 1L, 2L, and 2	U.
	Flare rec	heck shows 02 in	mprove	ment. Mo	ore inves	tigation ne	eded to	dial in 02. Gather	and move equipr	nent and parts dow	n to
Blower reading:	: CH4: %	CO2: %	O2: %	ь Е	BAL: %	VAC) :	FLOW: SCFM			
221 reading:	CH4: %	CO2: %	O2: %	ь Е	BAL: %	VAC):	FLOW: SCFM			
shed in anticipa	tion of con	nex arriving. Mee	t with a	ınd arran	ge place	ment of re	stroom	facility with contra	ctor. Unload Grain	nger shipment.	
Prepared by Logan Culha			А	CCEPT	ΓED BY	′ :					

DAILY LOG

JOB NO. 072	223016.00	TASK N	O. 000	02	DATE 3/20		DJECT ME BRIS	TOL	
TEMP		WEATH	ER		B.P.	WIN	ID		
SCS-FS L	_ABOR	HOURS	OT				HOURS	OT	
Logan Culhar	ne	3							
Billy Bellew									
Ryan Seymou	ır								
Zac Barton		3				DAILY TOTAL			
EQUIP, SVC	S, , MLG	QTY	UNITS	,			QTY	UNITS	
GEM 5	0000	2	Day		MX4		4	Day	
Truc	k	2	Day		Generat	or	1	Day	
INSTRUMENT CALIBRATION (CAL. GAS) MODEL S/N			S)	CH4 (%-VOL)	CH4 (%-LEL)	02 LOW CALE %-VOL)	CO2 (%-VOL)	H2S (PPM)	
50		500399		50	(10 ===)	20.9	35	(*****)	
•••••	Tara i	25 DOL 1		. 500 14			0, 1, 1, 1,		
SUMMARY		•						overed outside conn	
	Isolate v	vith poly valve an	d bleed off	588. Make c	cut. Blow out block	age using air pressi	ure controlled by	poly valve. Gather	material
and fuse line.	Repressuriz	ze line. Pickup wo	rk area.						
Prepared I Logan Cul	•		ACC	EPTED B	Y:				

DAILY LOG

JOB NO.	0722	3016.00	TASK	NO.	00001		DATE	3/21	/2023	PRO.		BRIST	OL	
TEMP	49		WEATI	HER	Clear		B.P.	30.4	1	WINE)	2 NE		
SCS	-FS LA	BOR	HOURS		OT						HOL	JRS	OT	
Logan C	ulhane		8											
Billy Bell	ew													
Ryan Se	ymour													
Zac Bart	on								DAILY TOT	AL				
EQUIF	P, SVCS,	, MLG	QTY	Į	JNITS						Q	ГΥ	UNITS	
G	EM 500	00	2		Day			MX4			4	1	Day	
	Truck		2 Day Generator							1	1	Day		
INSTR			CH4 CH4 CH4 CH4 CH4 CH4 LOW CALE							CC	_			
	MODE	L	S/N		,	•	(%-LI	EL)	%-VOL	_)	(%-\	,	H2S (PPM)	
	Envision	on	ENV23022	61B	50)			11		3	5		
SUMMA	NDV	Blower/fla	are check CAD	and hi	owor/flaro	mobile fo	orme Coor	dinato	conney dron	off Wa	lkthroug	ah 588 E	Bump and check pu	mne
SUIVIIVIA	AIX I		SW58, GW50, a						-					iiips.
					<u> </u>									
Blower re	eading:	CH4: 28.0	9% CO2: 3	4.66%	02	2: 6.4%	BAL:	30.85%	VAC	C: 24.57	F	LOW: 77	0 SCFM	
221 read	ling:	CH4: %	CO2: %	02:	% E	BAL: %	VAC) :	FLOW: SCF	M				
Wellhead	d repair	s @ GW38	and GW48. W	ellhead	d and pum	p head re	epairs @ G	W66. C	Conversation	s with g	as plan	t regardii	ng start up.	
Prepa Logan	•				ACCEP ⁻	TED BY	/ :							

Logan Culhane

DAILY LOG

JOB NO.	07223	016.00	TASK N				PRO.		BRIST	OL				
TEMP	58		WEATH	ER	Cloudy		B.P.	30.1	6	WIND)	6 NE		
SCS	-FS LAB	OR	HOURS		OT						HOL	JRS	OT	
Logan C	ulhane	8	3											
Billy Bell	ew													
Ryan Se	ymour													
Zac Bart	on								DAILY TOTA	AL				
EQUIF	P, SVCS, ,	MLG	QTY	ι	JNITS						Q1	ΓΥ	UNITS	
G	EM 5000)	2		Day			MX4			4		Day	
	Truck		2 IDDATION (CAL CAS)		Day		G	enerato	r		1		Day	
INSTR	RUMENT	T CALIBRATION (CAL. GAS)		S)	СН	14	СН	4	02 LOW CAL	F	CC	72		
	MODEL S/N			(%-V		(%-LI		%-VOL		(%-V		H2S (PPM)		
	Envision	1	ENV230226	1B	50)			11		3	5		
011111111	\D\(DI/0	- de de Deser	1 1 -		C - I - I	l' ' . 	0.0		.00.0-	P t-		2-1-620	L C
SUMMA			•										isolation with cons	struction
		crew. Burr	np and backflus	1 GW	157 and GV	/V58. Pun	nps now p	umping	. Drop oπ sar	npies a	t Fedex	c. 3pm ca	3II. 	
Blower r	eading: C	CH4: 30.31	% CO2: 32	.84%	02	: 5.41%	BA	L: 31.44	1% V/	AC: 24.	64	FLOW:	328 SCFM	
221 read	ding: C	CH4: 21.33	% CO2: 16	.78%	02	: 11.87%	BA	L: 50.02	2% V/	AC: 24.	55	FLOW:	328 SCFM	
Prepa	red by:				ACCEPT	TED BY	′ :							

DAILY LOG

JOB NO. 0722	23016.00	TASK N	Ο	00001		DATE	3/24/		ROJECT AME	BRIST	ΓOL	
TEMP		WEATH	ER			B.P.		W	IND			
SCS-FS LA	ABOR	HOURS		ОТ					НОІ	JRS	OT	
Logan Culhane		8										
Billy Bellew												
Ryan Seymour												
Zac Barton								DAILY TOTAL				
EQUIP, SVCS	, , MLG	QTY	U	NITS					Q ⁻	TY	UNITS	
GEM 50	00	2	[Day		N	MX4		4	4	Day	
Truck		2	[Day		Gei	nerato	r	,	1	Day	
INSTRUMEN	S)	CH		CH4	,	02 LOW CALE	_	02	LIGO (DDM)			
MODE		S/N	45	(%-V		(%-LEL	-)	%-VOL)	(%-\		H2S (PPM)	
Envisi	on	ENV230226	1B	50)			11	3	5		
SUMMARY	Blower/fla	re check. Take	/alve r	neasurem	ents at fl	are for Mike	. Mee	t with Austin and	review tru	ck and n	nonthly equipment I	ogs.
	Install pu	mp @ EW54. Pı	ımp le	ngth 69'.	Counter 7	#0106317. F	Pumpir	ng. Liquid level o	f EW54 wa	as 27.7'.	Added kanaflex cla	mps.
Blower reading	: CH4: 31%	CO2: 31.3	3%	O2: 5	5.5%	BAL: 32.	2%	VAC: 24.6	5 FLC	W: 700	SCFM	
221 reading:	CH4: 20.9	% CO2: 18.	3%	02: 1	1.9%	BAL: 48.	4%	VAC: 24.6	2 FLC	W: 700	SCFM	
Pressure wash	UTV. Coord	dinate plans with	const	ruction cr	ew and g	as plant reg	arding	future lateral wo	ork. Pickup	Envsion	shipment.	
Safety and hara	assment trai	ining. Set up cor	nbinati	ion locks f	for conne	x and storag	ge she	d.				
Prepared by Logan Culh	,		,	ACCEP ⁻	TED BY	/ :						

Logan Culhane

DAILY LOG

JOB NO.	07223	3016.00	TASK N	Ο.	00001		DATE	3/27	/2023	PROJ NAMI		BRIST	OL	
TEMP	55		WEATH	ER	Cloudy		B.P.	29.9	0	WIND)	5 NE		
SCS	-FS LA	BOR	HOURS		OT						HOL	JRS	OT	
Logan C	ulhane		8											
Billy Bell	ew													
Ryan Se	ymour													
Zac Bart	on								DAILY TOTA	٩L				
EQUIF	P, SVCS,	, MLG	QTY	ι	JNITS						Q1	ΓΥ	UNITS	
G	EM 500	0	2		Day			MX4			4		Day	
	Truck		2		Day		G	enerato	or		1		Day	
INSTR	UMENT	CALIBRATION (CAL. GAS)				02 LOW CAL	F	CC	12					
	INSTRUMENT CALIBRATION (CAL. GAS) MODEL S/N				(%-V		(%-LF		%-VOL		(%-V		H2S (PPM)	
	Envisio	n	ENV230226	1B	50)			11		3	5		
	- · · · · ·	D1 /6			4 5: 1			01	CII.				004 0040 (
SUMMA	\RY 		•			•		`		•			221. GW8 fernco	
		blown off.	Secure fernco	conne	ection to we	ell. Meet	with Reco	very dri	lling to discus	ss shipn	nents a	nd timeli	nes.	
Blower r	eading:	CH4: 29.27	'% CO2: 27	.64%	02	2: 7.08%	ВА	L: 36.0	1% V	AC: 24.	59	FLOW:	230 SCFM	
221 read	ling:	CH4: 20.83	3% CO2: 18	.39%	02	2: 13.09%	BA	L: 47.6	9% V	AC: 24.4	49	FLOW:	230 SCFM	
Convers	ation wi	th Mike Maı	rtin regarding Pu	ımpC	ne order p	rogress.	CAP and I	blower	mobile forms.	. Build n	new tri t	ubing for	GW 51 @ 88'.	
Pull old p	oump ar	nd tri tubing	. Drop new pum	p and	d tri tubing.	. Pumping	g. Counter	#0244	985.					
Prepa	red by:	:			ACCEP ⁻	TED BY	′ :							

DAILY LOG

JOB NO. <u>0722</u>	23016.00	TASK N	O. 00001		DATE	3/28		OJECT ME BRIS	TOL				
TEMP 46		WEATH	ER Cloud	/	B.P.	30.1	5 W I	ND 4 SV	V				
SCS-FS LA	ABOR	HOURS	ОТ					HOURS	OT				
Logan Culhane)	8											
Billy Bellew		8											
Ryan Seymour		8											
Zac Barton		8					DAILY TOTAL	32					
EQUIP, SVCS	, , MLG	QTY	UNITS					QTY	UNITS				
GEM 50	00	2	Day			MX4		4	Day				
Truck		2	Day		G	enerato	or	1	Day				
INSTRUMEN	IT CALIBRA	TION (CAL. GA	S) (CH4	CH ₄	4	02 LOW CALE	CO2					
MOD	EL	S/N		-VOL)	(%-LE		%-VOL)	(%-VOL)	H2S (PPM)				
Envisi	on	ENV230226	11	35									
SUMMARY Blower/flare check. Bump test mx4s. 588 wellfield readings. 3 samples needed GW59, GW57, and GW37. Walkthrough 221 to													
SUIVIIVIANT	Blower/flare check. Bump test mx4s. 588 wellfield readings. 3 samples needed GW59, GW57, and GW37. Walkthrough 221 to ensure no wellheads were blown off. Investigate North and South side cleanouts for possible 02 intrusions. Drop off truck for oil												
				-					adings. Need confi				
		re decommissio											
Blower reading	: CH4: 28.38	3% CO2: 37	.47% (02: 6.93%	BA	L: 27.2	2% VAC:	24.68 FLOW	/: 700 SCFM				
221 reading:	CH4: 20.15	5% CO2: 22	.90%)2: 13.42%	6 BA	L: 43.5	3% VAC:	24.49 FLOW	/: 700 SCFM				
No vacuum @	GW29, GW3	32, and GW32R.	. Possible val	e closed d	due to cons	truction	below GW34. W	ill confirm and att	empt to restore.				
GW59 backflus	hed pump a	nd adjusted cou	ınter. Now pui	nping. Cou	unter #1366	008							
GW57 air line v	vas disconne	ected. Connect _l	oump and turi	on. Now p	pumping. C	ounter	#0224500						
HC01 drop orifi	ce plate fron	n 1.0 to 0.75											
GW54 bump po	ump and inc	rease air pressu	re. Now pump	oing. Count	ter #01526	97							
GW35 tape lea		•											
				flush pump	p and incre	ase air	pressure. Now po	umping. Adjusted	counter. Counter #	0256814			
		ımping. Counter											
	GW49 foam blowing out of exhaust. Pump shut down GW50 bump pump. Now pumping. Counter #0839985.												
	GW61 bump pump. Now pumping. Counter #0212104 GW65 bump and backflush pump. Foam blowing out of exhaust. Pump shut down.												
Blower reading		•)2:6.05%	•	.:25.11	% VAC: 2	5.05 FI.O.W:	740 SCFM				
221 reading:	CH4: 20.42)2:12.91%		.: 42.16			740 SCFM				
	3 20.12	2,0	.5170				77.O. L	0 1 2011					

DAILY LOG

Prepared by:	ACCEPTED BY:	
Logan Culhane	<u>-</u>	

Logan Culhane

DAILY LOG

JOB NO.	07223016.0	0 TASK 1	10.	00001		DATE	3/29/		OJEC	r BRIST	ΓOL	
TEMP	36	WEATH	IER	Cloudy		B.P.	30.29	9 W I	ND	2 S		
SCS	S-FS LABOR	HOURS		ОТ					Н	OURS	ОТ	
Logan C	ulhane	8										
Billy Bell	lew	8										
Ryan Se	ymour	8										
Zac Bart	ton	8						DAILY TOTAL	32			
EQUIF	P, SVCS, , MLG	QTY	ι	JNITS						QTY	UNITS	
G	SEM 5000	2		Day			MX4			4	Day	
	Truck	2		Day		G	enerato	r		1	Day	
INSTR	RUMENT CALIE	ALIBRATION (CAL. GAS) CH4 CH4 CH4 LOW CAL								CO2		
	MODEL	S/N		(%-V		(%-L		%-VOL)		5-VOL)	H2S (PPM)	
	Envision	ENV23022	61B	50)			11		35		
	ADV DI-	y/Garage da a la Dansa	11	4. 0	C				1	P		
SUMMA		r/flare check. Bump						<u> </u>	·	<u> </u>	• •	•
	equip	ment logs. Expans	on joil	nt liange b	oits wiggi	lea out iro	n nare.	Reinstall usable t	DOILS. CI	ut all thread	u doits to 11t missin	g spots.
Blower re	eading: CH4: 2	7.61% CO2: 3	5.81%	02	2: 6.42%	BA	L: 30.16	6% VAC: 2	24.50	FLOW:	330 SCFM	
221 read	ding: CH4: 2	0.06% CO2: 1	7.83%	02	2: 13.37%	BA	L: 48.74	1% VAC: 2	24.24	FLOW:	330 SCFM	
	Review maps. Open isolation valve between GW64 and GW34 more to restore vacuum @ GW29 and GW32R. Finish 588 readings. Gas samples											
	on GW37, GW51, and GW57. Fill out chain of custody and box up samples. Ship at FedEx. Bump and check pumps.											
Build nev	w tri tubing and	drop pump @ GW	60. Co	ounter #01	63945							
		nd tri tubing to be d										
Blower re	eading: CH4: 3	0.09% CO2: 3	2.14%	02	2: 4.81%	BAL	: 32.969			FLOW: 8	360 SCFM	
221 read	ding: CH4: 2	0.99% CO2: 1	7.40%	02	2: 10.54%	BAL	: 51.079	% VAC: 24	1.77	FLOW: 8	B60 SCFM	
Prepai	Prepared by: ACCEPTED BY:											

DAILY LOG

JOB NO.	07223016.00	TASK N	Ю.	00001		DATE	3/30	/2023 PR	OJECT ME	BRIST	OL	
TEMP	37	WEATH	ER	Clear		B.P.	30.3	2 WIN	ND	3 W		
SCS-	FS LABOR	HOURS		ОТ					HOUF	RS	OT	
Logan Cu	ulhane	8										
Billy Belle	€W											
Ryan Sey	ymour	8										
Zac Barto	on	<u>8</u>						DAILY TOTAL	<u>24</u>			
EQUIP,	, SVCS, , MLG	QTY	U	INITS					QT	ſ	UNITS	
GE	EM 5000	2		Day			MX4		4		Day	
	Truck	2		Day		G	enerato	or	1		Day	
	INSTRUMENT CALIBRATION (CAL. GAS) CH4 MODEL S/N (%-VO						4	02 LOW CALE	CO		LIOO (DDM)	
	MODEL S/N					(%-L	EL)	%-VOL)	(%-VC		H2S (PPM)	
	Envision ENV2302261)			11	35			
SUMMA	RY Blower r	eading: CH4: 26.	26%	CO2: 2	28.92%	02:	6.94%	BAL: 37.88%	6 V	AC: 24.	55 FLOW: 42	0SCFM
	221 read	•			20.20%		12.16%			AC: 24.		
Blower/fla	are check. Bump	test mx4s. Conv	ersatio	on with Bra	andon reg	arding ab	andonn	nent points and pla	ans related	to drillir	ng and new infrastr	ructure
	•	der and organize				-						
GW52 ins	stall pump and re	eplace flex hose.										
GW62 pu	ıll and swap pum	ıp										
Finish rep	nish replacing bolts and washers @ blower. Pick up work area. 3pm weekly call											
Blower re	eading: CH4: %	CO2: %	02:	% E	BAL: %	VAC):	FLOW: SCFM				
221 readi	ing: CH4: %	CO2: %	02:	% E	BAL: %	VAC): 	FLOW: SCFM				
Prepar Logan	ed by: Culhane			ACCEP [.]	TED BY	:				<u> </u>		

Appendix C

Semi-Monthly Temperature Update Memos

Environmental Consulting & Contracting

SCS ENGINEERS

April 10, 2023 File No. 02218208.04

MEMORANDUM

TO: Kristin Hall, EPA Region III Tracy Blalock, VDEQ-SWRO

FROM: D. Brandon King, SCS Engineers
Quinn Bernier, SCS Engineers

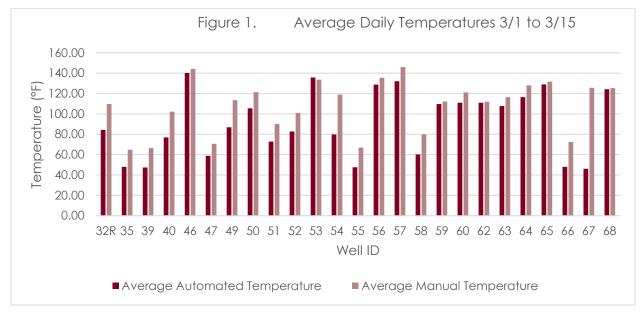
SUBJECT: Semi-Monthly Status Update – March 1st through March 15th, 2023 Bristol Integrated Waste Management Facility, Bristol, Virginia

SCS is submitting this semi-monthly status update to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21. Accordingly, this memo is a summary of temperature monitoring activities as well as work accomplished during the semi-monthly monitoring period of 3/1/23 through 3/15/23.

TEMPERATURE MONITORING

Automated Wellhead Temperature Measurements

Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. VDEQ and USEPA have been receiving Daily Gas Well Temperature Reports with data from these automated temperature sensors since 12/1/22.


During the period of monitoring described in this memorandum, all 25 wellheads now have 2-inch automated sensors. SCS believes that the new 2-inch sensors measure temperature with more accuracy than the 1-inch sensors that were used in the majority of the 25 wells prior to March 1.

SCS reviewed the automated hourly temperature measurements from 3/1/23 to 3/15/23, and identified the following trends:

- Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at GW-46, GW-53 and GW-57. At GW-53, these instances were sporadic. Temperatures greater than 145°F persisted for approximately three days (3/13-3/15) at GW-57, but at GW-46 temperatures at or around 145°F throughout the monitoring period.
- Error at GW-67: Because negative temperatures were recorded for approximately 8 days of this reporting period, SCS assumes there was an error in the wellhead's new 2-inch temperature sensor. This skews the data in Figure 1, but appears to be resolved as of 3/10/23.

• Temperature Trends by Location: As shown in Figure 1, the wells with the highest average temperatures were GW-46, GW-53, GW-56, and GW-57. Only GW-46 and GW-53 are located in close proximity, however all of these wells are in the southern portion of the landfill.

Manual Daily Temperature Monitoring

Manual temperature measurements are being made daily by field staff with a GEM5000 or equivalent LFG analyzer. The manual measurements are used to verify the automated wellhead temperature sensors and to provide temperature data for the 13 wellheads without automated sensors.

Comparing the difference between manual temperature measurements and automated temperature measurements in Figure 2, the new 2-inch sensors appear to have improved correlation in some wells, but not in others. At wells with little correlation between measurement methods, SCS suspects errors similar to those in the automated sensor at GW-67. SCS also reviewed LFG flow data to assess the effect of low LFG flow on correlation between manual and automated temperature measurements, but did not notice any correlation. A list of wells with a temperature difference of greater than $\pm 10^{\circ}$ F has been sent to field staff to check for any physical causes.

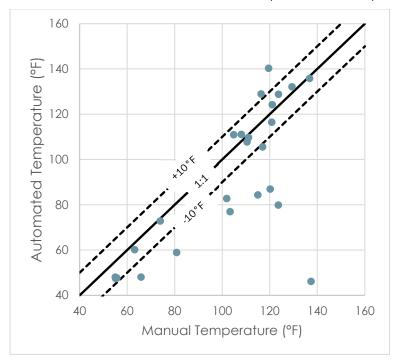


Figure 2. Manual vs. Automated Temperature Comparison

All daily temperatures recorded manually are provided in Attachment A.

Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted 3/1/23, 3/7/23, and 3/15/23. Temperatures greater than 145°F continue to be recorded consistently in GW-37, and new temperature exceedances were measured at GW-57 and GW-67. See Table 2 for a list of the status of all exceedances recorded during this monitoring period.

Table 2.	March Temperature Exceedance Summary

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 2/28/23
GW-37	4/6/22	3/15/23 147.7°F	10 months	HOV request submitted 3/8/22
GW-57	3/1/23	See below	8 days	Resolved 3/9/23
GW-57	3/15/23	3/15/23 170.5°F	1 day	Ongoing, within 15-day timeline
GW-67	3/1/23	3/15/23 123.1°F	1 day	Resolved 3/2/23

Work Accomplished During Monitoring Period

LFG Sampling

SCS collected LFG samples from well GW-37 using 1.5-L Summa canisters on 3/2/23 and 3/9/23 to fulfill the requirement in 40 CFR 63.1961(a)(5) for temperature exceedances lasting more than 7 days. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. Lab results are summarized in Table 3. Full laboratory analytical data is included in **Attachment B** for further detail.

Table 2. LFG Wellhead Sampling Summary

Sample Date	GW-37					
	CO (ppmv)	H2 (Vol. %)				
3/2/23	152	2.78				
3/9/23	129	2.35				

The presence of hydrogen in samples from GW-37 and GW-53 indicates that combustion reactions are unlikely. The carbon monoxide measurements were all greater than 100 ppmv, indicating that continued weekly CO sampling should continue per 40 CFR 63.1961(a)(5)(viii) until the temperature exceedance is corrected or CO is less than 100 ppmv for four consecutive weekly samples.

Construction Activities

SCS-Field Services (SCS-FS) continued trenching activities along the quarry sidewall to install the lower collector section of the Sidewall Odor Mitigation System (SOMS). SCS-FS placed linear low density polyethelene (LLDPE) geomembrane and geotextile in the lower collector to replace sidewall liner that had been damaged prior to SOMS construction. Following the installation of the replacement liner, perforated pipe and aggregate was placed in the trench. Construction progressed primarily on the eastern side of the quarry.

SCS-FS then started working on a section of the northern SOMS from the quarry entrance along the access road, in an effort to get ahead and prepare for Chesapeake Containment Systems (Chesapeake). Chesapeake will tie the SOMS into the existing liner, cover the lower collector, and extend the liner 40-feet from the sidewall. Chesapeake began liner work on 3/15/23 beginning just south of the Phase I Pilot Study area along the western sidewall heading towards the southwest corner.

SCS-FS reconfigured the LFG piping of the four Pilot Study Phase I horizontal collectors into the main LFG collection and control system (LFGCCS) adjacent to GW-49 to improve LFG collection. Since connection to the main LFGCCS, LFG quality measured at the Pilot Study Phase I collectors is variable, sometimes less than 10% methane and others greater than 40% methane. Since the reconfiguration, SCS is still in the process of tuning these collectors to establish more consistent LFG quality.

Weekly SEM

SCS is continuing weekly surface emissions monitoring (SEM) per the Plan of Action Report dated 7/6/22. No exceedances of the 500-ppmv threshold were recorded during the weekly SEM event held on 3/9/23 and 3/15/23.

MEMORANDUM 4/10/23 Page 5

The City has placed intermediate cover throughout the Permit No. 588 Landfill and installed well bore skirts at 19 select LFG wells exhibiting methane exceedances at pipe penetrations during past weekly SEM events. The actions appear to be working based on the results of the weekly SEM events during this monitoring period.

LFG System O&M

SCS, the City, and their O&M contractor continued to coordinate on procurement pump parts to better facilitate routine pump maintenance. O&M continued to tune the new QED 1-inch wellheads on the Permit #221 Landfill.

Pump One cleaned, serviced, and returned the six pumps removed in February to the Bristol Landfill. The O&M contractor reinstalled the pumps and took note of additional pump replacement parts warranted. The O&M contractor has also repaired and/or replaced pump cycle stroke counters as needed and recorded pump cycle stroke counter data weekly.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol
Jon Hayes, City of Bristol
Jeff Hurst, VDEQ-SWRO
Tom Lock, SCS Field Services

David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

Attachment A City of Bristol Daily LFG Well Temperature Readings

				Month	March	March	March	March	March	March	March								
	Depth	=		Day		Thursday	Friday	Saturday	Sunday	Monday	Tuesday		Thursday	Friday	Saturday		Monday		Vednesda
	Del	ے ق	ų,	Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Note	Well	Date Drill	Phase	Well Number															
ADI	102	10/16/2016	Old Well	35	72	73	74	74	73	72	76		64		70	73	47	37	38
ADI	70	9/6/2017	Old Well	39	73	75	76	76	74	74	80		65		74	75	44	44	33
ADI	100	9/7/2017	Old Well	40	109	107	109	109	109	116	120		99		115	113	76	87	60
ADI	110	10/4/2016	Old Well	46	145	146	147	146	146	140	140		145		140	141	146	146	146
ADI	120	10/4/2016	Old Well	47	96	98	98	49	48	56	59		74		65	67	77	76	55
										•		<u> </u>				<u> </u>			
6	120	9/17/2013	Old Well	29	92	92	92	91	92	90	100		95		100	123	68	54	54
7	100	8/23/2017	Old Well	30R	130	131	134	133	133	135	135		128		130	127	100	95	97
8	120	8/30/2017	Old Well	31R	125	126	128	128	126	128	129		131		81	83	108	105	106
9	70	7/29/2016	Old Well	32	75	75	96	70	70	75	80		82		126	124	86	86	79
10	100	7/28/2016	Old Well	33	120	120	122	121	120	125	128		127		125	123	118	118	118
11	100	7/30/2016	Old Well	34	119	118	118	118	118	120	122		126		127	129	110	105	104
12	100	8/1/2016	Old Well	36	Too Tall		Too Tall		Too Tall	Too Tall	49	37	39						
13	100	8/24/2017	Old Well	37	150	150	150	150	150	150	150		150		147	137	149	149	149
14	50	8/25/2017	Old Well	38	92	90	91	91	93	95	96		97		96	101	90	87	87
15	75	9/8/2017	Old Well	41	90	91	91	91	90	92	95		94		93	96	55	45	47
16	57	9/8/2017	Old Well	42	74	72	77	75	75	76	80		81		80	83	118	117	117
17	110	10/7/2016	Old Well	48	72	73	72	72	72	74	76		77		75	77	41	32	32
					•	•				•							•		
1	120	10/1/2021	New Well	32R	119	120	122	121	119	120	127		92		121	119	79	84	83
2	110	10/1/2021	New Well	49	Too Tall		127		Too Tall	Too Tall	110	104	113						
3	96	10/1/2021	New Well	50	121	122	122	122	122	124	125		121		122	124	117	118	118
4	114	10/1/2021	New Well	51	92	94	95	95	95	96	99		104		95	98	74	66	68
5	109	10/1/2021	New Well	52	109	110	111	111	111	112	112		99		110	113	82	71	62
6	91	10/1/2021	New Well	53	137	135	136	136	133	130	130		142		136	129	136	122	136
7	91	10/1/2021	New Well	54	131	132	133	132	131	133	135		94		130	126	106	97	66
8	104	10/1/2021	New Well	55	75	76	76	76	71	76	80		65		81	84	44	37	29
9	109	10/1/2021	New Well	56	132	130	180	131	131	130	134		135		130	131	135	131	132
10	103	10/1/2021	New Well	57	144	144	145	144	144	140	140		136		140	143	152	162	164
11	92	10/1/2021	New Well	58	74	73	74	74	74	73	76		69		74	72	112	112	82
12	72	10/1/2021	New Well	59	111	112	113	111	111	112	114		113		110	112	113	112	114
13	120	10/1/2021	New Well	60	128	129	126	126	126	127	125		113		120	124	110	110	110
14	105	10/1/2021	New Well	61	115	114	115	115	112	115	116		111		115	111	88	83	82
15	120	10/1/2021	New Well	62	117	117	115	117	117	118	102		111		105	107	111	109	110
16	117	10/1/2021	New Well	63	123	120	122	122	123	124	122		118		115	117	109	99	100
17	120	10/1/2021	New Well	64	133	130	128	131	131	130	134		116		125	124	132	130	121
18	100	10/1/2021	New Well	65	134	131	130	133	133	135	132		131		130	129	132	132	130
19	102	10/1/2021	New Well	66	78	78	79	80	81	90	95		69		85	87	44	39	36
20	100	10/1/2021	New Well	67	135	132	130	130	129	128	127		125				118	110	118
21	75	10/1/2021	New Well	68	126	125	126	126	126	128	128		125				123	123	123

Attachment B Laboratory Analytical Reports

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued: March 10, 2023 16:26

Harrisburg, PA 17111

Project Number: 7223016

Submitted To: Tom Lock

100001415

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/03/2023 11:20. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued: March 10, 2023 16:26

Harrisburg, PA 17111

Project Number: 7223016

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C0229-01	Air	03/02/2023 08:48	03/03/2023 11:20

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

March 3, 2023 11:20

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

7223016

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 37

Sample ID: 23C0229-01 Sample Matrix: Air

Sampled: 3/2/2023 08:48

Sample Type: LFG

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00184::11073

Canister Size: 1.4

Initial Vacuum(in Hg): 26

Final Vacuum(in Hg): 3.4

Receipt Vacuum(in Hg): 3.4 Flow Controller Type: Passive

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis										
		ppmv		ALT-145						
	-						Date/Time			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst		
Carbon Monoxide, as received	152	90.0	90.0		9	1	3/7/23 12:56	MER		

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as receive	d basis			
	Vol%			EPA 3C			B. (. (
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	11.9	0.45	0.45		9	1	3/7/23 12:56	MER
Carbon dioxide, as received	27.5	0.45	0.45		9	1	3/7/23 12:56	MER
Oxygen (O2), as received	6.58	0.45	0.45		9	1	3/7/23 12:56	MER
Hydrogen (H2), as received	2.78	0.18	0.18		9	1	3/7/23 12:56	MER
Nitrogen (N2), as received	42.5	9.00	9.00		9	1	3/7/23 12:56	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued:

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

7223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GC/TCD - Unadjusted, as r	eceived basis	Preparation Method:	No Prep VOC GC Air	
23C0229-01	1.00 mL / 1.00 mL	ALT-145	BGC0223	SGC0222	AG00026
23C0229-01	1.00 mL / 1.00 mL	EPA 3C	BGC0223	SGC0222	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued:

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

7223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0223 - No Prep VO	C GC Air									
Blank (BGC0223-BLK1)					Prep	ared & /	Analyzed	: 03/07/2	023	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Carbon Monoxide	<	10.0	ppmv							
LCS (BGC0223-BS1)					Prep	ared & /	Analyzed	: 03/07/2	023	
Methane	4020	0.05	ppmv	5000		80.3	80-120			
Methane	4020	500	ppmv	5000		80.3	0-200			
Carbon dioxide	4380	500	ppmv	5000		87.5	0-200			
Carbon dioxide	4380	0.05	ppmv	5000		87.5	80-120			
Oxygen (O2)	5120	500	ppmv	5000		102	0-200			
Oxygen (O2)	5120	0.05	ppmv	5000		102	80-120			
Hydrogen (H2)	5990	200	ppmv	5100		117	0-200			
Nitrogen (N2)	5370	2000	ppmv	5000		107	0-200			
Nitrogen (N2)	5370	1	ppmv	5000		107	80-120			
Hydrogen (H2)	5990	0.02	ppmv	5100		117	80-120			
Carbon Monoxide	4900	10	ppmv	5000		98.1	0-200			
Carbon Monoxide	4900	0.001	ppmv	5000		98.1	80-120			
Duplicate (BGC0223-DUP1)		Soi	urce: 23C	0229-01	Prep	ared & /	Analyzed	: 03/07/2	023	
Methane	121000	4500	ppmv		11900	00		1.21	25	
Methane	12.1	0.45	Vol%		11.9	ı		1.21	5	
Carbon dioxide	279000	4500	ppmv		27500	00		1.57	25	
Carbon dioxide	27.9	0.45	Vol%		27.5	i		1.57	5	
Oxygen (O2)	6.64	0.45	Vol%		6.58	;		0.826	5	
Oxygen (O2)	66400	4500	ppmv		6580	0		0.826	25	
Nitrogen (N2)	430000	18000	ppmv		42500	00		1.04	25	
Nitrogen (N2)	43.0	9.00	Vol%		42.5	i		1.04	5	
Hydrogen (H2)	28100	1800	ppmv		2780	0		0.923	25	
Hydrogen (H2)	2.81	0.18	Vol%		2.78	;		0.923	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued:

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

7223016

Client Site I.D.: Bristol Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0223 - No Prep VO	C GC Air									
Duplicate (BGC0223-DUP1)		Sou	ırce: 23C	0229-01	Prep	ared & A	Analyzed	: 03/07/20	023	
Carbon Monoxide	156	90.0	ppmv		152			2.74	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02	!		2.74	5	
Duplicate (BGC0223-DUP2)		Sou	ırce: 23C	0258-01	Prep	ared & A	Analyzed	: 03/07/20	023	
Methane	41.1	0.45	Vol%		41.0)		0.266	5	
Methane	411000	4500	ppmv		41000	00		0.266	25	
Carbon dioxide	40.2	0.45	Vol%		40.1			0.335	5	
Carbon dioxide	402000	4500	ppmv		40100	00		0.335	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00	0		NA	5	
Hydrogen (H2)	97600	1800	ppmv		9690	0		0.705	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5	
Carbon Monoxide	<	90.0	ppmv		<90.0	0		NA	25	
Duplicate (BGC0223-DUP3)		Sou	ırce: 23C	0258-02	Prep	ared & A	Analyzed	: 03/07/20	023	
Methane	41.8	0.45	Vol%		42.2	!		0.919	5	
Methane	418000	4500	ppmv		42200	00		0.919	25	
Carbon dioxide	453000	4500	ppmv		45400	00		0.353	25	
Carbon dioxide	45.3	0.45	Vol%		45.4			0.353	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	28000	1800	ppmv		2810	0		0.437	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00	0		NA	5	
Hydrogen (H2)	2.80	0.18	Vol%		2.81			0.437	5	
Carbon Monoxide	<	90.0	ppmv		<90.0	0		NA	25	
Carbon Monoxide	<	0.009	Vol%		<0.00	19		NA	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued:

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

7223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				_
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

	ENI			> \	Air	Chain of Cu	stody Rec	ord	Turr	n Around Ti	me (ru	sh b	y ad	vanc	ed n	otice	only)	
		11/	ALI	II.	Lab No:				Standard:		5 Day:		Х	3	Day:			
					Page:	1	of	1	2 Day:		1 Day:			C	uston	TAT:		
Enthal	py Analytical	- Richmor	nd			CUSTOM	ER INFORI	MATION			PRO	JEC	TINE	ORN	ATIO	ON		
1941 Re	eymet Road, Richm	nond, VA 2323	37		Company:	SCS Fie	ld Services			Name:				Brist	tol Lan	dfill		
	Phone 804-358-	8295			Report To:	Tom Lo	ck / Mike Gil	obons		Number:				7.	22301	6		
Special Instructions: EPA 3C for Methane, Carbon	Diovide Ovugen I	Mitrogen and	Hydrogen		Email:	tlock@	scsengine	ers.com		P.O. #:								
CO via EPA ALT-145.	Dioxide, Oxygen, i	viciogen, and	riyarogen.		Address:	<u>mgibb</u>	ons@scse	ngineers	.com	Address:								
Returned empty canisters ma	rked (No Sample).	•			Phone:	703-254	1-4664			Global ID:								
					Fax:					Sampled By:								
	_			B2 1	07/23	- Mev								Analy	/sis Re	quest	ed	
Mar L)	ymai			U7 11	716,	Carn 7-4	#1167%.#	:11078	=>110	72								
	<i>y</i>		- (PANIX	NO OUTHO	JUL VACCIO	m = 21.04	Pacia	160,60	73 m= 3.4"	He	õ	V ₂ ,H ₂)					
		Туре	Equipm	ent Info	mation	i de la terra	S	ampling I	nformation	M - 2 1	") -	ALT-145 (CO)	EPA 3C (CH4,CO2,O2,N2,H2)					
Sample ID		(I) Indoor		Size	Flow	Sample	Sample	Vacuum	Sample	Sample	Vacuum	T-14	2,4			H		
Saniple ID		(A) Ambient (SV) Soil Vapor			Controller	5tart	Start	Start ("Hg)	End	End	End ("Hg)	4 AL	30 (0					
		(S) Source		6L, 15L)	ID	Date	Time	(1167	Date	Time	(178)	EPA	EPA		\perp	Ш		
1 37		LFG	11078	1L	063-00491	3/2/2023	8:45AM	26	3/2/2023	8:48	9	х	х					
2 no sample taken			279														\bot	
3					-										1	Ш	\bot	Ш
4														\bot				
5		 											_	\perp	_			
SCS Field Se Recd: 03/03/202	rvices 23	C0229										Ш						∐
Bristol										20,3°C			\perp	\perp			4	Ш
्रिट्ट Recd: 03/03/202	23 Due: 03/						-			3i0							\bot	Ш
\$	I	v130325002								ه زوی			_	4				Ш
10		•						<u> </u>		no seci			J.					
18.1		ignature			Print I			С	ompany /	*					/ Tin			
¹ Relinquished By:		n Seymour			Ryan Se	ymour			field tecl	h 			3/2	2/23	11:0	OAM		
¹ Received By:		Bex E				·												_
² Relinquished By:		* E				·- ·			-		+-	1. 1			2 -			
² Received By:	Cul	W-								-	3	(3/	23	11	20			_
³ Relinquished By:									_		_							
¹Received By:																F	age	8 of 9

Certificate of Analysis

Final Report

Laboratory Order ID 23C0229

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 3, 2023 11:20

4330 Lewis Road, Suite 1

Date Issued:

March 10, 2023 16:26

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

7223016

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued:

March 17, 2023 15:45

Harrisburg, PA 17111

Project Number:

07223016.00

Submitted To: Tom Lock

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/10/2023 11:15. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

100001415

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued: March 17, 2023 15:45

Harrisburg, PA 17111

Project Number: 07223016.00

Tom Lock Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C0611-01	Air	03/09/2023 11:28	03/10/2023 11:15

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued: March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 21.6

Field Sample #: 37

Sub Description/Location:

Final Vacuum(in Hg): 2.4

Sample ID: 23C0611-01

Canister ID: 063-00461::14300

Receipt Vacuum(in Hg): 2.4

Sample Matrix: Air

O---i-4--- Ci---- 4 41

Receipt Vacuum(in Hg): 2.4 Flow Controller Type: Passive

Canister Size: 1.4L

Flow Controller ID:

Sampled: 3/9/2023 11:28 Sample Type: LV

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

		рршч					Date/Time
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Analyst
Carbon Monoxide, as received	129	90.0	90.0		9	1	3/14/23 11:43 MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as recei	ved basis			
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	11.1	0.45	0.45		9	1	3/14/23 11:43	MER
Carbon dioxide, as received	23.5	0.45	0.45		9	1	3/14/23 11:43	MER
Oxygen (O2), as received	9.36	0.45	0.45		9	1	3/14/23 11:43	MER
Hydrogen (H2), as received	2.35	0.18	0.18		9	1	3/14/23 11:43	MER
Nitrogen (N2), as received	47.8	18.0	18.0		18	1	3/14/23 13:46	MER
Carbon Monoxide, as received	0.01	0.009	0.009		9	1	3/14/23 11:43	MER

			Volatile (Organic Compo EPA TO-1		S					
		ppbv				ug/M³		_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	52800	1560	3890		170000	5000	12000	7780	1	3/15/23 13:59	DFH
Surrogate(s)		% Re	covery		% Re	covery Lii	mits				
4-Bromofluorobenzene (Surr)			101		3	30-120				3/15/23 13:59	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued:

March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order: 07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C0611-01	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0482	AG00026
23C0611-01	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0482	AG00026
23C0611-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0482	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23C0611-01	400 mL / 400 mL	EPA TO-15	BGC0346	SGC0540	AC30128
23C0611-01RE1	400 mL / 400 mL	EPA TO-15	BGC0346	SGC0540	AC30128

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued: Ma

March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0346 - No Prep VO	C Air									
Blank (BGC0346-BLK1)					Prep	ared &	Analyzed	: 03/09/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.90		ppbv	5.00		98.0	80-120			
LCS (BGC0346-BS1)					Prep	ared &	Analyzed	: 03/09/2	023	
1,1,1-Trichloroethane	5.38	0.5	ppbv	5.00		108	70-130			
1,1,2,2-Tetrachloroethane	5.67	0.5	ppbv	5.00		113	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	5.16	0.5	ppbv	5.00		103	70-130			
1,1,2-Trichloroethane	5.32	0.5	ppbv	5.00		106	70-130			
1,1-Dichloroethane	4.99	0.5	ppbv	5.00		99.8	70-130			
1,1-Dichloroethylene	5.17	0.5	ppbv	5.00		103	70-130			
1,2,4-Trimethylbenzene	5.64	0.5	ppbv	5.00		113	70-130			
1,2-Dibromoethane (EDB)	5.63	0.5	ppbv	5.00		113	70-130			
1,2-Dichlorobenzene	5.91	0.5	ppbv	5.00		118	70-130			
1,2-Dichloroethane	5.32	0.5	ppbv	5.00		106	70-130			
1,2-Dichloropropane	5.25	0.5	ppbv	5.00		105	70-130			
1,2-Dichlorotetrafluoroethane	5.44	0.5	ppbv	5.00		109	70-130			
1,3,5-Trimethylbenzene	5.61	0.5	ppbv	5.00		112	70-130			
1,3-Butadiene	4.79	0.5	ppbv	5.00		95.8	70-130			
1,3-Dichlorobenzene	5.86	0.5	ppbv	5.00		117	70-130			
1,4-Dichlorobenzene	5.90	0.5	ppbv	5.00		118	70-130			
1,4-Dioxane	5.41	0.5	ppbv	5.00		108	70-130			
2-Butanone (MEK)	4.57	0.5	ppbv	5.00		91.4	70-130			
4-Methyl-2-pentanone (MIBK)	5.35	0.5	ppbv	5.00		107	70-130			
Allyl chloride	4.84	0.5	ppbv	5.00		96.8	70-130			
Benzene	5.21	0.5	ppbv	5.00		104	70-130			
Benzyl Chloride	5.49	0.5	ppbv	5.00		110	70-130			
Bromodichloromethane	5.02	0.5	ppbv	5.00		100	70-130			
Bromoform	1.34	0.5	ppbv	5.00		26.8	70-130			L
Bromomethane	5.71	0.5	ppbv	5.00		114	70-130			
Carbon Disulfide	5.16	0.5	ppbv	5.00		103	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued:

March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

CS (BGC0346-BS1)					Prepared &	Analyzed: 03/09/2023	
arbon Tetrachloride	5.36	0.5	ppbv	5.00	107	70-130	
hlorobenzene	5.59	0.5	ppbv	5.00	112	70-130	
hloroethane	5.32	0.5	ppbv	5.00	106	70-130	
hloroform	5.07	0.5	ppbv	5.00	101	70-130	
hloromethane	5.06	0.5	ppbv	5.00	101	70-130	
s-1,2-Dichloroethylene	5.11	0.5	ppbv	5.00	102	70-130	
s-1,3-Dichloropropene	5.47	0.5	ppbv	5.00	109	70-130	
yclohexane	5.24	0.5	ppbv	5.00	105	70-130	
chlorodifluoromethane	5.16	0.5	ppbv	5.00	103	70-130	
hyl acetate	5.38	0.5	ppbv	5.00	108	70-130	
hylbenzene	5.53	0.5	ppbv	5.00	111	70-130	
eptane	5.03	0.5	ppbv	5.00	101	70-130	
exane	5.06	0.5	ppbv	5.00	101	70-130	
+p-Xylenes	11.2	1	ppbv	10.0	112	70-130	
ethylene chloride	4.67	1	ppbv	5.00	93.4	70-130	
thyl-t-butyl ether (MTBE)	5.17	0.5	ppbv	5.00	103	70-130	
phthalene	5.24	0.5	ppbv	5.00	105	60-140	
Xylene	5.55	0.5	ppbv	5.00	111	70-130	
opylene	5.02	1	ppbv	5.00	100	70-130	
yrene	5.59	0.5	ppbv	5.00	112	70-130	
trachloroethylene (PCE)	5.61	0.5	ppbv	5.00	112	70-130	
trahydrofuran	5.16	0.5	ppbv	5.00	103	70-130	
luene	5.36	0.5	ppbv	5.00	107	70-130	
ns-1,2-Dichloroethylene	5.13	0.5	ppbv	5.00	103	70-130	
ns-1,3-Dichloropropene	5.55	0.5	ppbv	5.00	111	70-130	
ichloroethylene	5.40	0.5	ppbv	5.00	108	70-130	
ichlorofluoromethane	5.27	0.5	ppbv	5.00	105	70-130	
nyl acetate	4.77	0.5	ppbv	5.00	95.4	70-130	
nyl bromide	4.79	0.5	ppbv	5.00	95.8	70-130	
nyl chloride	5.21	0.5	ppbv	5.00	104	70-130	
urr: 4-Bromofluorobenzene Surr)	5.14		ppbv	5.00	103	70-130	

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued: March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Allalyte	Result	LITTIL	Units	Level	Result	70KEU	LIIIIIIS	KPD	LIIIIII	Quai	
Batch BGC0346 - No Prep VO	C Air										
LCS Dup (BGC0346-BSD1)					Prepa	ared &	Analyzed	: 03/09/20)23		
1,1,1-Trichloroethane	5.38	0.5	ppbv	5.00		108	70-130	0.00	25		
,1,2,2-Tetrachloroethane	5.70	0.5	ppbv	5.00		114	70-130	0.528	25		
,1,2-Trichloro-1,2,2-trifluoroetha	5.17	0.5	ppbv	5.00		103	70-130	0.194	25		
ie											
,1,2-Trichloroethane	5.35	0.5	ppbv	5.00		107	70-130	0.562	25		
,1-Dichloroethane	4.97	0.5	ppbv	5.00		99.4	70-130	0.402	25		
,1-Dichloroethylene	5.19	0.5	ppbv	5.00		104	70-130	0.386	25		
,2,4-Trimethylbenzene	5.63	0.5	ppbv	5.00		113	70-130	0.177	25		
,2-Dibromoethane (EDB)	5.60	0.5	ppbv	5.00		112	70-130	0.534	25		
,2-Dichlorobenzene	5.85	0.5	ppbv	5.00		117	70-130	1.02	25		
,2-Dichloroethane	5.31	0.5	ppbv	5.00		106	70-130	0.188	25		
,2-Dichloropropane	5.22	0.5	ppbv	5.00		104	70-130	0.573	25		
,2-Dichlorotetrafluoroethane	5.53	0.5	ppbv	5.00		111	70-130	1.64	25		
,3,5-Trimethylbenzene	5.60	0.5	ppbv	5.00		112	70-130	0.178	25		
,3-Butadiene	4.62	0.5	ppbv	5.00		92.4	70-130	3.61	25		
,3-Dichlorobenzene	5.88	0.5	ppbv	5.00		118	70-130	0.341	25		
,4-Dichlorobenzene	5.88	0.5	ppbv	5.00		118	70-130	0.340	25		
,4-Dioxane	5.43	0.5	ppbv	5.00		109	70-130	0.369	25		
-Butanone (MEK)	4.58	0.5	ppbv	5.00		91.6	70-130	0.219	25		
-Methyl-2-pentanone (MIBK)	5.42	0.5	ppbv	5.00		108	70-130	1.30	25		
allyl chloride	4.93	0.5	ppbv	5.00		98.6	70-130	1.84	25		
Benzene	5.26	0.5	ppbv	5.00		105	70-130	0.955	25		
Benzyl Chloride	5.39	0.5	ppbv	5.00		108	70-130	1.84	25		
Bromodichloromethane	5.04	0.5	ppbv	5.00		101	70-130	0.398	25		
Bromoform	1.35	0.5	ppbv	5.00		27.0	70-130	0.743	25	L	
Bromomethane	5.66	0.5	ppbv	5.00		113	70-130	0.880	25		
Carbon Disulfide	5.17	0.5	ppbv	5.00		103	70-130	0.194	25		
Carbon Tetrachloride	5.35	0.5	ppbv	5.00		107	70-130	0.187	25		
Chlorobenzene	5.59	0.5	ppbv	5.00		112	70-130	0.00	25		
Chloroethane	5.28	0.5	ppbv	5.00		106	70-130	0.755	25		
Chloroform	5.08	0.5	ppbv	5.00		102	70-130	0.197	25		
Chloromethane	5.05	0.5	ppbv	5.00		101	70-130	0.198	25		
sis-1,2-Dichloroethylene	5.11	0.5	ppbv	5.00		102	70-130	0.00	25		
sis-1,3-Dichloropropene	5.42	0.5	ppbv	5.00		108	70-130	0.918	25		
o 1,0 Distilloroproporto	0.42	0.0	PPD4	0.00		100	10-100	0.010	20		

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued:

March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

LCS Dup (BGC0346-BSD1)		Prepared & Analyzed: 03/09/2023									
Cyclohexane	5.28	0.5	ppbv	5.00	106	70-130	0.760	25			
Dichlorodifluoromethane	5.15	0.5	ppbv	5.00	103	70-130	0.194	25			
Ethyl acetate	5.36	0.5	ppbv	5.00	107	70-130	0.372	25			
Ethylbenzene	5.53	0.5	ppbv	5.00	111	70-130	0.00	25			
Heptane	5.05	0.5	ppbv	5.00	101	70-130	0.397	25			
Hexane	5.05	0.5	ppbv	5.00	101	70-130	0.198	25			
m+p-Xylenes	11.2	1	ppbv	10.0	112	70-130	0.626	25			
Methylene chloride	4.71	1	ppbv	5.00	94.2	70-130	0.853	25			
Methyl-t-butyl ether (MTBE)	5.17	0.5	ppbv	5.00	103	70-130	0.00	25			
Naphthalene	5.18	0.5	ppbv	5.00	104	60-140	1.15	25			
o-Xylene	5.51	0.5	ppbv	5.00	110	70-130	0.723	25			
Propylene	5.01	1	ppbv	5.00	100	70-130	0.199	25			
Styrene	5.63	0.5	ppbv	5.00	113	70-130	0.713	25			
etrachloroethylene (PCE)	5.62	0.5	ppbv	5.00	112	70-130	0.178	25			
「etrahydrofuran	5.17	0.5	ppbv	5.00	103	70-130	0.194	25			
Toluene	5.34	0.5	ppbv	5.00	107	70-130	0.374	25			
trans-1,2-Dichloroethylene	5.13	0.5	ppbv	5.00	103	70-130	0.00	25			
trans-1,3-Dichloropropene	5.58	0.5	ppbv	5.00	112	70-130	0.539	25			
Trichloroethylene	5.42	0.5	ppbv	5.00	108	70-130	0.370	25			
Trichlorofluoromethane	5.12	0.5	ppbv	5.00	102	70-130	2.89	25			
/inyl acetate	4.80	0.5	ppbv	5.00	96.0	70-130	0.627	25			
Vinyl bromide	4.81	0.5	ppbv	5.00	96.2	70-130	0.417	25			
/inyl chloride	5.23	0.5	ppbv	5.00	105	70-130	0.383	25			
Surr: 4-Bromofluorobenzene	5.12		ppbv	5.00	102	70-130					

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

131

90.0

ppmv

Date Issued: March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Carbon Monoxide

Purchase Order: 07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0500 - No Prep VC	OC GC Air									
Blank (BGC0500-BLK1)					Prep	pared & A	Analyzed	: 03/14/20)23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
litrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
CS (BGC0500-BS1)					Prep	pared & A	Analyzed	: 03/14/20)23	
Methane	4690	500	ppmv	5000		93.9	0-200			
Methane	4690	0.05	ppmv	5000		93.9	80-120			
Carbon dioxide	5230	500	ppmv	5000		105	0-200			
Carbon dioxide	5230	0.05	ppmv	5000		105	80-120			
Oxygen (O2)	5110	500	ppmv	5000		102	0-200			
Oxygen (O2)	5110	0.05	ppmv	5000		102	80-120			
Nitrogen (N2)	5370	2000	ppmv	5000		107	0-200			
Hydrogen (H2)	5910	200	ppmv	5100		116	0-200			
Hydrogen (H2)	5910	0.02	ppmv	5100		116	80-120			
Nitrogen (N2)	5370	1	ppmv	5000		107	80-120			
Carbon Monoxide	4880	10	ppmv	5000		97.7	0-200			
Carbon Monoxide	4880	0.001	ppmv	5000		97.7	80-120			
Duplicate (BGC0500-DUP1)		So	urce: 23C	0611-01	Prep	pared & A	Analyzed	: 03/14/20)23	
Methane	11.0	0.45	Vol%		11.1	1		0.199	5	
Methane	110000	4500	ppmv		11100	00		0.199	25	
Carbon dioxide	23.7	0.45	Vol%		23.5	5		1.06	5	
Carbon dioxide	237000	4500	ppmv		2350	00		1.06	25	
Oxygen (O2)	9.38	0.45	Vol%		9.36	3		0.200	5	
Oxygen (O2)	93800	4500	ppmv		9360	00		0.200	25	
Hydrogen (H2)	2.34	0.18	Vol%		2.35	5		0.278	5	
Nitrogen (N2)	469000	18000	ppmv		4690	00		0.0733	25	
Hydrogen (H2)	23400	1800	ppmv		2350	00		0.278	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01	1		1.39	5	

129

1.39

25

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

March 10, 2023 11:15

4330 Lewis Road, Suite 1

Date Issued:

March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: Bristol Purchase Order: 07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

side of established acceptance limits
side of established acceptance limit

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor MDL Method Detection Limit LOQ Limit of Quantitation ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10%

of the absolute.

formerly Air, Water & Soil Laboratories

AIR ANALYSIS

	•						CHAIN	OF CUS	TODY	E	nqiup	ent due	≥ 3/30/20	23					
COMPANY NAME:	SCS Field	d Servi	ces - Harri	isbu	rg IN	VOICE TO	: Same				PROJ	ECT NAM	E/Quote #	Bristo	1				
CONTACT:					IN'	VOICE CC	NTACT:				SITE	NAME: B	n540/						
ADDRESS:					IN,	VOICE AD	DRESS:				PROJ	ECT NUM	BER: D	12250	316.	01	<u></u>		
PHONE #:					IN'	VOICE PH	ONE #:				P.O. #:								
FAX #:		_	EM	1AIL	:						Pretre	atment Pr	ogram:						
Is sample for comp	liance repo	orting?	YES NO)	Regulat	ory State:	VA Is:	sample fro	m a chlori	nated supp	oly?	YES 春	PV PV	VS I.D. #:					
SAMPLER NAME ((PRINT):	Kyar	Seyn	NO	// SA	MPLER S	IGNATUR	E: Pyan	$\nu \mathcal{S}$	ymor	Turn .	Around T	ime: Circ	de: 10 C	5 Days	>	or	_	Day(s)
Matrix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill/V	ent Gas OT	=Other				0		063	3-23B-001	4					
	Regulator I	nfo	Canister In	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	ation		88	AN.	ALY	/SIS
CLIENT						LAB	LAB	Barometric	Pres. (in Ho	g):	,	Barometri	Pres. (in H	g):		e Codes)			þ
SAMPLE I.D.	Flow Controller ID	Cal Flow (mUmin)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in Hg)	Starting Sample Temp *F	Stop Date	Stop Time	Final Canister Vacuum (in Hg)	Ending Sample Temp *F	Matrix (See	Alt 145 CO	EPA 3C	Benzene t TO-15
1) 37	063-0041		14300	1.4	230126-02	21.6	2.4	3/9/23	11:24 Am	28	149	3/1/23	11:28 Am	9	149			- 1	x
2)			14308	1.4	230126-02	21.6										LG	x	x	x
3)														٤					
4)	→		·																
RELINQUISHED:				loco.	E0.455								310	20.3	no	Ser	<u> </u>	μþ	اک
KELINQUISHED.				KEC	EIVED: Feer &	× G	DAT	E / TIME	QC Data P	ackage LA	B USE	ONLY							
RELINQUISHED: Fred Lex G		DAT	E / TIME		EIVED: USILI	~ 3	10/23	E / TIME	Level II		Field	Servic	es 23	C0611					
RELINQUISHED:		DAT	E / TIME	L	EIVED:			E / TIME	Level III Level IV	□ Brist	ol		Due: 03/	17/2023 v130325002	···				

Certificate of Analysis

Final Report

Laboratory Order ID 23C0611

Client Name: SCS Field Services - Harrisburg, PA Date Received: March 10, 2023 11:15

4330 Lewis Road, Suite 1 Date Issued: March 17, 2023 15:45

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: 07223016.00

Client Site I.D.: Bristol Purchase Order: 07-S004485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Environmental Consulting & Contracting

SCS ENGINEERS

April 10, 2023 File No. 02218208.04

MEMORANDUM

TO: Kristin Hall, EPA Region III Tracy Blalock, VDEQ-SWRO

FROM: D. Brandon King, SCS Engineers
Quinn Bernier, SCS Engineers

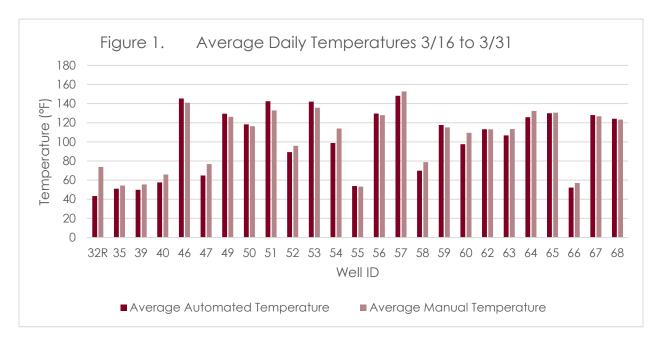
SUBJECT: Semi-Monthly Status Update – March 16th through March 31st, 2023 Bristol Integrated Waste Management Facility, Bristol, Virginia

SCS is submitting this semi-monthly status update to satisfy the conditions of compliance provision #2 of the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21. Accordingly, this memo is a summary of temperature monitoring activities as well as work accomplished during the semi-monthly monitoring period of 3/16/23 through 3/31/23.

TEMPERATURE MONITORING

Automated Wellhead Temperature Measurements

Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. VDEQ and USEPA have been receiving Daily Gas Well Temperature Reports with data from these automated temperature sensors since 12/1/22.


Since March 1, 2023, all 25 wellheads have 2-inch automated sensors. SCS believes that the new 2-inch sensors measure temperature with more accuracy than the 1-inch sensors that were used in the majority of the 25 wells prior to March 1.

SCS reviewed the automated hourly temperature measurements from 3/16/23 to 3/31/23, and identified the following trends:

- Temperatures over 145°F: Temperatures over the NESHAP AAAA compliance threshold of 145°F were recorded at seven wells during this monitoring period. This represents generally higher temperatures across the wellfield than usual. Temperatures greater than 145°F were recorded most consistently at EW-46, however the highest temperatures were measured at EW-51 (up to 188°F at times). Field staff believe that the general increase in wellfield temperatures suggests the wellfield may be over-tuned, meaning that applied vacuum at wellheads is greater than necessary. This may have caused the higher oxygen concentrations observed at the blower/flare station and increased well temperatures.
- Low temperatures at certain wells: Average temperatures between 40°F and 60°F at certain wells generally correlated with low LFG flow rates measured during monthly wellfield monitoring events. These low temperatures are likely close to ambient because little to no LFG is passing through the wellhead where the sensors are placed.

• Temperature Trends by Location: Not all of the wells with the highest temperatures, for example over 145°F, were collocated. Of the wells with the highest temperatures during this monitoring period, EW-46, EW-51, and EW-57, were the closest to each other; generally located in the southwestern corner of the landfill.

Manual Daily Temperature Monitoring

Manual temperature measurements are being made daily by field staff with a GEM5000 or equivalent LFG analyzer. The manual measurements are used to verify the automated wellhead temperature sensors and to provide temperature data for the 13 wellheads without automated sensors.

Comparing the difference between manual temperature measurements and automated temperature measurements in Figure 2, the new 2-inch sensors appear to have overall improved correlation with manual measurements. This supports SCS' previous suspicion that continued differences between temperature measurement methods were due to troubleshooting the first two weeks of operation of the 2-inch automated sensors in early March. However, EW-32R continued to show significant differences. The sensor at this well should be investigated further for potential physical issues that may be causing it to record temperatures much lower than manually measured temperatures.

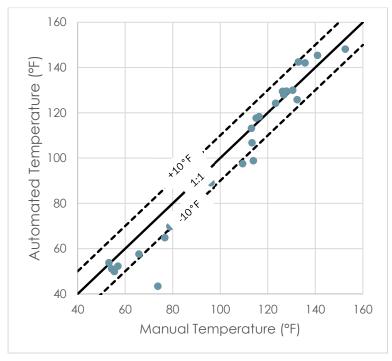


Figure 2. Manual vs. Automated Temperature Comparison

All daily temperatures recorded manually are provided in Attachment A.

Monthly Regulatory Wellhead Temperature Measurements

Routine monthly temperature monitoring for purposes of complying with 40 CFR 60.36f(a)(5) was conducted 3/1/23, 3/7/23, and 3/15/23. During this monitoring period, temperature exceedances were resolved at GW-37 and GW-57, and new temperature exceedances were measured at GW-37, GW-51, GW-57, and GW-59. See Table 2 for a list of the status of all exceedances recorded during this monitoring period.

Well ID	Initial Exceedance Date	Last date/temperature measured	Duration of Exceedance	Status as of 3/31/23
GW-37	4/6/22	3/23/23 144.9°F	10 months	New exceedance, see below
GW-37	3/28/23	3/29/23 150.6°F	4 days	Ongoing, within 15-day timeline
GW-51	3/23/23	3/23/23 3/29/23 169.8°F		Ongoing, within 15-day timeline
GW-57	3/15/23	3/23/23 133.5°F	9 days	New exceedance, see below
GW-57	3/28/23	3/29/23 162.1°F	4 days	Ongoing, within 15-day timeline
GW-59	3/28/23	3/29/23 119 3°F	1 day	Resolved

119.3°F

Table 2. March Temperature Exceedance Summary

Work Accomplished During Monitoring Period

LFG Sampling

SCS collected LFG samples from wells GW-37 and GW-53 using 1.5-L Summa canisters on 3/16/23, and well EW-51 on 3/23/23 to fulfill the requirement in 40 CFR 63.1961(a)(5) for temperature exceedances lasting more than 7 days. The samples were sent to Enthalpy Analytical for lab analysis of carbon monoxide (CO) and hydrogen (H₂) content. Lab results are summarized in Table 3. Full laboratory analytical data is included in **Attachment B** for further detail.

Sample	GW	/-37	GW	'-51	GW-57				
Date	CO (ppmv)	H2 (Vol. %)	(Vol. %) CO (ppmv) H2 (V		CO (ppmv)	H2 (Vol. %)			
3/16/23	168	3.08			855	13.5			
3/23/23			554	8.90					
3/29/23	167	3.07	1430	25.8	884	11.1			

Table 2. LFG Wellhead Sampling Summary

The presence of hydrogen in all of the samples collected during this monitoring period indicates that combustion reactions are unlikely. The carbon monoxide measurements were all greater than 100 ppmv, indicating that continued weekly CO sampling should continue per 40 CFR 63.1961(a)(5)(viii) until the temperature exceedance is corrected or CO is less than 100 ppmv for four consecutive weekly samples.

Construction Activities

SCS-Field Services (SCS-FS) continued trenching activities along the quarry sidewall for the Odor Mitigation System (SOMS), from the northern section along the entrance access road towards the northeast corner of the landfill. SCS-FS isolated and cut sections of the existing LFG header,

removing a section of 12-inch LFG header between the sidewall and condensate sump CPS-1 to install the lower horizontal collector from the northeast corner down the eastern sidewall back to CPS-1. SCS-FS also trenched and installed the lower horizontal collector along a short stretch of the northwest sidewall just north of the Phase I Pilot Study section back to the quarry entrance.

Chesapeake Containment Systems (Chesapeake) began liner work on 3/15/23 beginning just south of the Phase I Pilot Study area along the western sidewall and heading south

Drilling EW-70, installed SOMS liner in the background

along the perimeter of the landfill. Chesapeake tied the SOMS into the existing liner, covered the lower collector, and extended the liner 40-feet from the sidewall in all areas where SCS-FS has installed the SOMS.

Bentonite and other materials were delivered to the Landfill in anticipation of vertical well drilling (LFG System Phase I). SCS and the City staked out the 34 proposed LFG extraction well locations. The 18 near-sidewall LFG wells are to be constructed using 8-inch CPVC pipe, while 16 deep interior LFG wells are to be constructed using 304 stainless steel pipe. The driller and LFG System Phase I contractor mobilized and had a Pre-Construction meeting with the City and SCS on 3/28/23. The drilling contractor commenced drilling activities on 3/29/23 subsequent to the City's press release. The contractor drilled five of the CPVC LFG extraction wells in the northeast section of the quarry by the end of this monitoring period.

Weekly SEM

SCS is continuing weekly surface emissions monitoring (SEM) per the Plan of Action Report dated 7/6/22. No exceedances of the 500-ppmv threshold were recorded during the weekly SEM event held on 3/23/23. One exceedance was recorded at the pipe penetration of EW-52 during the weekly event conducted on 3/29/23. This point will be remonitored pending corrective actions.

The City has placed intermediate cover throughout the Permit No. 588 Landfill and installed well bore skirts at 19 select LFG wells exhibiting methane exceedances at pipe penetrations during past weekly SEM events. The actions appear to be working based on the results of the weekly SEM event during this monitoring period and may be employed to resolve the new exceedance at EW-52 if needed.

LFG System O&M

The City's O&M contractor received a variety of pump replacement parts from Pump One to assist O&M with pulling and switching out pneumatic pumps. Pump One also provided a custom pump cleaning and testing station to the City. O&M is now rebuilding several pumps with the new pump supplies. In addition, air regulators, tri-tubing, and other pump appurtenances are being replaced where needed with the pump replacement parts. O&M is replacing outdated flexible tubing at select wellheads with Solarguard flex tubing. The City has ordered a dozen new QED 2-inch wellheads to assist with wellfield tuning activities on the Permit #588 Landfill.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol
Jon Hayes, City of Bristol
Jeff Hurst, VDEQ-SWRO
Tom Lock, SCS Field Services

David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

Attachment A City of Bristol Daily LFG Well Temperature Readings

				Month	March	March	March	March	March	March	March	March	March	March	March	March	March	March	March	March
	pth	=		Day	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Vednesda	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Vednesda	Thursday	Friday
a)	De	D.	9	Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Note	Well Depth	Date Drill	Phase	Well Number																
ADI	102	10/16/2016	Old Well	35	58	52	39	28	60	54	45	61	79	60	41	64	56	62	62	48
ADI	70	9/6/2017	Old Well	39	49	50	41	50	45	49	44	60	81	58	41	71	77	63	62	46
ADI	100	9/7/2017	Old Well	40	100	85	58	40	54	54	47	61	88	70	51	76	67	76	72	54
ADI	110	10/4/2016	Old Well	46	146	146	138	140	77	146	146	147	147	145	140	147	148	147	148	147
ADI	120	10/4/2016	Old Well	47	91	87	80	70	59	60	59	74	88	88	80	72	83	73	103	60
6	120	9/17/2013	Old Well	29	77	72	56	46	70	65	72	76	78	72	64	66	74	76	103	100
#REF!	100	8/23/2017	Old Well	30R	101	104			101	98	95	122	124	128	112	115	126	128	127	125
#REF!	120	8/30/2017	Old Well	31R	126	130	103	126	128	125	127	128	132	132	130	134	135	130	133	132
#REF!	70	7/29/2016	Old Well	32	75	70	36	30	72	70	74	70	78	82	78	88	80	82	80	81
#REF!	100	7/28/2016	Old Well	33	120	121	119	119	122	122	119	120	122	120	124	126	123	124	124	122
#REF!	100	7/30/2016	Old Well	34	107	127	120	112	128	126	125	125	125	130	112	115	118	118	112	110
#REF!	100	8/1/2016	Old Well	36	53	53	40	38	54	52	55	60	67	64	62	70	77	71	76	78
#REF!	100	8/24/2017	Old Well	37	149	150	143	146	150	150	149	153	150	150	150	149	150	149	149	150
#REF!	50	8/25/2017	Old Well	38	90	91	90	85	93	90	92	95	100	98	99	100	108	102	100	98
#REF!	75	9/8/2017	Old Well	41	76	64	58	28	65	64	66	67	69	74	60	66	73	71	75	77
#REF!	57	9/8/2017	Old Well	42	119	120	117	118	122	125	124	112	116	112	99	68	709	110	112	112
#REF!	110	10/7/2016	Old Well	48	52	49	36	40	43	44	48	50	70	60	42	52	52	56	65	61
	400	101110001										1 . 1				1		100	100	10.
1	120	10/1/2021	New Well	32R	61	55 86	60 120	60	60 131	49	79	64 131	78 132	62 125	48	61	59	133	126 132	125
2	110	10/1/2021	New Well	49 50	133 121	94	119	120 119	117	132 118	129 117	118	119	112	124 118	131 118	133 118	131 118	118	129 118
3	96	10/1/2021	New Well	30	121	94	119	119	117	110	117	110	119	112	110	110	110	110	110	110
4	114	10/1/2021	New Well	51	76	100	182	176	158	188	173	172	96	88	56	84	88	185	167	137
5	109	10/1/2021	New Well	52	85	91	80	85	86	85	87	95	102	92	68	94	88	91	163	142
6	91	10/1/2021	New Well	53	144	152	132	56	133	146	140	145	150	138	130	149	142	138	141	135
7	91	10/1/2021	New Well	54	111	103	100	90	67	72	69	88	149	160	139	124	141	150	147	113
8	104	10/1/2021	New Well	55	50	52	39	20	34	27	47	62	84	62	50	73	60	69	70	52
9	109	10/1/2021	New Well	56	133	134	142	120	89	132	131	132	134	125	130	130	129	129	128	128
10	103	10/1/2021	New Well	57	164	173	170	170	138	152	140	155	145	140	139	142	163	151	159	141
11	92	10/1/2021	New Well	58	110	60	112	110	47	74	68	86	87	62	48	83	117	75	76	46
12	72	10/1/2021	New Well	59	114	117	110	110	54	116	117	107	111	105	109	159	149	124	121	119
13	120	10/1/2021	New Well	60	109	112	110	110	107	108	109	110	112	112	104	110	110	110	110	108
14	105	10/1/2021	New Well	61	90	97	88	81	95	110	105	106	110	130	122	116	137	130	135	132
15	120	10/1/2021	New Well	62	111	112	111	115	112	112	112	112	115	112	112	116	115	116	114	113
16	117	10/1/2021	New Well	63	119	116	100	90	99	107	107	115	170	100	92	115	111	125	126	122
17	120	10/1/2021	New Well	64	140	140	120	139	125	127	125	140	130	140	124	129	139	132	139	129
18	100	10/1/2021	New Well	65	133	133	125	130	130	129	130	130	131	130	128	131	133	131	134	130
19	102	10/1/2021	New Well	66	58	52	39	30	54	49	46	62	83	64	49	66	64	69	78	48
20	100	10/1/2021	New Well	67	133	138	115	110	131	128	137	138	134	110	110	145	125	119	127	128
21	75	10/1/2021	New Well	68	124	124	122	121	124	125	124	124	125	120	120	124	123	125	125	123

Attachment B Laboratory Analytical Reports

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA Date Received: March 17, 2023 11:14

4330 Lewis Road, Suite 1 Date Issued: March 23, 2023 17:20

Harrisburg, PA 17111 Project Number: 07223016.00

Submitted To: Tom Lock Purchase Order: 07-S004485

Client Site I.D.: Bristol

100001415

Enclosed are the results of analyses for samples received by the laboratory on 03/17/2023 11:14. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued: March 23, 2023 17:20

Harrisburg, PA 17111

Project Number: 07223016.00

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23C1038-01	Air	03/16/2023 10:00	03/17/2023 11:14
57	23C1038-02	Air	03/16/2023 10:10	03/17/2023 11:14

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Date Issued:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location: Field Sample #: 37 Sample Description/Location: Sub Description/Location: Canister ID: 063-00306::11293 Initial Vacuum(in Hg): 21.6 Final Vacuum(in Hg): 3.8

Sample ID: 23C1038-01 Sample Matrix: Air

Receipt Vacuum(in Hg): 3.8 Flow Controller Type: Passive

Canister Size: 1.4L

Flow Controller ID:

Sampled: 3/16/2023 10:00

Sample Type: LV

Volatile Organic Co	mpounds by GC/TCD -	Unadjusted,	as received basis
	ALT-145		

		ppmv		ALI-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	168	90.0	90.0		9	1	3/17/23 16:02	MER

	Vol	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basis	3			
		Vol%		EPA 3C			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Methane, as received	13.4	0.45	0.45		9	1	3/17/23 16:02	MER
Carbon dioxide, as received	31.0	0.45	0.45		9	1	3/17/23 16:02	MER
Oxygen (O2), as received	6.22	0.45	0.45		9	1	3/17/23 16:02	MER
Hydrogen (H2), as received	3.08	0.18	0.18		9	1	3/17/23 16:02	MER
Nitrogen (N2), as received	41.1	9.00	9.00		9	1	3/17/23 16:02	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	3/17/23 16:02	MER

	Volatile Organic Compounds by GCMS EPA TO-15										
		ppbv			ug/M³					D. (. (T)	
Analyte	Results	Results MDL LOQ		Flag/Qual	Results	MDL	LOQ	Dilution	PF	Date/Time Analyzed	Analyst
Benzene	62500	1560	3890		200000	5000	12000	7780	1	3/21/23 14:41	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			94.6		8	30-120				3/21/23 14:41	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

SCS Field Services - Harrisburg, PA Client Name:

Date Received: Date Issued:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Sample Matrix: Air

Project Location: Field Sample #: 57

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00322::12383

Initial Vacuum(in Hg): 21.6 Final Vacuum(in Hg): 3.4

Sample ID: 23C1038-02

ppmv

Result

855

Receipt Vacuum(in Hg): 3.4 Flow Controller Type: Passive

Canister Size: 1.4L

Flow Controller ID:

Sampled: 3/16/2023 10:10

Analyte

Carbon Monoxide, as received

Sample Type: LV

Volatile Organic Compounds by GC/TCD -	Unadjusted, as received basis

ALT-145

Date/Time MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 9 90.0 90.0 1 3/17/23 16:56 MER

	Vola	atile Organi	c Compour		usted, as received basis				
		Vol%		EPA 3C				Data/Time	
Analyte	Result	MDL	LOQ	Flag/Qual		Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	20.1	0.45	0.45			9	1	3/17/23 16:56	MER
Carbon dioxide, as received	55.1	0.45	0.45			9	1	3/17/23 16:56	MER
Oxygen (O2), as received	1.27	0.45	0.45			9	1	3/17/23 16:56	MER
Hydrogen (H2), as received	13.5	1.08	1.08			54	1	3/20/23 15:24	MER
Nitrogen (N2), as received	ND	9.00	9.00			9	1	3/17/23 16:56	MER
Carbon Monoxide, as received	0.09	0.009	0.009			9	1	3/17/23 16:56	MER

		ppbv			ug/M³			_		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	208000	2330	5830		670000	7500	19000	11700	1	3/21/23 16:14	DFH
Surrogate(s)		% Ra	COVERV		% Ra	covery Lir	nite				

95.8 3/21/23 16:14 4-Bromofluorobenzene (Surr) 80-120

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C1038-01	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0658	AG00026
23C1038-02	1.00 mL / 1.00 mL	ALT-145	BGC0500	SGC0658	AG00026
23C1038-01	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0658	AG00026
23C1038-02	1.00 mL / 1.00 mL	EPA 3C	BGC0500	SGC0658	AG00026
23C1038-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGC0718	SGC0713	AG00026
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GCMS		Preparation Method:	No Prep VOC Air	
23C1038-01	400 mL / 400 mL	EPA TO-15	BGC0743	SGC0734	AC30195
23C1038-02	400 mL / 400 mL	EPA TO-15	BGC0743	SGC0734	AC30195

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Rep				Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep VO	C Air									
Blank (BGC0743-BLK1)					Prep	ared &	Analyzed	: 03/21/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.90		ppbv	5.00		98.0	80-120			
LCS (BGC0743-BS1)					Prep	ared &	Analyzed	: 03/21/2	023	
1,1,1-Trichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
1,1,2,2-Tetrachloroethane	5.19	0.5	ppbv	5.00		104	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.64	0.5	ppbv	5.00		92.8	70-130			
1,1,2-Trichloroethane	4.93	0.5	ppbv	5.00		98.6	70-130			
1,1-Dichloroethane	4.59	0.5	ppbv	5.00		91.8	70-130			
1,1-Dichloroethylene	4.66	0.5	ppbv	5.00		93.2	70-130			
1,2,4-Trimethylbenzene	5.23	0.5	ppbv	5.00		105	70-130			
1,2-Dibromoethane (EDB)	5.12	0.5	ppbv	5.00		102	70-130			
1,2-Dichlorobenzene	5.48	0.5	ppbv	5.00		110	70-130			
1,2-Dichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
1,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130			
1,2-Dichlorotetrafluoroethane	4.70	0.5	ppbv	5.00		94.0	70-130			
1,3,5-Trimethylbenzene	5.20	0.5	ppbv	5.00		104	70-130			
1,3-Butadiene	4.57	0.5	ppbv	5.00		91.4	70-130			
1,3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130			
1,4-Dichlorobenzene	5.37	0.5	ppbv	5.00		107	70-130			
1,4-Dioxane	5.47	0.5	ppbv	5.00		109	70-130			
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130			
4-Methyl-2-pentanone (MIBK)	5.13	0.5	ppbv	5.00		103	70-130			
Allyl chloride	4.49	0.5	ppbv	5.00		89.8	70-130			
Benzene	4.93	0.5	ppbv	5.00		98.6	70-130			
Benzyl Chloride	4.84	0.5	ppbv	5.00		96.8	70-130			
Bromodichloromethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Bromoform	0.98	0.5	ppbv	5.00		19.6	70-130			L
Bromomethane	4.81	0.5	ppbv	5.00		96.2	70-130			
Carbon Disulfide	4.50	0.5	ppbv	5.00		90.0	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

		Reporting			Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

CS (BGC0743-BS1)					Prepared &	Analyzed: 03/21/2023	
arbon Tetrachloride	4.91	0.5	ppbv	5.00	98.2	70-130	
nlorobenzene	5.05	0.5	ppbv	5.00	101	70-130	
nloroethane	4.62	0.5	ppbv	5.00	92.4	70-130	
nloroform	4.66	0.5	ppbv	5.00	93.2	70-130	
nloromethane	4.61	0.5	ppbv	5.00	92.2	70-130	
s-1,2-Dichloroethylene	4.69	0.5	ppbv	5.00	93.8	70-130	
s-1,3-Dichloropropene	5.12	0.5	ppbv	5.00	102	70-130	
yclohexane	4.95	0.5	ppbv	5.00	99.0	70-130	
chlorodifluoromethane	4.66	0.5	ppbv	5.00	93.2	70-130	
hyl acetate	4.90	0.5	ppbv	5.00	98.0	70-130	
hylbenzene	5.17	0.5	ppbv	5.00	103	70-130	
eptane	4.82	0.5	ppbv	5.00	96.4	70-130	
exane	4.82	0.5	ppbv	5.00	96.4	70-130	
+p-Xylenes	10.3	1	ppbv	10.0	103	70-130	
ethylene chloride	4.91	1	ppbv	5.00	98.2	70-130	
ethyl-t-butyl ether (MTBE)	4.81	0.5	ppbv	5.00	96.2	70-130	
phthalene	4.58	0.5	ppbv	5.00	91.6	60-140	
Kylene	5.10	0.5	ppbv	5.00	102	70-130	
opylene	4.57	1	ppbv	5.00	91.4	70-130	
yrene	5.18	0.5	ppbv	5.00	104	70-130	
trachloroethylene (PCE)	5.05	0.5	ppbv	5.00	101	70-130	
trahydrofuran	4.93	0.5	ppbv	5.00	98.6	70-130	
luene	4.97	0.5	ppbv	5.00	99.4	70-130	
ns-1,2-Dichloroethylene	4.72	0.5	ppbv	5.00	94.4	70-130	
ans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00	105	70-130	
ichloroethylene	4.95	0.5	ppbv	5.00	99.0	70-130	
ichlorofluoromethane	4.68	0.5	ppbv	5.00	93.6	70-130	
nyl acetate	4.76	0.5	ppbv	5.00	95.2	70-130	
nyl bromide	4.66	0.5	ppbv	5.00	93.2	70-130	
nyl chloride	4.65	0.5	ppbv	5.00	93.0	70-130	
ırr: 4-Bromofluorobenzene urr)	5.10		ppbv	5.00	102	70-130	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	Reporting			Spike	Source	Q	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

,	rtesuit	Liiiiii	Office	LCVCI	TRESUIT /OTTE	O Liiiillo	1111111	Liiiiii	Quai
Batch BGC0743 - No Prep VO	C Air								
CS Dup (BGC0743-BSD1)					Prepared 8	& Analyzed	: 03/21/20	023	
,1,1-Trichloroethane	5.00	0.5	ppbv	5.00	100	70-130	0.803	25	
,1,2,2-Tetrachloroethane	5.12	0.5	ppbv	5.00	102	70-130	1.36	25	
,1,2-Trichloro-1,2,2-trifluoroetha ne	4.68	0.5	ppbv	5.00	93.6	70-130	0.858	25	
,1,2-Trichloroethane	5.02	0.5	ppbv	5.00	100	70-130	1.81	25	
,1-Dichloroethane	4.62	0.5	ppbv	5.00	92.4	70-130	0.651	25	
,1-Dichloroethylene	4.68	0.5	ppbv	5.00	93.6	70-130	0.428	25	
,2,4-Trimethylbenzene	5.18	0.5	ppbv	5.00	104	70-130	0.961	25	
,2-Dibromoethane (EDB)	5.08	0.5	ppbv	5.00	102	70-130	0.784	25	
,2-Dichlorobenzene	5.42	0.5	ppbv	5.00	108	70-130	1.10	25	
,2-Dichloroethane	4.98	0.5	ppbv	5.00	99.6	70-130	0.402	25	
,2-Dichloropropane	4.90	0.5	ppbv	5.00	98.0	70-130	0.00	25	
,2-Dichlorotetrafluoroethane	4.84	0.5	ppbv	5.00	96.8	70-130	2.94	25	
,3,5-Trimethylbenzene	5.11	0.5	ppbv	5.00	102	70-130	1.75	25	
,3-Butadiene	4.48	0.5	ppbv	5.00	89.6	70-130	1.99	25	
3-Dichlorobenzene	5.35	0.5	ppbv	5.00	107	70-130	0.00	25	
,4-Dichlorobenzene	5.32	0.5	ppbv	5.00	106	70-130	0.935	25	
4-Dioxane	5.57	0.5	ppbv	5.00	111	70-130	1.81	25	
-Butanone (MEK)	4.55	0.5	ppbv	5.00	91.0	70-130	0.00	25	
-Methyl-2-pentanone (MIBK)	5.25	0.5	ppbv	5.00	105	70-130	2.31	25	
llyl chloride	4.41	0.5	ppbv	5.00	88.2	70-130	1.80	25	
enzene	4.96	0.5	ppbv	5.00	99.2	70-130	0.607	25	
enzyl Chloride	4.77	0.5	ppbv	5.00	95.4	70-130	1.46	25	
romodichloromethane	4.66	0.5	ppbv	5.00	93.2	70-130	0.862	25	
romoform	0.97	0.5	ppbv	5.00	19.4	70-130	1.03	25	L
romomethane	4.96	0.5	ppbv	5.00	99.2	70-130	3.07	25	
arbon Disulfide	4.51	0.5	ppbv	5.00	90.2	70-130	0.222	25	
arbon Tetrachloride	4.95	0.5	ppbv	5.00	99.0	70-130	0.811	25	
hlorobenzene	5.03	0.5	ppbv	5.00	101	70-130	0.397	25	
hloroethane	4.70	0.5	ppbv	5.00	94.0	70-130	1.72	25	
chloroform	4.67	0.5	ppbv	5.00	93.4		0.214	25	
chloromethane	4.58	0.5	ppbv	5.00	91.6	70-130	0.653	25	
is-1,2-Dichloroethylene	4.76	0.5	ppbv	5.00	95.2	70-130	1.48	25	
is-1,3-Dichloropropene	5.14	0.5	ppbv	5.00	103		0.390	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting			Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

LCS Dup (BGC0743-BSD1)					Prepared &	Analyzed	03/21/20	23
Cyclohexane	4.96	0.5	ppbv	5.00	99.2	70-130	0.202	25
Dichlorodifluoromethane	4.65	0.5	ppbv	5.00	93.0	70-130	0.215	25
Ethyl acetate	4.88	0.5	ppbv	5.00	97.6	70-130	0.409	25
Ethylbenzene	5.14	0.5	ppbv	5.00	103	70-130	0.582	25
Heptane	4.83	0.5	ppbv	5.00	96.6	70-130	0.207	25
Hexane	4.78	0.5	ppbv	5.00	95.6	70-130	0.833	25
m+p-Xylenes	10.3	1	ppbv	10.0	103	70-130	0.777	25
Methylene chloride	4.88	1	ppbv	5.00	97.6	70-130	0.613	25
Methyl-t-butyl ether (MTBE)	4.79	0.5	ppbv	5.00	95.8	70-130	0.417	25
Naphthalene	4.32	0.5	ppbv	5.00	86.4	60-140	5.84	25
o-Xylene	5.06	0.5	ppbv	5.00	101	70-130	0.787	25
Propylene	4.75	1	ppbv	5.00	95.0	70-130	3.86	25
Styrene	5.15	0.5	ppbv	5.00	103	70-130	0.581	25
「etrachloroethylene (PCE)	5.02	0.5	ppbv	5.00	100	70-130	0.596	25
Tetrahydrofuran	4.96	0.5	ppbv	5.00	99.2	70-130	0.607	25
Toluene	5.05	0.5	ppbv	5.00	101	70-130	1.60	25
trans-1,2-Dichloroethylene	4.71	0.5	ppbv	5.00	94.2	70-130	0.212	25
trans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00	105	70-130	0.00	25
Trichloroethylene	5.03	0.5	ppbv	5.00	101	70-130	1.60	25
Trichlorofluoromethane	4.72	0.5	ppbv	5.00	94.4	70-130	0.851	25
Vinyl acetate	4.69	0.5	ppbv	5.00	93.8	70-130	1.48	25
Vinyl bromide	4.70	0.5	ppbv	5.00	94.0	70-130	0.855	25
/inyl chloride	4.73	0.5	ppbv	5.00	94.6	70-130	1.71	25
Surr: 4-Bromofluorobenzene	5.07		ppbv	5.00	101	70-130		

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

131

90.0

ppmv

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Carbon Monoxide

Project Number:

07223016.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0500 - No Prep VC	OC GC Air									
Blank (BGC0500-BLK1)					Prep	ared &	Analyzed	: 03/14/20	23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
LCS (BGC0500-BS1)					Prep	ared &	Analyzed	: 03/14/20	23	
Methane	4690	500	ppmv	5000		93.9	0-200			
Methane	4690	0.05	ppmv	5000		93.9	80-120			
Carbon dioxide	5230	500	ppmv	5000		105	0-200			
Carbon dioxide	5230	0.05	ppmv	5000		105	80-120			
Oxygen (O2)	5110	500	ppmv	5000		102	0-200			
Oxygen (O2)	5110	0.05	ppmv	5000		102	80-120			
Hydrogen (H2)	5910	200	ppmv	5100		116	0-200			
Nitrogen (N2)	5370	2000	ppmv	5000		107	0-200			
Nitrogen (N2)	5370	1	ppmv	5000		107	80-120			
Hydrogen (H2)	5910	0.02	ppmv	5100		116	80-120			
Carbon Monoxide	4880	10	ppmv	5000		97.7	0-200			
Carbon Monoxide	4880	0.001	ppmv	5000		97.7	80-120			
Duplicate (BGC0500-DUP1)		Soi	urce: 23C	0611-01	Prep	ared &	Analyzed	: 03/14/20	23	
Methane	11.0	0.45	Vol%		11.1			0.199	5	
Methane	110000	4500	ppmv		11100	00		0.199	25	
Carbon dioxide	237000	4500	ppmv		23500	00		1.06	25	
Carbon dioxide	23.7	0.45	Vol%		23.5	5		1.06	5	
Oxygen (O2)	93800	4500	ppmv		9360	0		0.200	25	
Oxygen (O2)	9.38	0.45	Vol%		9.36	;		0.200	5	
Hydrogen (H2)	2.34	0.18	Vol%		2.35	5		0.278	5	
Nitrogen (N2)	469000	18000	ppmv		46900	00		0.0733	25	
Hydrogen (H2)	23400	1800	ppmv		2350	0		0.278	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01			1.39	5	

129

1.39

25

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Duplicate (BGC0500-DUP2)		So	urce: 23C1038-01	Prepared & A	nalyzed: 03/17/202	23
Methane	134000	4500	ppmv	134000	0.654	25
Methane	13.4	0.45	Vol%	13.4	0.654	5
Carbon dioxide	30.7	0.45	Vol%	31.0	0.911	5
Carbon dioxide	307000	4500	ppmv	310000	0.911	25
Oxygen (O2)	6.21	0.45	Vol%	6.22	0.209	5
Oxygen (O2)	62100	4500	ppmv	62200	0.209	25
Hydrogen (H2)	3.00	0.18	Vol%	3.08	2.63	5
Nitrogen (N2)	40.9	9.00	Vol%	41.1	0.473	5
Hydrogen (H2)	30000	1800	ppmv	30800	2.63	25
Nitrogen (N2)	409000	18000	ppmv	411000	0.473	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	0.428	5
Carbon Monoxide	169	90.0	ppmv	168	0.428	25
Duplicate (BGC0500-DUP3)		So	urce: 23C1038-02	Prepared & A	nalyzed: 03/17/202	23
Methane	204000	4500	ppmv	201000	1.59	25
Methane	20.4	0.45	Vol%	20.1	1.59	5
Carbon dioxide	55.9	0.45	Vol%	55.1	1.40	5
Carbon dioxide	559000	4500	ppmv	551000	1.40	25
Oxygen (O2)	1.28	0.45	Vol%	1.27	0.951	5
Oxygen (O2)	12800	4500	ppmv	12700	0.951	25
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	138000	1800	ppmv	136000	1.74	25
Nitrogen (N2)	43900	18000	ppmv	43400	1.19	25
Carbon Monoxide	874	90.0	ppmv	855	2.27	25

Batch BGC0718 - No Prep VOC GC Air

Blank (BGC0718-BLK1)				Prepared & Analyzed: 03/20/2023
Methane	<	0.05	Vol%	
Carbon dioxide	<	0.05	Vol%	
Oxygen (O2)	<	0.05	Vol%	
Hydrogen (H2)	<	0.02	Vol%	
Nitrogen (N2)	<	1.00	Vol%	
Carbon Monoxide	<	0.001	Vol%	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received: N

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

	R	eporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BGC0718 - No Prep VC	OC GC Air										
LCS (BGC0718-BS1)		Prepared & Analyzed: 03/20/2023									
Methane	4760	0.05	ppmv	5000		95.2	80-120				
Carbon dioxide	5840	0.05	ppmv	5000		117	80-120				
Oxygen (O2)	5190	0.05	ppmv	5000		104	80-120				
Nitrogen (N2)	5430	1	ppmv	5000		109	80-120				
Hydrogen (H2)	5830	0.02	ppmv	5100		114	80-120				
Carbon Monoxide	4950	0.001	ppmv	5000		99.0	80-120				
Duplicate (BGC0718-DUP1)		Soi	urce: 230	1051-01	Prep	ared &	Analyzed	: 03/20/20	023		
Methane	38.3	0.45	Vol%		38.5	,		0.499	5		
Carbon dioxide	42.1	0.45	Vol%		42.3	;		0.546	5		
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5		
Nitrogen (N2)	11.4	9.00	Vol%		11.5	i		0.554	5		
Hydrogen (H2)	2.39	0.18	Vol%		2.40)		0.567	5		
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5		
Duplicate (BGC0718-DUP2)		Soi	urce: 230	1051-02	Prepared & Analyzed: 0			: 03/20/20	023		
Methane	38.3	0.45	Vol%		38.4			0.171	5		
Carbon dioxide	38.6	0.45	Vol%		38.6	i		0.0315	5		
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5		
Nitrogen (N2)	<	9.00	Vol%		<9.0	0		NA	5		
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5		
Duplicate (BGC0718-DUP3)		Source: 23C1		1051-03	Prep	Prepared & Analyzed		: 03/21/20	023		
Methane	36.9	0.45	Vol%		37.2	!		0.658	5		
Carbon dioxide	38.2	0.45	Vol%		38.4			0.498	5		
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5		
Nitrogen (N2)	14.1	9.00	Vol%		14.2	!		0.849	5		
Carbon Monoxide	<	0.009	Vol%		<0.00	9		NA	5		

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 17, 2023 11:14

4330 Lewis Road, Suite 1

Date Issued:

March 23, 2023 17:20

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting			Spike	Source	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual

Batch BGC0718 - No Prep VOC GC Air

Duplicate (BGC0718-DUP4)		Sou	ırce: 23C1051-04	Prepared & A	nalyzed: 03/21/202	3
Methane	37.3	0.45	Vol%	37.7	0.902	5
Carbon dioxide	45.2	0.45	Vol%	45.6	0.771	5
Oxygen (O2)	0.53	0.45	Vol%	0.55	2.83	5
Nitrogen (N2)	<	9.00	Vol%	<9.00	NA	5
Hydrogen (H2)	4.46	0.18	Vol%	4.51	1.11	5
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

SCS Field Services - Harrisburg, PA Client Name:

March 17, 2023 11:14 Date Received: Date Issued:

4330 Lewis Road, Suite 1

March 23, 2023 17:20

07-SO04485

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: 07223016.00

Bristol Purchase Order:

Qualifiers and Definitions

L LCS recovery is outside of established acceptance limits

RPD Relative Percent Difference

Qualifers Qual

TIC

Client Site I.D.:

-RE Denotes sample was re-analyzed

PF Preparation Factor Method Detection Limit MDL LOQ Limit of Quantitation ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

AIR ANALYSIS

CHAIN OF CUSTODY Equipment due 3/30/2023 COMPANY NAME: SCS Field Services - Harrisburg INVOICE TO: PROJECT NAME/Quote #: Same Bristol CONTACT: SITE NAME: POST INVOICE CONTACT: ADDRESS: INVOICE ADDRESS: PROJECT NUMBER: PHONE #: **INVOICE PHONE #:** P.O. #: FAX #: EMAIL: Pretreatment Program: Is sample for compliance reporting? YES NO Regulatory State: VA Is sample from a chlorinated supply? YES (NO PWS I.D. #: SAMPLER SIGNATURE: SAMPLER NAME (PRINT): Turn Around Time: Circle: 10 5 Days or __ Day(s) Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Gas OT=Other 063-23B-0014 Regulator Info Canister Information Sampling Start Information Sampling Stop Information **ANALYSIS** Barometric Pres. (in Hg): 30.04 Barometric Pres. (in Hg): 30.09 by LAB LAB 8 CLIENT Outgoing Receiving Initial Final SAMPLE I.D. Matrix (s Alt 145 (Flow Cal Canister Canister Canister Canister Starting Controller Size EPA Flow Start Time Vacuum (in Vacuum (ir Vacuum (in Stop Time Vacuum (in Cleaning Sample (mL/min) Canister ID Batch ID Hg) Hg) Start Date (24hr clock) Temp °F Stop Date (24hr clock) Hg) Temp °F 10:00 9:58 148 11293 21.6 230202-02 LG x Х 19m AM 10:08 196 12383 21.6 10:10 1.4 230202-02 LG x X AM 3) 12418 230202-02 21.6 LG x X 4) 14294 1.4 230126-02 21.6 _G x X X 20.3% noite noseal RELINQUISHED RECEIVED: DATE / TIME QC Data Package LAB USE ONLY Level I П DATE / TIME RECEIVED: DATE / TIME **SCS Field Services** 23C1038 5:250 Level II **Bristol** RELINQUISHED: DATE / TIME DATE / TIME Level III \Box Recd: 03/17/2023 Due: 03/24/2023 Level IV v130325002

Page 15 of 16

Certificate of Analysis

Final Report

Laboratory Order ID 23C1038

Client Name: SCS Field Services - Harrisburg, PA Date Received: March 17, 2023 11:14

Date Issued: March 23, 2023 17:20

Harrisburg, PA 17111

4330 Lewis Road, Suite 1

Submitted To: Tom Lock Project Number: 07223016.00

Client Site I.D.: Bristol Purchase Order: 07-S004485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Ma

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Project Number:

[none]

Submitted To: Tom Lock

100001415

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/24/2023 10:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued: March 29, 2023 16:48

Harrisburg, PA 17111

Project Number: [none]

Submitted To: Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
51	23C1352-02	Air	03/23/2023 13:33	03/24/2023 10:00

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

March 29, 2023 16:48 Date Issued:

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location: Field Sample #: 51 Sample Description/Location: Sub Description/Location:

Initial Vacuum(in Hg): 21.6 Final Vacuum(in Hg): 12

Sample ID: 23C1352-02

Canister ID: 063-00084::12418

Receipt Vacuum(in Hg): 6.4 Flow Controller Type: Passive

Sample Matrix: Air

Canister Size: 1.4L

Flow Controller ID:

Sampled: 3/23/2023 13:33

Sample Type: LV

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis
AI T 445

ppmv	ALT-145

				Date/Tin					
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst	
Carbon Monoxide, as received	554	90.0	90.0		9	1	3/27/23 12:20	MFR	

Valadia Ossassia Ossassassas la	00/TOD II		: .
Volatile Organic Compounds b	y GC/TCD - Unac	ajustea, as received	i basis

	Volatile Organic Compounds by GC/1CD - Unad Vol% EPA 3C				I Dasis			
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	12.6	0.45	0.45		9	1	3/27/23 12:20	MER
Carbon dioxide, as received	44.3	0.45	0.45		9	1	3/27/23 12:20	MER
Oxygen (O2), as received	5.35	0.45	0.45		9	1	3/27/23 12:20	MER
Hydrogen (H2), as received	8.90	0.54	0.54		27	1	3/27/23 15:04	MER
Nitrogen (N2), as received	19.2	9.00	9.00		9	1	3/27/23 12:20	MER
Carbon Monoxide, as received	0.06	0.009	0.009		9	1	3/27/23 12:20	MER

Volatile Organic Compounds by GCMS EPA TO-15

		ppbv		LIA 10-1	,						
		ppov				ug/M³		-		Date/Time	
Analyte	Results	MDL	LOQ	Flag/Qual	Results	MDL	LOQ	Dilution	PF	Analyzed	Analyst
Benzene	162000	2330	5830		520000	7500	19000	11700	1	3/28/23 10:50	DFH
Surrogate(s)		% Re	covery		% Re	covery Lir	nits				
4-Bromofluorobenzene (Surr)			101		8	30-120				3/28/23 10:50	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Analytical Summary

Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
ounds by GC/TCD - Unadjusted	d, as received basis	Preparation Method:	No Prep VOC GC Air	
1.00 mL / 1.00 mL	ALT-145	BGC0954	SGC0940	AG00026
1.00 mL / 1.00 mL	EPA 3C	BGC0954	SGC0940	AG00026
1.00 mL / 1.00 mL	EPA 3C	BGC0954	SGC0940	AG00026
Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
oounds by GCMS		Preparation Method:	No Prep VOC Air	
400 mL / 400 mL	EPA TO-15	BGC0743	SGC0974	AC30195
	Initial / Final counds by GC/TCD - Unadjusted 1.00 mL / 1.00 mL 1.00 mL / 1.00 mL 1.00 mL / 1.00 mL Preparation Factors Initial / Final	Initial / Final Method bounds by GC/TCD - Unadjusted, as received basis 1.00 mL / 1.00 mL	Initial / Final Method Batch ID rounds by GC/TCD - Unadjusted, as received basis Preparation Method: 1.00 mL / 1.00 mL ALT-145 BGC0954 1.00 mL / 1.00 mL EPA 3C BGC0954 1.00 mL / 1.00 mL EPA 3C BGC0954 Preparation Factors Initial / Final Method Batch ID Preparation Method:	Initial / Final Method Batch ID Sequence ID bounds by GC/TCD - Unadjusted, as received basis Preparation Method: No Prep VOC GC Air 1.00 mL / 1.00 mL ALT-145 BGC0954 SGC0940 1.00 mL / 1.00 mL EPA 3C BGC0954 SGC0940 1.00 mL / 1.00 mL EPA 3C BGC0954 SGC0940 Preparation Factors Batch ID Sequence ID Initial / Final Method Batch ID No Prep VOC Air

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0743 - No Prep VO	C Air									
Blank (BGC0743-BLK1)					Prep	ared &	Analyzed	: 03/21/2	023	
Benzene	<	0.50	ppbv							
Surr: 4-Bromofluorobenzene (Surr)	4.90		ppbv	5.00		98.0	80-120			
LCS (BGC0743-BS1)					Prep	ared &	Analyzed	: 03/21/2	023	
1,1,1-Trichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
1,1,2,2-Tetrachloroethane	5.19	0.5	ppbv	5.00		104	70-130			
1,1,2-Trichloro-1,2,2-trifluoroetha ne	4.64	0.5	ppbv	5.00		92.8	70-130			
1,1,2-Trichloroethane	4.93	0.5	ppbv	5.00		98.6	70-130			
1,1-Dichloroethane	4.59	0.5	ppbv	5.00		91.8	70-130			
1,1-Dichloroethylene	4.66	0.5	ppbv	5.00		93.2	70-130			
1,2,4-Trimethylbenzene	5.23	0.5	ppbv	5.00		105	70-130			
1,2-Dibromoethane (EDB)	5.12	0.5	ppbv	5.00		102	70-130			
1,2-Dichlorobenzene	5.48	0.5	ppbv	5.00		110	70-130			
1,2-Dichloroethane	4.96	0.5	ppbv	5.00		99.2	70-130			
1,2-Dichloropropane	4.90	0.5	ppbv	5.00		98.0	70-130			
1,2-Dichlorotetrafluoroethane	4.70	0.5	ppbv	5.00		94.0	70-130			
1,3,5-Trimethylbenzene	5.20	0.5	ppbv	5.00		104	70-130			
1,3-Butadiene	4.57	0.5	ppbv	5.00		91.4	70-130			
1,3-Dichlorobenzene	5.35	0.5	ppbv	5.00		107	70-130			
1,4-Dichlorobenzene	5.37	0.5	ppbv	5.00		107	70-130			
1,4-Dioxane	5.47	0.5	ppbv	5.00		109	70-130			
2-Butanone (MEK)	4.55	0.5	ppbv	5.00		91.0	70-130			
4-Methyl-2-pentanone (MIBK)	5.13	0.5	ppbv	5.00		103	70-130			
Allyl chloride	4.49	0.5	ppbv	5.00		89.8	70-130			
Benzene	4.93	0.5	ppbv	5.00		98.6	70-130			
Benzyl Chloride	4.84	0.5	ppbv	5.00		96.8	70-130			
Bromodichloromethane	4.62	0.5	ppbv	5.00		92.4	70-130			
Bromoform	0.98	0.5	ppbv	5.00		19.6	70-130			L
Bromomethane	4.81	0.5	ppbv	5.00		96.2	70-130			
Carbon Disulfide	4.50	0.5	ppbv	5.00		90.0	70-130			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

SCS Field Services - Harrisburg, PA Client Name:

Date Received: 4330 Lewis Road, Suite 1

March 29, 2023 16:48 Date Issued:

March 24, 2023 10:00

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: [none]

07-SO04485 Client Site I.D.: **Bristol** Purchase Order:

Volatile Organic Compounds by GCMS - Quality Control

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

LCS (BGC0743-BS1) Prepared & Analyzed: 03/21/2023								
Carbon Tetrachloride	4.91	0.5	ppbv	5.00	98.2	70-130		
Chlorobenzene	5.05	0.5	ppbv	5.00	101	70-130		
Chloroethane	4.62	0.5	ppbv	5.00	92.4	70-130		
Chloroform	4.66	0.5	ppbv	5.00	93.2	70-130		
Chloromethane	4.61	0.5	ppbv	5.00	92.2	70-130		
cis-1,2-Dichloroethylene	4.69	0.5	ppbv	5.00	93.8	70-130		
cis-1,3-Dichloropropene	5.12	0.5	ppbv	5.00	102	70-130		
Cyclohexane	4.95	0.5	ppbv	5.00	99.0	70-130		
Dichlorodifluoromethane	4.66	0.5	ppbv	5.00	93.2	70-130		
Ethyl acetate	4.90	0.5	ppbv	5.00	98.0	70-130		
Ethylbenzene	5.17	0.5	ppbv	5.00	103	70-130		
Heptane	4.82	0.5	ppbv	5.00	96.4	70-130		
Hexane	4.82	0.5	ppbv	5.00	96.4	70-130		
m+p-Xylenes	10.3	1	ppbv	10.0	103	70-130		
Methylene chloride	4.91	1	ppbv	5.00	98.2	70-130		
Methyl-t-butyl ether (MTBE)	4.81	0.5	ppbv	5.00	96.2	70-130		
Naphthalene	4.58	0.5	ppbv	5.00	91.6	60-140		
o-Xylene	5.10	0.5	ppbv	5.00	102	70-130		
Propylene	4.57	1	ppbv	5.00	91.4	70-130		
Styrene	5.18	0.5	ppbv	5.00	104	70-130		
Tetrachloroethylene (PCE)	5.05	0.5	ppbv	5.00	101	70-130		
Tetrahydrofuran	4.93	0.5	ppbv	5.00	98.6	70-130		
Toluene	4.97	0.5	ppbv	5.00	99.4	70-130		
trans-1,2-Dichloroethylene	4.72	0.5	ppbv	5.00	94.4	70-130		
trans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00	105	70-130		
Trichloroethylene	4.95	0.5	ppbv	5.00	99.0	70-130		
Trichlorofluoromethane	4.68	0.5	ppbv	5.00	93.6	70-130		
Vinyl acetate	4.76	0.5	ppbv	5.00	95.2	70-130		
Vinyl bromide	4.66	0.5	ppbv	5.00	93.2	70-130		
Vinyl chloride	4.65	0.5	ppbv	5.00	93.0	70-130		
Surr: 4-Bromofluorobenzene (Surr)	5.10		ppbv	5.00	102	70-130		

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	

.CS Dup (BGC0743-BSD1)					Prepared &	Analyzed	: 03/21/20	23	
,1,1-Trichloroethane	5.00	0.5	ppbv	5.00	100	70-130	0.803	25	
,1,2,2-Tetrachloroethane	5.12	0.5	ppbv	5.00	102	70-130	1.36	25	
,1,2-Trichloro-1,2,2-trifluoroetha e	4.68	0.5	ppbv	5.00	93.6	70-130	0.858	25	
,1,2-Trichloroethane	5.02	0.5	ppbv	5.00	100	70-130	1.81	25	
,1-Dichloroethane	4.62	0.5	ppbv	5.00	92.4	70-130	0.651	25	
,1-Dichloroethylene	4.68	0.5	ppbv	5.00	93.6	70-130	0.428	25	
,2,4-Trimethylbenzene	5.18	0.5	ppbv	5.00	104	70-130	0.961	25	
.2-Dibromoethane (EDB)	5.08	0.5	ppbv	5.00	102	70-130	0.784	25	
,2-Dichlorobenzene	5.42	0.5	ppbv	5.00	108	70-130	1.10	25	
,2-Dichloroethane	4.98	0.5	ppbv	5.00	99.6	70-130	0.402	25	
2-Dichloropropane	4.90	0.5	ppbv	5.00	98.0	70-130	0.00	25	
2-Dichlorotetrafluoroethane	4.84	0.5	ppbv	5.00	96.8	70-130	2.94	25	
3,5-Trimethylbenzene	5.11	0.5	ppbv	5.00	102	70-130	1.75	25	
3-Butadiene	4.48	0.5	ppbv	5.00	89.6	70-130	1.99	25	
3-Dichlorobenzene	5.35	0.5	ppbv	5.00	107	70-130	0.00	25	
1-Dichlorobenzene	5.32	0.5	ppbv	5.00	106	70-130	0.935	25	
1-Dioxane	5.57	0.5	ppbv	5.00	111	70-130	1.81	25	
Butanone (MEK)	4.55	0.5	ppbv	5.00	91.0	70-130	0.00	25	
Methyl-2-pentanone (MIBK)	5.25	0.5	ppbv	5.00	105	70-130	2.31	25	
yl chloride	4.41	0.5	ppbv	5.00	88.2	70-130	1.80	25	
enzene	4.96	0.5	ppbv	5.00	99.2	70-130	0.607	25	
enzyl Chloride	4.77	0.5	ppbv	5.00	95.4	70-130	1.46	25	
romodichloromethane	4.66	0.5	ppbv	5.00	93.2	70-130	0.862	25	
romoform	0.97	0.5	ppbv	5.00	19.4	70-130	1.03	25	L
romomethane	4.96	0.5	ppbv	5.00	99.2	70-130	3.07	25	
arbon Disulfide	4.51	0.5	ppbv	5.00	90.2	70-130	0.222	25	
arbon Tetrachloride	4.95	0.5	ppbv	5.00	99.0	70-130	0.811	25	
hlorobenzene	5.03	0.5	ppbv	5.00	101	70-130	0.397	25	
hloroethane	4.70	0.5	ppbv	5.00	94.0	70-130	1.72	25	
hloroform	4.67	0.5	ppbv	5.00	93.4	70-130	0.214	25	
hloromethane	4.58	0.5	ppbv	5.00	91.6	70-130	0.653	25	
s-1,2-Dichloroethylene	4.76	0.5	ppbv	5.00	95.2	70-130	1.48	25	
is-1,3-Dichloropropene	5.14	0.5	ppbv	5.00	103	70-130	0.390	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GCMS - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC Limits	RPD	Limit	Qual	

LCS Dup (BGC0743-BSD1)					Prepared &	Analyzed:	03/21/20	23
Cyclohexane	4.96	0.5	ppbv	5.00	99.2	70-130	0.202	25
Dichlorodifluoromethane	4.65	0.5	ppbv	5.00	93.0	70-130	0.215	25
Ethyl acetate	4.88	0.5	ppbv	5.00	97.6	70-130	0.409	25
Ethylbenzene	5.14	0.5	ppbv	5.00	103	70-130	0.582	25
Heptane	4.83	0.5	ppbv	5.00	96.6	70-130	0.207	25
Hexane	4.78	0.5	ppbv	5.00	95.6	70-130	0.833	25
m+p-Xylenes	10.3	1	ppbv	10.0	103	70-130	0.777	25
Methylene chloride	4.88	1	ppbv	5.00	97.6	70-130	0.613	25
Methyl-t-butyl ether (MTBE)	4.79	0.5	ppbv	5.00	95.8	70-130	0.417	25
Naphthalene	4.32	0.5	ppbv	5.00	86.4	60-140	5.84	25
o-Xylene	5.06	0.5	ppbv	5.00	101	70-130	0.787	25
Propylene	4.75	1	ppbv	5.00	95.0	70-130	3.86	25
Styrene	5.15	0.5	ppbv	5.00	103	70-130	0.581	25
Tetrachloroethylene (PCE)	5.02	0.5	ppbv	5.00	100	70-130	0.596	25
Tetrahydrofuran	4.96	0.5	ppbv	5.00	99.2	70-130	0.607	25
Toluene	5.05	0.5	ppbv	5.00	101	70-130	1.60	25
trans-1,2-Dichloroethylene	4.71	0.5	ppbv	5.00	94.2	70-130	0.212	25
trans-1,3-Dichloropropene	5.27	0.5	ppbv	5.00	105	70-130	0.00	25
Trichloroethylene	5.03	0.5	ppbv	5.00	101	70-130	1.60	25
Trichlorofluoromethane	4.72	0.5	ppbv	5.00	94.4	70-130	0.851	25
Vinyl acetate	4.69	0.5	ppbv	5.00	93.8	70-130	1.48	25
Vinyl bromide	4.70	0.5	ppbv	5.00	94.0	70-130	0.855	25
Vinyl chloride	4.73	0.5	ppbv	5.00	94.6	70-130	1.71	25
Surr: 4-Bromofluorobenzene	5.07		ppbv	5.00	101	70-130		

(Surr)

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Date Issued: March 24, 2023 10:00

4330 Lewis Road, Suite 1

0.06

0.009

Vol%

outo locaca.

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Carbon Monoxide

Purchase Order: 07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

				_	_					
A I		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC0954 - No Prep VC	OC GC Air									
Blank (BGC0954-BLK1)					Prep	ared &	Analyzed	: 03/27/20)23	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
LCS (BGC0954-BS1)					Prep	ared &	Analyzed	: 03/27/20)23	
Methane	4640	500	ppmv	5000		92.8	0-200			
Methane	4640	0.05	ppmv	5000		92.8	80-120			
Carbon dioxide	5400	500	ppmv	5000		108	0-200			
Carbon dioxide	5400	0.05	ppmv	5000		108	80-120			
Oxygen (O2)	5060	500	ppmv	5000		101	0-200			
Oxygen (O2)	5060	0.05	ppmv	5000		101	80-120			
Nitrogen (N2)	5300	2000	ppmv	5000		106	0-200			
Hydrogen (H2)	5910	200	ppmv	5100		116	0-200			
Hydrogen (H2)	5910	0.02	ppmv	5100		116	80-120			
Nitrogen (N2)	5300	1	ppmv	5000		106	80-120			
Carbon Monoxide	4840	10	ppmv	5000		96.8	0-200			
Carbon Monoxide	4840	0.001	ppmv	5000		96.8	80-120			
Duplicate (BGC0954-DUP1)		So	urce: 230	1352-02	Prep	ared &	Analyzed	: 03/27/20)23	
Methane	125000	4500	ppmv		12600	00		1.28	25	
Methane	12.5	0.45	Vol%		12.6	;		1.28	5	
Carbon dioxide	43.3	0.45	Vol%		44.3	3		2.29	5	
Carbon dioxide	433000	4500	ppmv		44300	00		2.29	25	
Oxygen (O2)	53000	4500	ppmv		5350	0		0.925	25	
Oxygen (O2)	5.30	0.45	Vol%		5.35	j		0.925	5	
Hydrogen (H2)	91700	1800	ppmv		9180	0		0.0737	25	
Nitrogen (N2)	190000	18000	ppmv		19200	00		0.971	25	
Nitrogen (N2)	19.0	9.00	Vol%		19.2	2		0.971	5	
Carbon Monoxide	552	90.0	ppmv		554			0.407	25	
	_								_	

0.06

0.407

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Result

15.6

9.00

90.0

0.009

Vol%

ppmv

Vol%

Reporting

Limit

Units

Date Issued: N

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

RPD

Limit

Client Site I.D.: Bristol

Analyte

Nitrogen (N2)

Carbon Monoxide

Carbon Monoxide

Purchase Order:

RPD

1.04

NA

NA

5 25

5

%REC

%REC Limits

07-SO04485

Qual

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Result

Spike

Level

Duplicate (BGC0954-DUP2)		So	urce: 23C1480-01	Prepared & A	nalyzed: 03/28/20	23
Methane	183000	4500	ppmv	180000	1.38	25
Methane	18.3	0.45	Vol%	18.0	1.38	5
Carbon dioxide	208000	4500	ppmv	207000	0.499	25
Carbon dioxide	20.8	0.45	Vol%	20.7	0.499	5
Oxygen (O2)	52500	4500	ppmv	52000	0.938	25
Oxygen (O2)	5.25	0.45	Vol%	5.20	0.938	5
Hydrogen (H2)	<	1800	ppmv	<1800	NA	25
Nitrogen (N2)	516000	18000	ppmv	509000	1.41	25
Hydrogen (H2)	<	0.18	Vol%	<0.18	NA	5
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25
Carbon Monoxide	<	0.009	Vol%	<0.009	NA	5
Duplicate (BGC0954-DUP3)		So	urce: 23C1480-02	Prepared & A	nalyzed: 03/28/20	23
Methane	325000	4500	ppmv	328000	0.944	25
Methane	32.5	0.45	Vol%	32.8	0.944	5
Carbon dioxide	348000	4500	ppmv	352000	1.05	25
Carbon dioxide	34.8	0.45	Vol%	35.2	1.05	5
Oxygen (O2)	6030	4500	ppmv	6040	0.0403	25
Oxygen (O2)	0.60	0.45	Vol%	0.60	0.0403	5
Hydrogen (H2)	76600	1800	ppmv	77500	1.19	25
Nitrogen (N2)	156000	18000	ppmv	157000	1.04	25

15.7

<90.0

<0.009

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 24, 2023 10:00

4330 Lewis Road, Suite 1

Date Issued:

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			
EPA TO-15 in Air				
Benzene	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

L	LCS recovery is outside of established acceptance limits
RPD	Relative Percent Difference
Qual	Qualifers
-RE	Denotes sample was re-analyzed
PF	Preparation Factor
MDL	Method Detection Limit
LOQ	Limit of Quantitation
ppbv	parts per billion by volume

TIC

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute

DATE / TIME

RELINQUISHED:

	A	<u> N A I</u>	<u>. Y 1</u>	I C A	L			AIE	RANAL	/ele											
former	y Air, V	Vater & S	ioil La	borator	ies	:			OF CUS			Equip	nent du	e 3/30/20	023						
COMPAN'	Y NAME	SCS Fiel	d Servi	ices - Harr	isbı	ırg IN	VOICE TO	: Same		:···•			JECT NAN			ol					
CONTACT	 Γ:					INVOICE CONTACT:						SITE	NAME:								
ADDRESS	S:					IN	VOICE AD	DRESS:				PRO	JECT NUN	/IBER:							
PHONE #:						IN	VOICE PH	ONE #:				P.O.	#:								
FAX #:				EN	ΛΑΙ	<u>.</u> :						Pretr	eatment P	rogram:							
ls sample	for comp	liance rep	orting?	YES NO)	Regulat	ory State:	VA Is	sample fro	m a chlori	nated si	upply?	YES (1	VO) PV	NS I.D. #:						
SAMPLER	NAME ((PRINT):				SA	AMPLER S	IGNATUR	E:			Turn	Around T	ime: Cir	cle: 10 (5 Days)	or .	'	Day(s	
Watrix Codes:	AA=Indoo	r/Amblent Air	SG=Soil	Gas LV=Lan	dfill∧	/ent Gas O1	r=Other	(06	3-23B-001	4						
		Regulator	Info	Canister Ir	nforr	nation			Sampling	Start Inform	ation		Sampling	Stop Inform	nation		8	AN	ALY	/SIS	
CLI	IENT						LAB ·	LAB	Barometric	Pres. (in H	g):		Barometri	c Pres. (in H	lg):		e Codes)	8		р	
	PLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Caniste Vacuum Hg)	Starting (in Sample		Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp *F	Matrix (se	Alt 145 C	EPA 3C	Benzene TO-15	
1)				11293	1.4	230202-02	21.6	D-	EDN	117	57	ma	PLE	•.				x		x	
2) 2	57		İ	14306 -12383	1.4	2302 02-0 2	21.6	40 Sange	3/23/ /23		DIV		3/23/	29	s Lgmo	143	LG	x	x	x	
3) 5			ø	12418	1.4	230202-02	21.6	3.4"	3/23/ 23/ 23	1:30pm	27	7 166.4	3/23/23	1:33 pm	12	165	LG	x	x	x	
4) [4	6*		5/3	14294		230126-02	21.6		3/23/23	1:25 DM	27	145	3/23,	1:28 _{pm}	1	1453	LG	x	x	x	
ID		is ap	PEVE			-	EMP. PL		ANCEL		<i></i>		POSE. 7	HANKS	3: 310)			\bot		
relinquishe f	io: Tedex	Ē		;	REC	EIVED: Fe d	ex E	DATI	E / TIME	QC Data P	ackage [EONLY Ro.9								
RELINQUISHE		£	DAT	E / TIME	REC	EIVED:	Johnen	DATI 3/24/2	E / TIME ! 3 [000	Level II	_	No sen	SC	S Field	Service	es 2	3C	135	52		

DATE / TIME

Level III

Level IV

Bristol

Recd: 03/24/2023 Due: 03/31/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23C1352

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 24, 2023 10:00

4330 Lewis Road, Suite 1

March 29, 2023 16:48

Harrisburg, PA 17111

Submitted To: Tom Lock

Bristol

Client Site I.D.:

Project Number: [none]

Date Issued:

Purchase Order: 07-SO04485

Sample Conditions Checklist

Samples Received at:	20.90°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Analysis for sample -03: 46 not required per Tom Lock via email. MRS 03/24/213 1332

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Ma

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued:

April 6, 2023 17:34

Harrisburg, PA 17111

Project Number:

07223016.00

Submitted To: Tom Lock

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 03/30/2023 16:03. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

100001415

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received: March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued: April 6, 2023 17:34

Harrisburg, PA 17111

Project Number: 07223016.00

Submitted To: Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
51	23C1681-01	Air	03/29/2023 12:25	03/30/2023 16:03
57	23C1681-02	Air	03/29/2023 12:14	03/30/2023 16:03
37	23C1681-03	Air	03/29/2023 11:59	03/30/2023 16:03

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

urg, PA Date Received:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued: April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Bristol Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 27

Field Sample #: 51

Sub Description/Location:

Final Vacuum(in Hg): 2.2

Sample ID: 23C1681-01

Client Site I.D.:

Canister ID: 063-00475::15039

Receipt Vacuum(in Hg): 2.2

Sample Matrix: Air

Sampled: 3/29/2023 12:25

O--i-t-- Ci-- 4 4

Flow Controller Type: Passive

Canister Size: 1.4

Flow Controller ID:

Sample Type: LG

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

		ppmv		ALI-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	1430	90.0	90.0		9	1	4/3/23 11:17	MER

	Vola	atile Organi	c Compou	nds by GC/TCD - Unadjusted, as received bas	is			
		Vol%		EPA 3C			-	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	4.48	0.45	0.45		9	1	4/3/23 11:17	MER
Carbon dioxide, as received	62.3	0.45	0.45		9	1	4/3/23 11:17	MER
Oxygen (O2), as received	1.84	0.45	0.45	С	9	1	4/3/23 11:17	MER
Hydrogen (H2), as received	25.8	1.62	1.62		81	1	4/3/23 14:25	MER
Nitrogen (N2), as received	ND	9.00	9.00		9	1	4/3/23 11:17	MER
Carbon Monoxide, as received	0.14	0.009	0.009		9	1	4/3/23 11:17	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

Date Received: Date Issued:

March 30, 2023 16:03

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 57

Sample ID: 23C1681-02

Sample Matrix: Air

Sampled: 3/29/2023 12:14

Sample Description/Location:

Sub Description/Location:

Canister ID: 063-00473::15043

Canister Size: 1.4

Initial Vacuum(in Hg): 27

Final Vacuum(in Hg): 4.6

Receipt Vacuum(in Hg): 4.6

Flow Controller Type: Passive

Flow Controller ID:

Sample Type: LG Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145 ppmv

Date/Time Analyst

Analyte Result MDL LOQ Flag/Qual Dilution Analyzed 884 Carbon Monoxide, as received 90.0 90.0 9 1 4/3/23 12:08 MER

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

		Vol%	-	EPA 3C				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	18.5	0.45	0.45		9	1	4/3/23 12:08	MER
Carbon dioxide, as received	48.2	0.45	0.45		9	1	4/3/23 12:08	MER
Oxygen (O2), as received	3.57	0.45	0.45	С	9	1	4/3/23 12:08	MER
Hydrogen (H2), as received	11.1	1.08	1.08		54	1	4/3/23 14:10	MER
Nitrogen (N2), as received	16.9	9.00	9.00		9	1	4/3/23 12:08	MER
Carbon Monoxide, as received	0.09	0.009	0.009		9	1	4/3/23 12:08	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

March 30, 2023 16:03

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

07223016.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Initial Vacuum(in Hg): 28

Field Sample #: 37

Sub Description/Location:

Final Vacuum(in Hg): 3.0

Sample ID: 23C1681-03

Canister ID: 063-00268::13370

Receipt Vacuum(in Hg): 3.0

Sample Matrix: Air

Canister Size: 1.4

Flow Controller Type: Passive

Sampled: 3/29/2023 11:59

ppmv

Flow Controller ID:

Sample Type: LG

Volatile Organic Compounds by	GC/TCD -	Unadjusted,	as received basis

ALT-145

Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 167 9 Carbon Monoxide, as received 90.0 90.0 1 4/3/23 13:00 MER

	Vola	atile Organi	c Compour	nds by GC/TCD - Unadjusted, as received basi	s			
		Vol%		EPA 3C			Data /Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Date/Time Analyzed	Analyst
Methane, as received	12.3	0.45	0.45		9	1	4/3/23 13:00	MER
Carbon dioxide, as received	28.6	0.45	0.45		9	1	4/3/23 13:00	MER
Oxygen (O2), as received	6.13	0.45	0.45	С	9	1	4/3/23 13:00	MER
Hydrogen (H2), as received	3.07	0.18	0.18		9	1	4/3/23 13:00	MER
Nitrogen (N2), as received	43.1	9.00	9.00		9	1	4/3/23 13:00	MER
Carbon Monoxide, as received	0.02	0.009	0.009		9	1	4/3/23 13:00	MER

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued:

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	pounds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
23C1681-01	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-02	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-03	1.00 mL / 1.00 mL	ALT-145	BGC1179	SGD0023	AG00026
23C1681-01	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-01RE1	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-02	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-02RE1	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026
23C1681-03	1.00 mL / 1.00 mL	EPA 3C	BGC1179	SGD0023	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued:

April 6, 2023 17:34

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC1179 - No Prep VO	C GC Air									
Blank (BGC1179-BLK1)					Prep	pared & A	Analyzed	: 03/31/20	023	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Carbon Monoxide	<	10.0	ppmv							
Carbon Monoxide	<	0.001	Vol%							
LCS (BGC1179-BS1)					Prep	pared &	Analyzed	: 03/31/20	023	
Methane	4740	500	ppmv	5000		94.9	0-200			
Methane	4740	0.05	ppmv	5000		94.9	80-120			
Carbon dioxide	4400	500	ppmv	5000		88.0	0-200			
Carbon dioxide	4400	0.05	ppmv	5000		88.0	80-120			
Oxygen (O2)	5150	500	ppmv	5000		103	0-200			
Oxygen (O2)	5150	0.05	ppmv	5000		103	80-120			
Hydrogen (H2)	5880	200	ppmv	5100		115	0-200			
Nitrogen (N2)	5450	2000	ppmv	5000		109	0-200			
Nitrogen (N2)	5450	1	ppmv	5000		109	80-120			
Hydrogen (H2)	5880	0.02	ppmv	5100		115	80-120			
Carbon Monoxide	4940	10	ppmv	5000		98.8	0-200			
Carbon Monoxide	4940	0.001	ppmv	5000		98.8	80-120			
Duplicate (BGC1179-DUP1)		Soi	urce: 23C	1537-01	Prep	pared &	Analyzed	: 03/31/20	023	
Methane	325000	4500	ppmv		32800	00		0.935	25	
Methane	32.5	0.45	Vol%		32.8	3		0.934	5	
Carbon dioxide	372000	4500	ppmv		37600	00		1.15	25	
Carbon dioxide	37.2	0.45	Vol%		37.6	5		1.15	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Hydrogen (H2)	151000	1800	ppmv		15200	00		0.704	25	
Nitrogen (N2)	10.9	9.00	Vol%		11.0)		0.809	5	
Nitrogen (N2)	109000	18000	ppmv		11000	00		0.809	25	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

SCS Field Services - Harrisburg, PA Client Name:

Date Received: 4330 Lewis Road, Suite 1

April 6, 2023 17:34 Date Issued:

March 30, 2023 16:03

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: 07223016.00 Client Site I.D.: **Bristol** Purchase Order: 07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC1179 - No Prep VOC	GC Air									
Duplicate (BGC1179-DUP1)		Sou	ırce: 23C	1537-01	Prep	ared & A	Analyzed	: 03/31/20)23	
Carbon Monoxide	182	90.0	ppmv		180			1.19	25	
Carbon Monoxide	0.02	0.009	Vol%		0.02			1.19	5	
Duplicate (BGC1179-DUP2)		Sou	urce: 23C	1537-02	Prep	ared & A	Analyzed	: 03/31/20)23	
Methane	354000	4500	ppmv		35600	00		0.576	25	
Methane	35.4	0.45	Vol%		35.6	i		0.576	5	
Carbon dioxide	368000	4500	ppmv		36700	00		0.218	25	
Carbon dioxide	36.8	0.45	Vol%		36.7			0.218	5	
Oxygen (O2)	4500	4500	ppmv		4500)		0.0320	25	
Oxygen (O2)	0.45	0.45	Vol%		0.45	i		0.0320	5	
Hydrogen (H2)	103000	1800	ppmv		10400	00		0.362	25	
Nitrogen (N2)	98700	18000	ppmv		9920	0		0.445	25	
Nitrogen (N2)	9.87	9.00	Vol%		9.92			0.445	5	
Carbon Monoxide	0.01	0.009	Vol%		0.01			3.98	5	
Carbon Monoxide	113	90.0	ppmv		118			3.98	25	
Duplicate (BGC1179-DUP3)		Sou	ırce: 23C	1537-03	Prep	ared & A	Analyzed	: 03/31/20)23	
Methane	51100	4500	ppmv		4960	0		2.91	25	
Methane	5.11	0.45	Vol%		4.96	i		2.91	5	
Carbon dioxide	365000	4500	ppmv		36600	00		0.168	25	
Carbon dioxide	36.5	0.45	Vol%		36.6	i		0.168	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		<0.4	5		NA	5	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	656000	1800	ppmv		65400	00		0.289	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00	0		NA	5	
Carbon Monoxide	545	90.0	ppmv		545			0.0825	25	
Carbon Monoxide	0.05	0.009	Vol%		0.05	;		0.0825	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Reporting

Date Received:

March 30, 2023 16:03

Date Issued:

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Bristol

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

%REC

07-SO04485

RPD

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGC1179 - No Prep VC	OC GC Air									
Duplicate (BGC1179-DUP4)		Soi	urce: 23C	1537-04	Prep	ared & A	Analyzed	: 03/31/20)23	
Methane	495000	4500	ppmv		49400	00		0.197	25	
Methane	49.5	0.45	Vol%		49.4			0.197	5	
Carbon dioxide	358000	4500	ppmv		35800	00		0.0120	25	
Carbon dioxide	35.8	0.45	Vol%		35.8			0.0119	5	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Oxygen (O2)	<	0.45	Vol%		< 0.45	5		NA	5	
Hydrogen (H2)	51000	1800	ppmv		5040	0		1.03	25	
Nitrogen (N2)	<	18000	ppmv		<1800	0		NA	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00)		NA	5	
Carbon Monoxide	100	90.0	ppmv		103			2.13	25	
Carbon Monoxide	0.01	0.009	Vol%		0.01			2.13	5	
Duplicate (BGC1179-DUP5)		Soi	urce: 23C	1681-01	Prep	ared & A	Analyzed	: 04/03/20)23	
Methane	44500	4500	ppmv		4480	0		0.529	25	
Methane	4.45	0.45	Vol%		4.48			0.529	5	
Carbon dioxide	61.7	0.45	Vol%		62.3			0.827	5	
Carbon dioxide	617000	4500	ppmv		62300	00		0.827	25	
Oxygen (O2)	1.82	0.45	Vol%		1.84			0.913	5	
Oxygen (O2)	18200	4500	ppmv		1840	0		0.913	25	
Nitrogen (N2)	<	9.00	Vol%		<9.00)		NA	5	
Nitrogen (N2)	62700	18000	ppmv		6350	0		1.24	25	
Hydrogen (H2)	261000	1800	ppmv		26400	00		0.954	25	
Carbon Monoxide	1420	90.0	ppmv		1430)		0.785	25	
Carbon Monoxide	0.14	0.009	Vol%		0.14			0.785	5	
Duplicate (BGC1179-DUP6)		Soi	urce: 23C	1681-02	Prep	ared & A	Analyzed	: 04/03/20)23	
Methane	185000	4500	ppmv		18500	00		0.0304	25	
Methane	18.5	0.45	Vol%		18.5			0.0304	5	
Carbon dioxide	484000	4500	ppmv		48200	00		0.269	25	
Carbon dioxide	48.4	0.45	Vol%		48.2			0.269	5	
Oxygen (O2)	35800	4500	ppmv		3570	0		0.0408	25	
Oxygen (O2)	3.58	0.45	Vol%		3.57			0.0408	5	
Hydrogen (H2)	119000	1800	ppmv		11900	0		0.0497	25	
Nitrogen (N2)	168000	18000	ppmv		16900	00		0.0671	25	
Nitrogen (N2)	16.8	9.00	Vol%		16.9			0.0671	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued:

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

		Reporting		Spike	Source	%RE	EC	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Limi	ts RPD	Limit	Qual

Duplicate (BGC1179-DUP6)		Soi	urce: 23C1681-02	Prepared & A	nalyzed: 04/03/202	23
Carbon Monoxide	890	90.0	ppmv	884	0.629	25
Carbon Monoxide	0.09	0.009	Vol%	0.09	0.629	5
Duplicate (BGC1179-DUP7)		Soi	urce: 23C1681-03	Prepared & A	nalyzed: 04/03/202	23
Methane	12.3	0.45	Vol%	12.3	0.00188	5
Methane	123000	4500	ppmv	123000	0.00187	25
Carbon dioxide	284000	4500	ppmv	286000	0.721	25
Carbon dioxide	28.4	0.45	Vol%	28.6	0.721	5
Oxygen (O2)	60900	4500	ppmv	61300	0.625	25
Oxygen (O2)	6.09	0.45	Vol%	6.13	0.625	5
Hydrogen (H2)	30700	1800	ppmv	30700	0.201	25
Nitrogen (N2)	429000	18000	ppmv	431000	0.466	25
Nitrogen (N2)	42.9	9.00	Vol%	43.1	0.466	5
Hydrogen (H2)	3.07	0.18	Vol%	3.07	0.201	5
Carbon Monoxide	166	90.0	ppmv	167	0.216	25
Carbon Monoxide	0.02	0.009	Vol%	0.02	0.216	5

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued:

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07223016.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12333	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Qualifiers and Definitions

C Continuing calibration verification response for this analyte is outside specifications.

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10%

of the absolute.

AIR ANALYSIS

CHAIN OF CHETODY

Equipment due 4/11/2023

Page 2 of 2

	-							CHAIN	JF CU3	IODY		quipn	ient aue	4/11/20	23		Г	ay	e 2	. 01 2
COV	IPANY NAME:	SCS Field	Servi	ces - Harri	sbu	rg IN\	OICE TO	Same				PROJ	PROJECT NAME/Quote #: Bristol							
CON	NTACT:					IN	OICE CO	NTACT:				SITE	SITE NAME:							
ADD	RESS:					IN\	INVOICE ADDRESS:				PROJ	ECT NUM	BER: O`	7723t	0.616	0				
PHC	NE #:					IN	INVOICE PHONE #:				P.O. #	:								
FAX	#:			EN	AIL	:	F				Pretre	atment Pr	ogram:							
ls sa	ample for comp	liance repo	orting?	(YES) NO		Regulate	ory State:	VA Iss	ample fro	m a chlorii	nated sup	ply?	YES (N	IO) PW	/S I.D. #:					
SAN	SAMPLER NAME (PRINT): Logan Culhane					SA	SAMPLER SIGNATURE:			Turn	Turn Around Time: Circle: 10 5 Days or _ Day(s)				Day(s)					
Matrix	Codes: AA=Indoor	/Ambient Air	SG=Soil	Gas LV=Land	IIII/V	ent Gas OT	=Other		0				063	-23C-0004	4					
		Regulator	nfo	Canister In	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		Codes)	AN	ALY	/SIS
	CLIENT						LAB	LAB	Barometric	Pres. (in Ho			Barometric	Pres. (in H	i i		(See Co	Ö		3
	SAMPLE I.D.	Flow Controller	Cal Flow		(L)	Cleaning	Outgoing Canister Vacuum (in	Receiving Canister Vacuum (in		Start Time	Initial Canister Vacuum	Jamuny		Stop Time	Final Canister Vacuum (in	Ending Sample	Matrix (s	Alt 145 CO		LT 4 OBLACEN
		ID	(mL/min)	Canister ID	Siz	Batch ID	Hg)	Hg)	Start Date	(24hr clock)	Hg)	Temp *F	Stop Date	(24hr clock)	Hg)	Temp *F	Σ	₹	ဗ္ဗ	
1)	51			15039	1.4	230307-01	20	2.2	729/23	12:23 pm	27	169.8	3/29/13	12:25 pm	9	169.8	LG	x	x	χ
2)	57			15043	1.4	230307-01	20	4.6	3/19	1212 en @1	77	No.	3/29/ 23	12:14 PM	9	157.	LG	x	x	χ
3)	37			13370	1.4	230307-01	20	3.0	3/29		78	150,6	3/27/23	11:59	10	8	LG	X	x	×
4)																				
	-//				10=4			247	- 1 TIME		310	noice		rai 2	1.00					
RELI	NOUISHED	- 3	129	4:158		EIVED:	dex	DAT	E / TIME	QC Data P	'ackage L	AB USI	ONLY							
RELI	NOTOR HER			TE / TIME		EIVED:	01	3/2DAT	E / TIME			SCS	Field Se	rvices	23C16	81				
	ted	ex_			10	mel	Han.	3/30/2	3 /003	Level II		Bristo	1							
RELI	NQUISHED:		DAT	TE / TIME	KEC	CEIVED:		DAT	Ë / TIME	Level III Level IV		Recd:	03/30/20	23 Due	: 04/06/20 v1303					
											j									

Certificate of Analysis

Final Report

Laboratory Order ID 23C1681

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

March 30, 2023 16:03

4330 Lewis Road, Suite 1

Date Issued: April

April 6, 2023 17:34

Harrisburg, PA 17111

Submitted To: Tom Lock

Bristol

Client Site I.D.:

Project Number:

07223016.00

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	21.00°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Appendix D

Solid Waste Permit 588 Daily Borehole Temperature Averages

Solid Waste Permit 588 Daily Borehole Temperature Averages

SCS ENGINEERS

07222155.00 | April 4, 2023

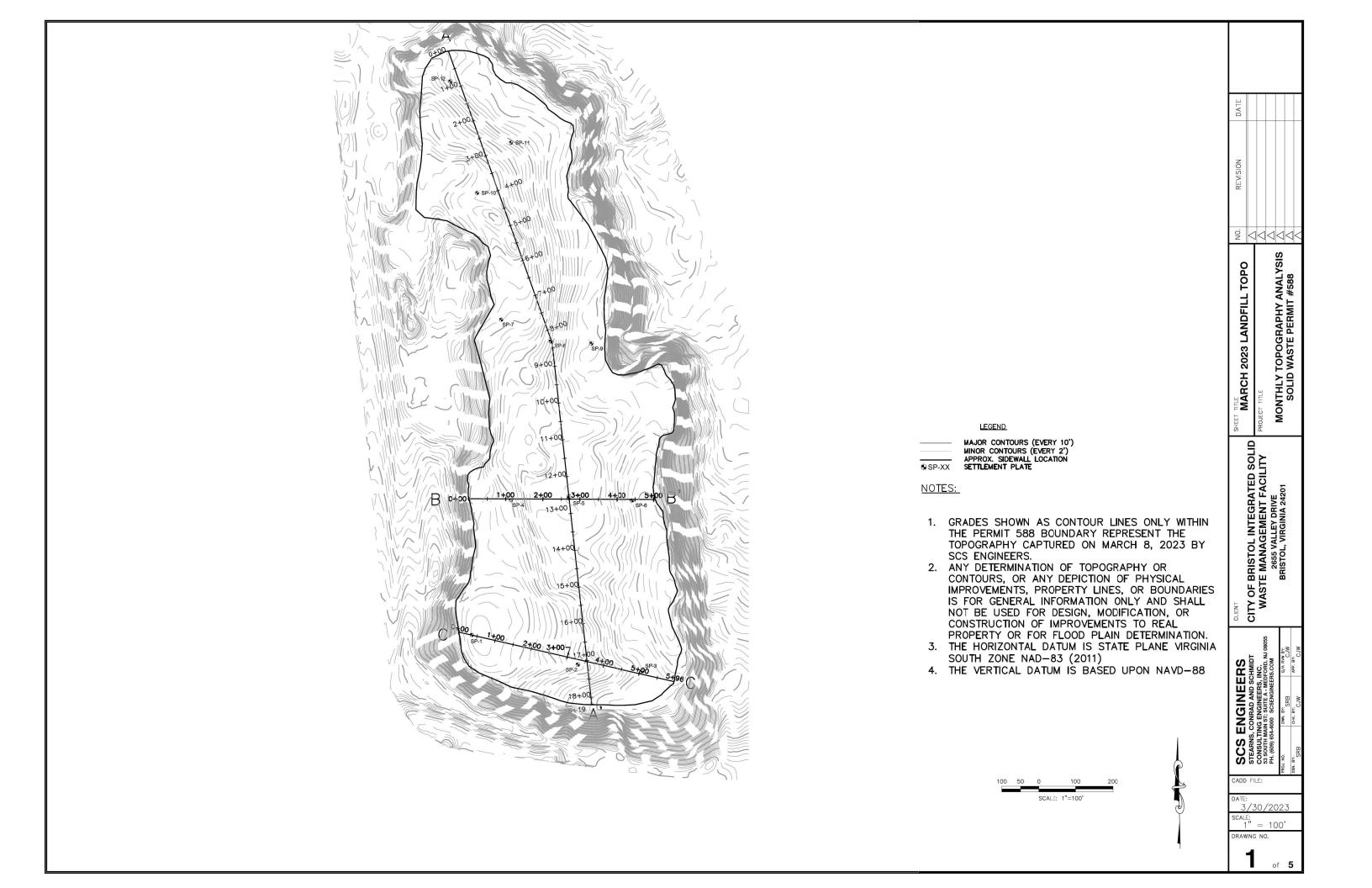
		Ī	Depth fron	n Surface		
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft
Mar 1	206.7	206.9	207.1	207.1	207.5	229.8
Mar 2	206.3	206.6	207.0	207.1	207.4	229.7
Mar 3	206.1	206.3	206.5	206.7	206.9	230.4
Mar 4	206.4	206.5	206.6	206.8	207.1	231.5
Mar 5	206.9	207.1	207.4	207.5	207.7	233.3
Mar 6	206.7	207.0	207.4	207.5	207.6	234.7
Mar 7	206.7	206.9	207.0	207.2	207.5	235.6
Mar 8	206.5	206.8	207.3	207.3	207.5	236.2
Mar 9	206.7	207.1	207.3	207.3	207.5	236.9
Mar 10	206.1	206.4	206.7	206.9	207.1	236.4
Mar 11	242.8	237.4	243.0	243.0	254.0	279.5
Mar 12	206.0	206.0	206.3	206.4	207.0	236.5
Mar 13	206.1	206.3	206.5	206.5	207.0	237.1
Mar 14	224.9	225.2	220.0	220.0	235.6	270.9
Mar 15	206.7	206.8	207.3	207.3	207.6	237.6
Mar 16	222.0	207.3	221.8	238.7	222.4	255.5
Mar 17	206.0	206.0	206.3	206.3	206.9	237.8
Mar 18	206.3	206.4	206.5	206.6	207.1	237.4
Mar 19	290.4	320.7	321.1	321.3	322.0	372.1
Mar 20	316.5	316.9	317.3	317.4	317.8	367.6
Mar 21	207.1	207.4	207.7	207.8	208.0	238.6
Mar 22	207.0	207.1	207.3	207.4	208.0	238.3
Mar 23	207.1	207.3	207.5	207.5	208.0	239.1
Mar 24	206.8	207.2	207.4	207.4	207.7	239.2
Mar 25	227.9	228.9	229.0	207.3	207.6	265.2
Mar 26	206.8	207.5	207.6	207.5	231.9	267.9
Mar 27	206.5	207.1	207.3	207.3	207.6	240.0
Mar 28	206.4	207.0	207.3	207.1	207.5	241.1
Mar 29	213.2	207.1	207.4	207.3	207.7	242.1
Mar 30	206.9	207.4	207.7	207.6	207.8	241.6
Mar 31	206.4	207.0	207.2	207.2	207.6	242.5
Average	216.0	216.4	217.1	217.0	218.4	250.4

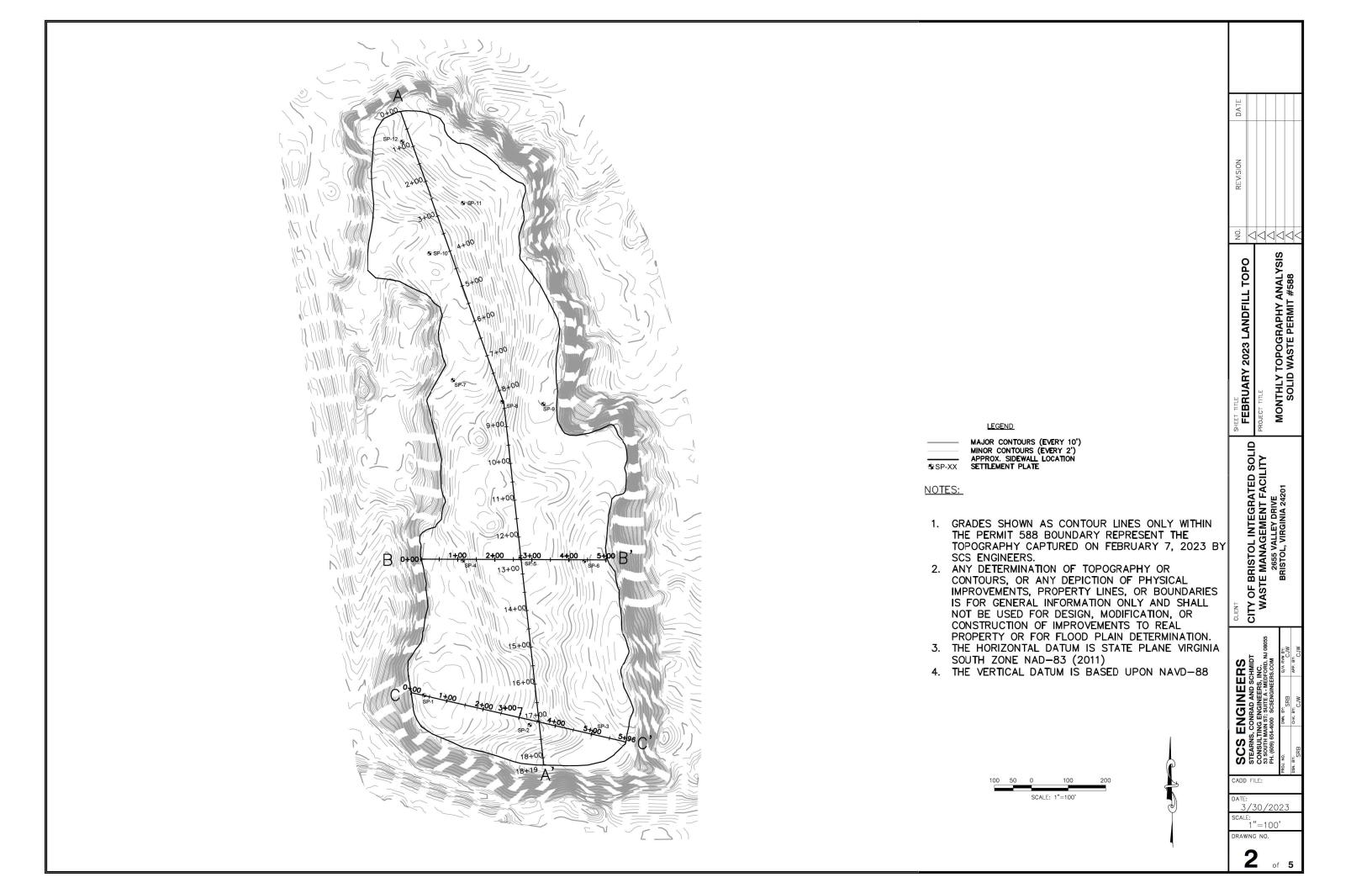
	Depth from Surface									
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft				
Mar 1	176.5	278.5	241.5	268.2	296.4	312.0				
Mar 2	174.9	240.5	241.3	268.1	256.0	268.4				
Mar 3	173.8	240.6	241.5	268.2	256.1	268.5				
Mar 4	173.7	240.1	241.1	268.3	258.9	268.6				
Mar 5	174.9	247.2	248.0	268.3	296.4	277.6				
Mar 6	168.2	238.9	239.8	268.2	256.2	268.5				
Mar 7	166.5	237.9	238.8	268.5	256.5	268.4				
Mar 8	164.9	236.2	237.4	268.0	255.8	267.9				
Mar 9	163.6	235.7	236.8	268.4	256.2	268.4				
Mar 10	163.1	235.0	236.2	268.2	256.2	268.2				
Mar 11	163.1	235.7	237.2	269.5	257.3	269.6				
Mar 12	162.0	234.2	235.5	268.0	256.0	268.0				
Mar 13	161.3	234.3	235.8	268.0	256.0	268.3				
Mar 14	172.8	238.5	239.6	290.1	277.0	290.1				
Mar 15	178.2	272.7	274.3	308.1	283.2	296.4				
Mar 16	168.5	244.9	254.7	331.9	313.7	327.2				
Mar 17	160.5	234.5	235.8	267.9	256.0	268.0				
Mar 18	183.7	273.8	238.3	268.2	284.1	308.4				
Mar 19	161.3	237.0	239.3	270.9	258.0	271.1				
Mar 20	161.3	283.8	286.3	366.3	349.0	326.5				
Mar 21	172.9	250.0	251.1	290.9	277.7	291.0				
Mar 22	160.5	234.6	235.8	268.0	258.8	268.0				
Mar 23	159.2	235.2	236.5	268.5	256.5	268.6				
Mar 24	195.1	251.1	261.5	322.9	325.9	333.1				
Mar 25	158.6	235.5	236.8	268.5	256.7	268.6				
Mar 26	209.9	270.3	259.6	369.8	296.4	350.1				
Mar 27	188.4	322.9	333.3	332.6	353.3	332.7				
Mar 28	162.3	236.9	241.9	274.4	258.2	270.2				
Mar 29	167.0	239.0	240.4	286.0	260.9	286.3				
Mar 30	157.5	235.6	237.0	276.5	264.7	276.9				
Mar 31	172.0	247.5	261.5	267.7	257.9	295.0				
Average	170.2	247.7	247.6	284.4	274.3	286.2				

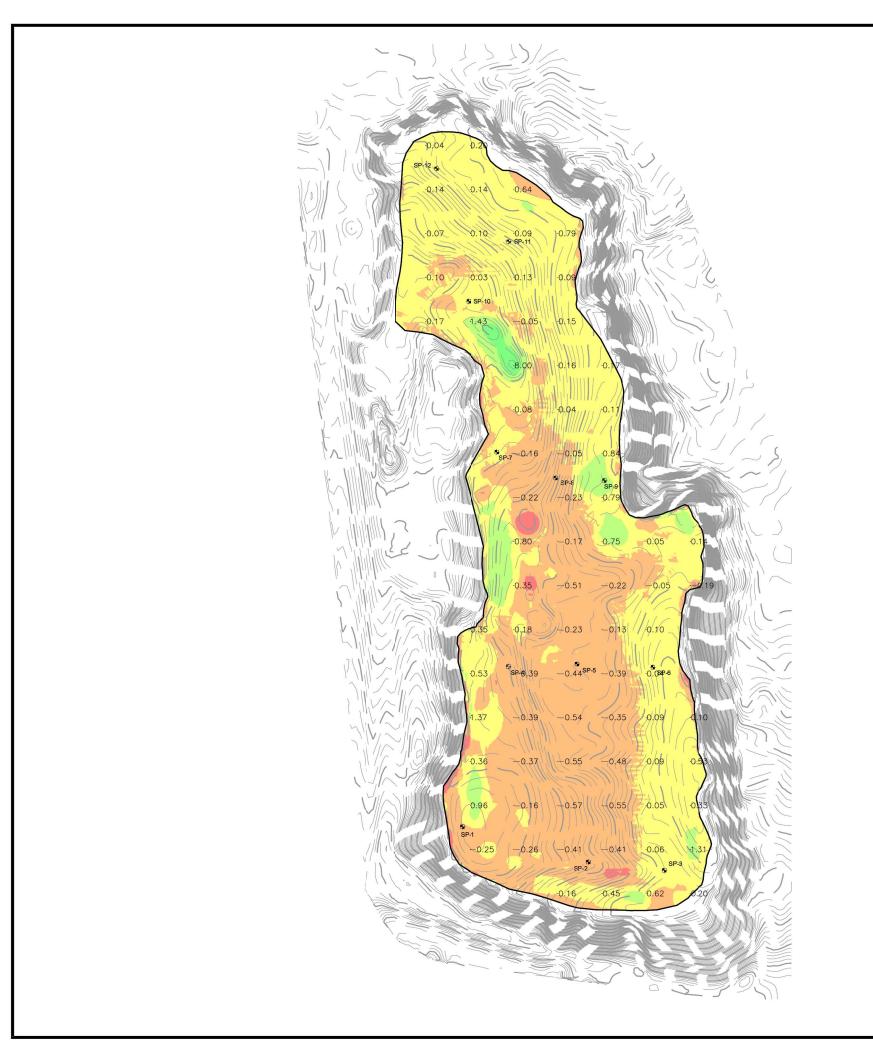
				Depth fron	n Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
Mar 1	206.8	208.0	208.5	252.7	262.8	268.9	270.1	257.1
Mar 2	206.1	208.8	211.4	252.3	262.7	268.7	269.9	256.8
Mar 3	206.3	206.7	207.3	252.8	262.8	269.1	270.2	256.6
Mar 4	206.2	206.6	207.8	250.8	262.2	268.2	269.3	256.0
Mar 5	206.3	207.1	208.5	250.7	261.8	267.8	269.1	255.7
Mar 6	206.1	207.4	208.6	250.9	261.9	268.0	269.2	255.8
Mar 7	206.5	207.5	208.5	250.8	262.1	268.3	269.4	255.9
Mar 8	206.3	209.6	210.1	250.3	261.6	268.0	269.2	256.2
Mar 9	206.2	210.3	211.9	250.7	261.9	268.2	269.3	257.9
Mar 10	205.8	207.9	208.8	250.4	261.8	268.0	269.1	257.7
Mar 11	206.0	206.4	207.3	250.6	262.0	268.2	269.3	257.6
Mar 12	237.7	209.9	237.5	291.9	267.1	313.0	269.3	300.9
Mar 13	205.6	206.1	207.1	250.2	261.8	268.0	269.0	258.3
Mar 14	206.2	206.4	207.3	250.2	262.0	268.0	269.3	258.5
Mar 15	206.1	206.5	207.7	250.2	261.7	267.9	269.0	258.6
Mar 16	206.3	206.8	208.0	250.9	262.0	268.1	269.5	258.7
Mar 17	205.3	205.8	207.3	250.6	261.8	267.7	269.0	257.8
Mar 18	206.0	206.4	207.2	244.9	262.5	268.7	269.5	257.3
Mar 19	206.3	206.5	207.5	242.2	262.4	268.7	269.4	256.7
Mar 20	206.0	206.1	207.8	249.7	261.9	267.9	269.2	256.6
Mar 21	238.1	206.7	208.5	251.8	262.4	311.3	312.7	297.6
Mar 22	292.1	292.6	294.6	358.1	377.5	386.5	388.1	368.1
Mar 23	206.4	206.7	208.2	249.6	262.7	268.7	269.8	256.8
Mar 24	206.2	206.8	208.1	251.9	262.9	268.9	270.0	256.9
Mar 25	207.2	207.3	207.7	291.4	304.6	313.4	271.0	256.8
Mar 26	207.4	216.9	214.8	253.7	263.8	270.3	271.5	256.9
Mar 27	207.2	212.0	218.9	246.5	263.7	270.1	271.1	256.6
Mar 28	206.2	210.1	210.8	248.7	262.8	269.0	270.1	256.3
Mar 29	207.6	219.1	219.6	253.4	263.7	270.1	271.3	256.0
Mar 30	206.5	206.6	208.1	246.5	263.1	269.0	270.0	256.1
Mar 31	206.5	212.0	212.6	249.9	263.2	269.3	270.5	255.8
Average	211.1	211.1	213.2	256.3	267.6	276.6	274.9	263.2

	Depth from Surface										
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft			
Mar 1	175.6	207.0	207.0	207.5	243.3	249.7	245.5	171.9			
Mar 2	176.1	238.0	238.1	241.8	282.5	289.7	245.2	172.0			
Mar 3	175.0	206.3	206.4	229.7	245.2	250.7	245.3	172.1			
Mar 4	174.4	205.8	206.2	233.9	245.7	251.0	245.2	171.7			
Mar 5	174.4	204.4	204.6	235.2	246.6	251.6	245.3	171.6			
Mar 6	174.5	204.9	204.9	235.9	247.1	252.0	245.4	171.8			
Mar 7	174.2	204.8	205.2	236.4	247.7	252.5	245.4	171.7			
Mar 8	173.3	204.4	204.5	236.1	247.6	252.5	245.1	171.4			
Mar 9	173.4	204.9	205.3	236.8	248.8	253.3	245.5	171.8			
Mar 10	171.6	205.2	205.2	237.1	249.1	253.3	245.3	172.1			
Mar 11	171.3	205.3	205.3	237.3	249.3	253.5	245.3	171.8			
Mar 12	170.8	204.3	204.8	237.6	249.3	253.9	245.0	172.0			
Mar 13	170.6	204.8	205.5	238.0	249.7	254.1	245.0	171.9			
Mar 14	170.3	205.5	206.0	237.7	250.1	254.1	245.0	171.9			
Mar 15	170.7	206.5	206.8	237.5	250.5	254.7	245.3	171.9			
Mar 16	170.3	206.9	207.0	237.3	251.0	255.0	245.6	171.9			
Mar 17	170.2	206.0	206.1	236.6	251.0	255.3	245.2	172.1			
Mar 18	170.3	206.3	206.5	230.4	251.2	255.4	245.3	172.1			
Mar 19	170.1	206.7	206.8	208.5	251.1	255.4	245.1	172.1			
Mar 20	170.1	207.3	207.4	209.2	251.1	255.7	245.4	171.8			
Mar 21	170.0	207.6	207.6	209.9	251.6	256.5	245.6	172.5			
Mar 22	169.9	207.2	207.3	208.6	251.3	256.7	245.4	172.2			
Mar 23	170.0	207.5	207.5	207.9	251.7	257.0	245.8	172.7			
Mar 24	170.0	207.3	207.4	207.4	251.5	257.3	246.0	172.8			
Mar 25	170.5	207.0	207.1	207.4	251.0	257.4	246.0	172.9			
Mar 26	172.8	207.1	206.8	207.2	249.3	258.2	245.9	172.7			
Mar 27	175.1	207.2	205.9	207.7	247.7	258.0	246.4	173.0			
Mar 28	175.0	207.2	206.3	206.7	245.1	256.8	245.6	172.8			
Mar 29	176.4	207.3	206.8	206.9	240.1	256.2	245.5	172.8			
Mar 30	179.0	207.5	207.5	207.6	236.7	254.7	245.7	173.0			
Mar 31	184.8	207.0	207.3	207.2	233.8	254.3	245.6	172.7			
Average	172.9	207.3	207.3	223.4	249.0	255.7	245.4	172.2			

				Depth fron	n Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
Mar 1	146.3	207.0	207.1	207.3	226.6	244.2	251.8	189.6
Mar 2	146.0	206.8	207.0	207.0	226.5	244.2	251.7	189.5
Mar 3	145.5	206.2	206.4	206.7	226.8	244.3	251.7	189.6
Mar 4	145.3	206.5	206.9	207.1	227.3	244.3	251.4	189.4
Mar 5	145.3	207.2	207.5	207.5	227.7	244.5	251.5	189.6
Mar 6	145.6	207.2	207.3	207.4	227.7	244.5	251.5	189.6
Mar 7	165.1	207.0	207.1	207.6	227.9	244.6	251.4	189.6
Mar 8	145.4	207.3	207.3	207.4	227.3	244.3	250.7	189.4
Mar 9	145.3	207.3	207.3	207.6	228.1	244.8	251.0	189.7
Mar 10	145.6	206.7	206.9	207.2	227.7	244.9	250.9	189.5
Mar 11	145.1	206.5	206.6	207.3	227.9	244.8	250.5	189.5
Mar 12	144.1	206.0	206.0	206.5	227.7	244.8	250.0	189.2
Mar 13	144.6	206.3	206.4	206.9	227.4	244.3	250.1	189.3
Mar 14	145.0	206.8	206.9	207.0	243.7	244.0	268.8	202.7
Mar 15	154.4	207.3	221.8	207.5	227.3	261.5	250.0	189.5
Mar 16	145.5	207.2	207.2	207.4	227.5	244.0	250.0	189.8
Mar 17	145.0	206.0	206.2	206.7	227.0	243.9	249.7	189.7
Mar 18	145.0	206.4	206.5	207.0	227.0	243.7	249.5	189.6
Mar 19	144.8	207.2	222.5	221.8	243.5	262.8	267.9	189.6
Mar 20	144.6	207.4	207.5	207.5	226.7	243.4	249.5	189.6
Mar 21	144.5	207.5	207.5	207.8	228.1	243.9	249.5	190.0
Mar 22	144.1	207.1	207.2	207.8	228.3	244.0	249.2	190.0
Mar 23	144.3	207.4	207.4	207.7	228.5	244.3	249.5	190.4
Mar 24	144.4	207.3	207.3	207.4	228.4	244.4	249.6	190.4
Mar 25	144.2	206.7	207.0	207.3	228.0	244.2	249.5	190.3
Mar 26	144.0	207.1	207.2	207.5	227.8	243.8	249.4	190.3
Mar 27	143.0	207.2	207.2	207.4	227.8	243.8	249.4	190.4
Mar 28	143.3	207.0	207.2	207.4	227.0	243.0	248.8	190.0
Mar 29	143.5	207.3	207.4	207.5	226.5	242.2	248.9	190.3
Mar 30	143.7	207.5	207.5	207.7	227.0	242.5	248.8	190.5
Mar 31	143.0	207.0	207.0	207.4	226.9	242.0	248.7	190.0
Average	145.7	207.0	208.0	207.8	228.5	245.2	251.3	190.2


	Depth from Surface								
Date	25 ft	50 ft	75 ft	100 ft	125 ft				
Mar 1	206.5	235.5	235.9	238.6	240.5				
Mar 2	208.4	272.7	272.4	276.3	276.5				
Mar 3	205.9	235.8	235.8	238.8	240.2				
Mar 4	206.6	236.0	236.2	239.1	240.4				
Mar 5	207.0	235.8	236.0	238.9	240.2				
Mar 6	237.7	272.0	236.0	275.6	240.3				
Mar 7	207.0	235.7	236.1	238.9	240.3				
Mar 8	207.3	235.4	235.5	238.4	239.6				
Mar 9	207.3	235.8	236.0	238.7	240.1				
Mar 10	206.5	235.8	236.1	238.7	240.0				
Mar 11	206.4	235.7	236.2	238.7	240.1				
Mar 12	206.0	235.9	236.0	238.3	240.0				
Mar 13	206.5	236.0	236.0	238.4	240.0				
Mar 14	207.0	235.6	236.0	238.4	239.8				
Mar 15	207.5	235.8	236.3	238.8	239.9				
Mar 16	207.1	235.8	236.5	238.8	240.3				
Mar 17	206.1	235.9	236.0	238.7	240.0				
Mar 18	206.6	236.3	236.3	239.0	240.3				
Mar 19	207.3	236.3	236.3	238.9	240.2				
Mar 20	207.5	236.5	236.6	239.0	240.4				
Mar 21	207.7	236.7	236.8	239.5	240.6				
Mar 22	207.3	236.2	236.6	239.1	240.1				
Mar 23	207.5	236.9	237.1	239.7	240.7				
Mar 24	207.4	237.2	237.3	239.7	240.9				
Mar 25	207.1	237.3	237.4	240.0	241.2				
Mar 26	207.3	237.2	237.3	239.8	240.8				
Mar 27	207.2	237.3	237.3	239.8	240.9				
Mar 28	192.2	236.6	236.9	239.5	240.5				
Mar 29	179.9	236.8	237.0	239.5	240.7				
Mar 30	178.9	236.8	236.9	239.7	240.8				
Mar 31	179.0	236.7	236.8	239.5	240.6				
Average	204.8	238.6	237.6	241.4	241.5				

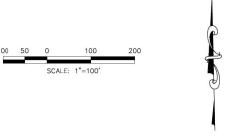

				Depth fron	n Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
Mar 1	171.3	225.7	225.9	239.5	243.8	242.0	236.5	228.5
Mar 2	169.5	225.7	226.0	239.3	244.0	242.0	236.2	228.1
Mar 3	167.8	225.6	226.0	239.3	244.0	242.1	236.3	228.2
Mar 4	167.0	225.2	225.9	239.4	244.0	242.2	236.5	228.1
Mar 5	169.0	225.1	225.7	239.5	243.8	242.0	236.5	227.9
Mar 6	168.5	225.5	225.5	239.3	243.9	242.2	236.5	227.6
Mar 7	169.1	225.3	225.5	239.0	243.8	242.2	236.3	227.6
Mar 8	169.7	224.6	225.1	238.6	243.5	241.9	235.6	227.2
Mar 9	170.2	225.0	225.3	239.1	244.0	242.4	236.4	227.5
Mar 10	169.3	225.0	225.2	239.1	244.1	242.2	236.2	227.3
Mar 11	169.3	224.3	224.9	238.7	243.9	242.2	236.2	227.4
Mar 12	169.7	225.2	225.6	241.6	246.3	243.3	238.3	228.2
Mar 13	168.0	224.0	224.3	239.0	244.0	242.0	235.8	226.8
Mar 14	168.1	244.1	244.2	260.7	266.2	246.4	239.8	230.7
Mar 15	168.5	223.6	224.1	239.0	244.0	242.1	235.6	226.4
Mar 16	168.6	223.2	223.5	239.1	244.4	242.2	235.5	226.1
Mar 17	168.5	222.5	223.0	239.0	244.0	242.0	235.0	225.5
Mar 18	191.3	293.4	293.8	270.4	279.5	274.0	268.9	293.3
Mar 19	167.8	224.3	224.3	238.5	244.0	242.2	235.0	225.2
Mar 20	167.5	224.5	224.5	238.7	243.9	241.9	234.8	224.9
Mar 21	167.4	224.5	224.6	239.1	244.5	242.4	235.2	225.1
Mar 22	167.1	224.1	224.4	239.0	244.0	242.0	235.0	224.8
Mar 23	167.3	224.8	224.9	239.5	244.5	242.5	235.3	225.3
Mar 24	167.4	225.3	225.2	239.6	244.5	242.5	235.5	225.5
Mar 25	166.3	225.2	225.8	239.8	244.5	242.6	235.5	225.4
Mar 26	165.7	225.7	226.0	239.7	244.5	242.6	235.5	225.1
Mar 27	166.4	225.7	226.3	240.0	244.5	242.5	235.5	225.4
Mar 28	166.0	225.4	225.5	239.5	244.3	242.3	234.8	224.6
Mar 29	166.0	225.4	225.6	239.7	244.5	242.4	234.9	224.7
Mar 30	166.2	225.4	225.7	239.8	244.6	242.5	234.9	224.8
Mar 31	165.8	225.0	225.5	239.6	244.1	242.1	234.7	224.1
Average	168.7	227.7	228.0	241.0	246.1	243.4	236.9	228.6


				Depth fron	ո Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
Mar 1	171.4	175.6	175.8	176.1	178.4	181.4	181.8	179.8
Mar 2	171.6	175.5	176.0	176.0	178.3	181.2	182.0	180.0
Mar 3	171.9	175.4	175.9	176.0	178.0	181.1	181.9	180.0
Mar 4	172.3	175.3	175.5	175.6	177.7	181.0	181.5	179.5
Mar 5	172.4	175.4	175.5	175.5	177.8	181.2	181.5	179.7
Mar 6	172.3	175.4	175.6	175.7	178.1	181.1	181.5	179.6
Mar 7	172.1	175.5	175.7	176.1	178.2	181.2	181.5	179.6
Mar 8	171.9	175.3	175.5	176.1	178.3	181.1	181.4	179.4
Mar 9	171.2	175.6	176.1	176.4	178.6	181.5	181.9	179.8
Mar 10	171.0	175.6	176.0	176.2	178.4	181.2	182.0	180.0
Mar 11	171.2	175.3	176.1	176.2	178.3	181.3	181.7	179.9
Mar 12	171.3	175.3	175.9	176.0	178.0	181.0	181.8	179.8
Mar 13	171.7	175.3	176.0	176.0	178.2	181.1	181.6	179.8
Mar 14	172.7	175.2	176.0	176.0	178.0	181.0	181.6	179.6
Mar 15	173.1	175.5	177.7	177.8	180.0	181.3	208.5	181.4
Mar 16	171.9	175.8	176.3	176.5	178.5	181.6	181.9	179.8
Mar 17	171.8	175.7	176.0	176.0	177.9	181.0	181.8	179.9
Mar 18	172.6	175.3	175.8	175.8	177.7	181.1	181.4	179.6
Mar 19	172.6	175.3	176.0	175.8	177.9	181.1	181.3	179.5
Mar 20	172.4	175.4	175.9	175.8	178.2	181.3	181.5	179.5
Mar 21	172.6	175.7	176.3	176.2	178.3	181.4	181.8	179.8
Mar 22	173.0	175.8	176.1	176.1	178.1	181.1	181.9	179.9
Mar 23	173.0	176.2	176.3	176.3	178.4	181.4	182.2	180.3
Mar 24	172.9	176.2	176.4	176.2	178.5	181.5	182.0	180.2
Mar 25	172.5	176.2	176.5	176.2	178.7	181.8	182.1	180.1
Mar 26	172.6	176.2	176.4	176.4	178.6	181.5	182.0	180.0
Mar 27	174.4	176.3	178.3	178.4	180.6	183.6	183.1	181.2
Mar 28	172.7	176.1	176.3	176.4	178.6	181.6	181.9	179.9
Mar 29	173.1	176.3	176.3	176.4	178.5	181.6	181.9	179.8
Mar 30	173.2	176.3	176.5	176.5	178.8	181.6	182.0	180.0
Mar 31	173.0	176.0	176.3	176.6	178.6	181.6	182.0	180.0
Average	172.3	175.7	176.2	176.2	178.4	181.4	182.7	179.9

				Depth fron	n Surface			
Date	25 ft	50 ft	75 ft	100 ft	125 ft	150 ft	175 ft	200 ft
Mar 1	121.0	147.8	146.6	151.1	149.7	132.9	118.0	109.4
Mar 2	120.5	148.0	166.5	151.2	170.6	132.7	131.4	109.3
Mar 3	120.5	147.6	146.3	151.2	149.8	132.7	116.7	109.8
Mar 4	119.5	147.3	146.0	151.1	149.5	132.5	116.4	109.9
Mar 5	121.0	147.1	146.1	150.8	149.6	132.6	116.7	109.8
Mar 6	120.5	147.7	146.6	151.0	149.6	132.6	116.8	109.9
Mar 7	119.8	147.0	145.7	150.8	149.6	132.6	116.8	109.8
Mar 8	119.8	146.3	145.3	150.3	149.2	132.1	116.4	109.4
Mar 9	120.0	147.0	145.9	150.8	149.7	132.5	117.0	109.9
Mar 10	119.5	146.2	145.1	150.3	149.3	132.2	117.0	109.9
Mar 11	119.6	145.7	144.5	150.1	149.3	132.3	116.6	109.5
Mar 12	120.0	146.0	145.0	150.0	149.0	132.0	116.3	109.0
Mar 13	119.5	146.3	145.4	150.3	149.1	132.1	116.3	109.3
Mar 14	119.6	166.1	164.8	170.6	148.9	132.0	116.0	109.0
Mar 15	120.6	147.5	146.4	150.7	148.9	132.1	116.6	109.5
Mar 16	120.5	147.3	146.1	150.9	149.2	132.1	116.9	109.7
Mar 17	120.4	147.1	145.9	150.8	149.2	132.1	117.0	109.4
Mar 18	120.0	146.8	145.6	150.5	149.3	132.2	117.3	109.4
Mar 19	120.7	146.7	145.6	150.3	149.0	131.9	117.2	109.2
Mar 20	121.2	147.4	146.5	150.6	149.0	131.8	117.1	108.8
Mar 21	121.3	147.5	146.4	151.0	149.3	132.1	117.8	109.1
Mar 22	121.1	147.1	146.0	150.7	149.3	132.1	117.7	109.1
Mar 23	121.6	147.8	146.5	151.4	150.0	132.7	118.4	109.5
Mar 24	121.5	147.7	146.5	151.6	150.5	133.0	118.6	109.5
Mar 25	121.5	147.8	146.5	151.5	150.3	132.8	118.5	109.3
Mar 26	121.8	147.8	146.6	151.4	150.2	132.6	118.7	109.2
Mar 27	122.0	147.9	146.8	151.4	150.3	132.8	118.8	109.3
Mar 28	121.5	147.6	146.6	151.2	149.5	132.4	118.3	108.6
Mar 29	121.9	148.0	147.1	151.3	149.7	132.5	118.5	108.6
Mar 30	122.4	148.8	147.8	151.8	149.9	132.7	118.8	108.7
Mar 31	122.5	147.9	146.7	151.3	149.5	132.1	118.2	108.2
Average	120.8	147.9	147.4	151.5	150.2	132.4	117.8	109.3

Appendix E Monthly Topography Analysis

Volume


Base Surface Comparison Surface Cut volume Net Fill

2-7-23 TOPO 3-9-23 TOPO 3788.50 Cu. Yd. 6294.35 Cu. Yd. 2505.85 Cu. Yd.

Elevation Changes							
Color	Min. Elevation	Max. Elevation					
	-5.00'	-1.00'					
	-1.00'	0.00'					
	0.00'	1.00'					
	1.00'	5.00'					
	5.00'	10.00'					

NOTES:

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AREIAL TOPOGRAPHY DATA CAPTURED ON FEBRUARY 7, 2023 AND THE AERIAL TOPOGRAPHY DATA CAPTURED ON MARCH 9, 2023 BY SCS ENGINEERS. POSITIVE VALUE (+) INDICATES FILL AND NEGATIVE VALUES (-) INDICATE CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- SETTLEMENT PLATE LOCATIONS AND COORDINATES ARE BASED ON A SITE SPECIFIC COORDINATE SYSTEM.
- 4. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 5. THE VERTICAL DATUM IS BASED UPON NAVD-88

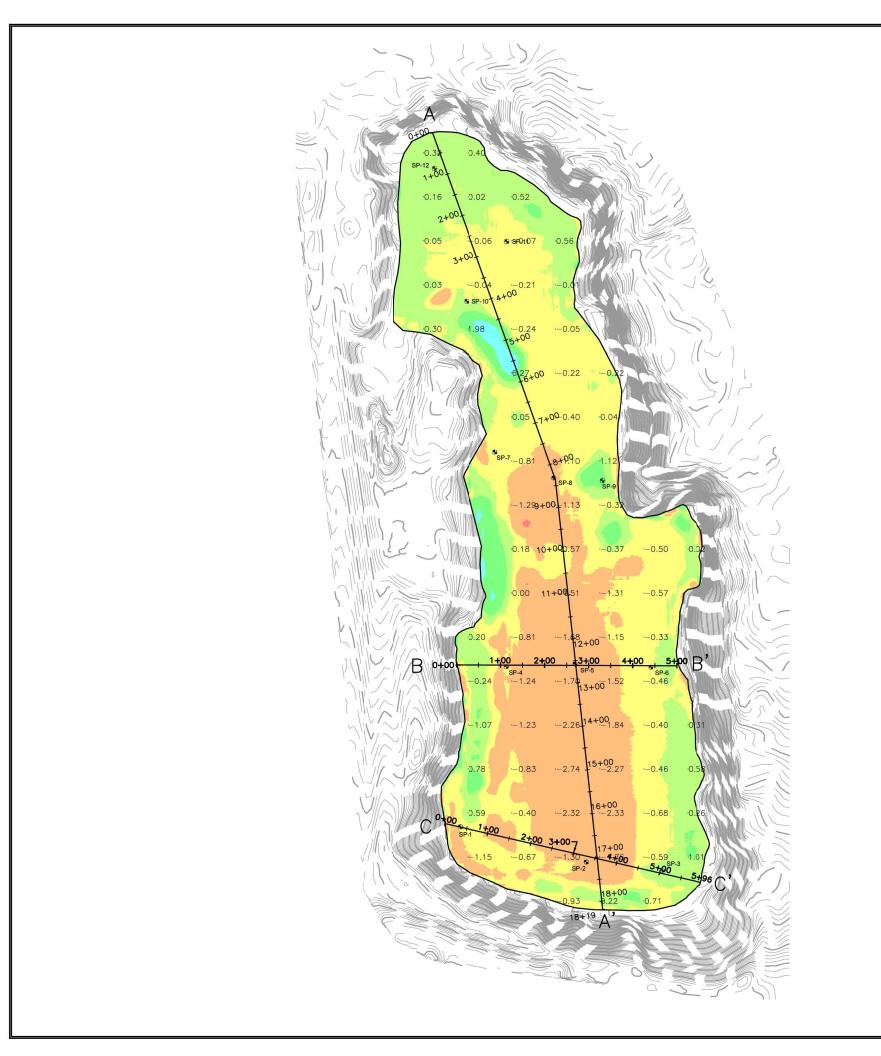
LEGEND

SP-XX

MAJOR CONTOURS (EVERY 10')
MINOR CONTOURS (EVERY 2')
APPROX. SIDEWALL LOCATION SETTLEMENT PLATE

	NO.	REVISION	DATE
T	\triangleleft		
	<		

VOLUME CHANGE MARCH 2023 MONTHLY TOPOGRAPH SOLID WASTE PERN


CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FCILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201

SCS ENGINEERS STEARNS, CONRAD AND SCHMIDT CONSTLING ENGINEERS, INC. 53 SOUTH MAIN ST; SUITE A. MEDO-PRD. NO.

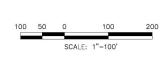
CADD FILE:

3/30/2023 SCALE: 1"=100'

DRAWING NO. 3

Base Surface Surface 12-2-22 TOPO Comparison Surface 3-9-23 TOPO

18659.30 Cu. Yd. 6170.88 Cu. Yd. 12488.42 Cu. Yd. Fill volume Net Cut


Elevations Table						
Number	Minimum Elevation	Maximum Elevation	Color			
1	-10.000	-5.000				
2	-5.000	-1.000				
3	-1.000	0.000				
4	0.000	1.000				
5	1.000	5.000				
6	5.000	10.000				

NOTES:

- 1. THE ELEVATION CHANGES ARE CALCULATED BETWEEN THE AREIAL TOPOGRAPHY DATA CAPTURED ON DECEMBER 2, 2022 AND THE AERIAL TOPOGRAPHY DATA CAPTURED ON MARCH 9, 2023 BY SCS ENGINEERS. POSITIVE VALUE (+) INDICATES FILL AND NEGATIVE VALUES (-) INDICATE CUT (SETTLEMENT). VALUES ARE ROUNDED TO THE NEAREST FOOT.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- SETTLEMENT PLATE LOCATIONS AND COORDINATES ARE BASED ON A SITE SPECIFIC COORDINATE SYSTEM.
- THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 5. THE VERTICAL DATUM IS BASED UPON NAVD-88

LEGEND

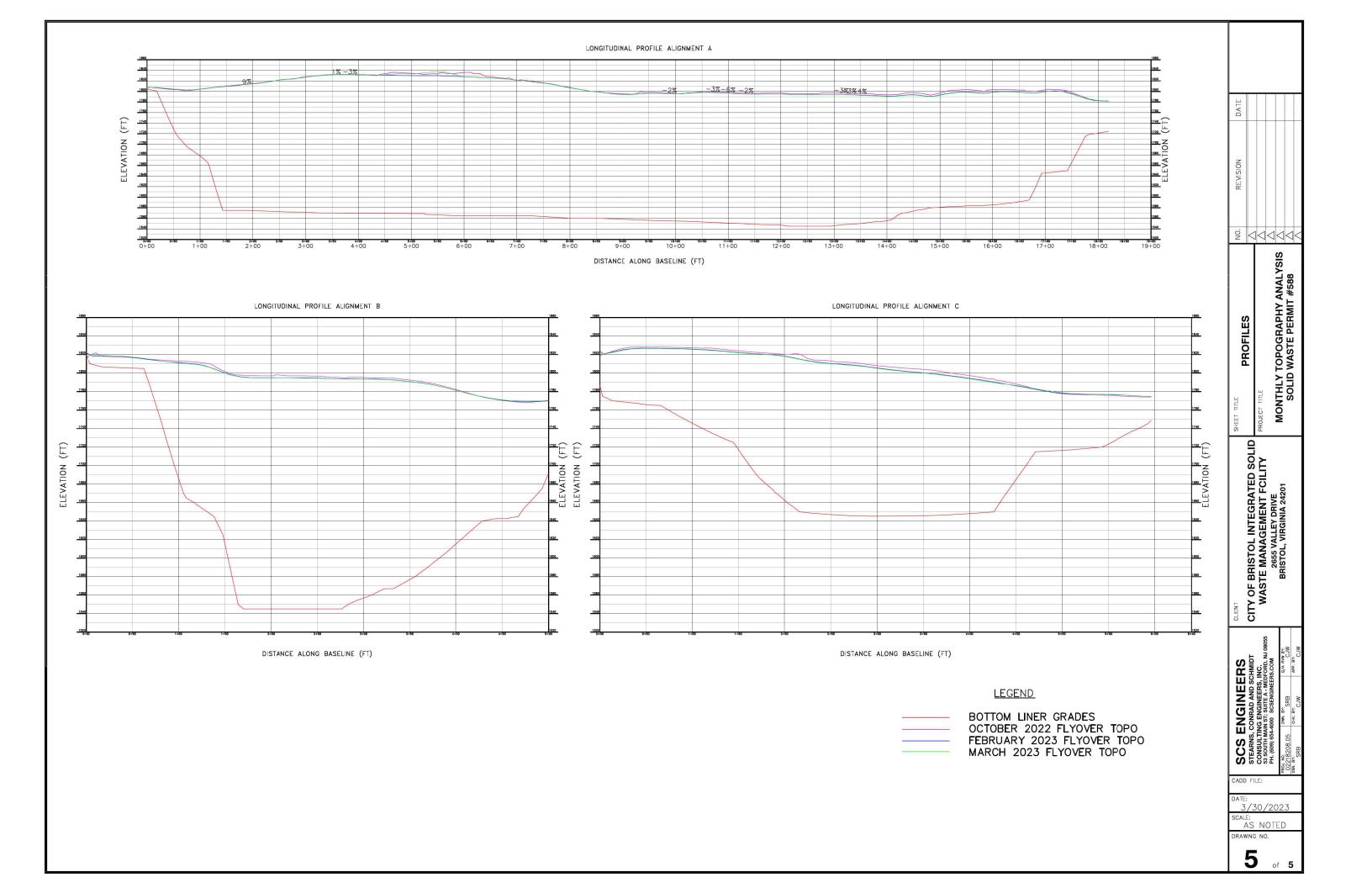
MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') APPROX. SIDEWALL LOCATION SETTLEMENT PLATE

DATE					
REVISION					
NO.	4	<	<	\triangleleft	<

\triangleleft	\triangleleft	Y ANALYSIS △	△ WIT #588	<

MARCH VOLUME CHANGE MARCH 2023 TO DECEMBER 20 MONTHLY TOPOGRAP SOLID WASTE PER

CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FCILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201


ENGINEERS

SCS | STEARNS, CONSULTI

CADD FILE:

3/30/2023 SCALE: 1"=100'

DRAWING NO.

Appendix F

Sample Collection Log Lab Report Historical LFG-EW Leachate Monitoring Results Summary

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature	pH (s.u.)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-49						-			
EW-50									
EW-51									
EW-52									
EW-53	1								
EW-54									
EW-55									
EW-56									
EW-57									
EW-58	930623	1045	54,9	7.33	9.80	2.29	-271.7	7390	
EW-59	030623	1033	55.0	7.59	17.08	2,29	-77.2	71100	Highly ordorns grey black grey toam yher
EW-60									groytoanyher
EW-61									
EW-62									
EW-63									
EW-64	V					1			
EW-65									
EW-67									
EW-68									
		A Mi	nich			Sampl	es Shipped By:	Courier	

Sampler:

A. Minnich

Samples Shipped By: Courier

Log Checked By:

J. Robb (SCS)

Laboratory: Enthalpy Analytical

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Liquid Level Measurement Log

Date				3/6/2	2023			
Personnel				A. Minnick,	N. Gathing:	3		
Location ID	Date	Well Casing Depth (ft)	Pump Depth (ft)	Cycle Count	Depth to Liquid (ft)	Casing Sickup (ft)	Liquid Column Thickness (ft)	Comments
EW-49	3/6/2023	96.15	90	439652		5.49		Stickup Too Tall
EW-50	3/6/2023	77.70	83	793509	30.04	2.71	47.66	
EW-51	3/6/2023	92.80	95		32.04	3.32	60.76	No Cycle Counter
EW-52	3/6/2023	98.70	93			2.41		No Pump
EW-53	3/6/2023	100.70		1852600	11.76	3.61	88.94	
EW-54	3/6/2023	82.70	75			4.32		No Pump
EW-55	3/6/2023	90.40	90	529010	24.03	5.28	66.37	No Airhose
EW-56	3/6/2023	58.50	58					No Pump
EW-57	3/6/2023	107.40	71			3.69		No Pump
EW-58	3/6/2023	84.50	82	1615442	17.21	4.98	67.29	
EW-59	3/6/2023	73.40	64	1121029	30.05	3.41	43.35	
EW-60	3/6/2023	81.80	70			2.52		No Pump
EW-61	3/6/2023	87.80	66	212085	28.21	3.53	59.59	
EW-62	3/6/2023	110.60	80	113994	55.90	3.62	54.70	
EW-63	3/6/2023	62.10	64	48068	42.24	4.09	19.86	No Airhose
EW-64	3/6/2023	109.00	113	98033	62.80	6.41	46.20	Lines Disconnected
EW-65	3/6/2023	88.40	50	3871	39.28	5.23	49.12	Lines Disconnected
EW-67	3/6/2023	107.75	62.5	347157	35.77	4.21	71.98	
EW-68	3/6/2023	73.57	68	1813225	30.28	3.29	43.29	

^{--- =} not applicable/available

Well casing depths measured on 12/20-21/2022 from top of PVC.

Well casing stickup - measured on 01/17/2023.

Log Checked By: J. Robb

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 23C0397

Date Received:

Project Number:

Purchase Order:

Date Issued:

March 8, 2023 8:00

April 4, 2023 15:37

02218208.15 Task 1

Client Name: SCS Engineers-Winchester

296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Client Site I.D.: City of Bristol Landfill

Enclosed are the results of analyses for samples received by the laboratory on 03/08/2023 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

Date Issued:

4/4/2023 3:37:46PM

Analysis Detects Report

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 23C0397-01 Client Sample ID: EW-58

Laboratory Sample ID: 23C0397-01	Client Sa	ampie iD: Evv-56						
							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Arsenic	01RE1	SW6010D	1.07		0.0100	0.0200	1	mg/L
Barium	01	SW6010D	0.406		0.0050	0.0100	1	mg/L
Chromium	01RE1	SW6010D	0.213		0.0080	0.0100	1	mg/L
Nickel	01RE1	SW6010D	0.1254		0.0070	0.0100	1	mg/L
Zinc	01	SW6010D	0.0689		0.0100	0.0100	1	mg/L
2-Butanone (MEK)	01	SW8260D	257		30.0	100	10	ug/L
Acetone	01	SW8260D	375		70.0	100	10	ug/L
Benzene	01	SW8260D	1540		4.00	10.0	10	ug/L
Ethylbenzene	01	SW8260D	131		4.00	10.0	10	ug/L
Tetrahydrofuran	01	SW8260D	353		100	100	10	ug/L
Toluene	01	SW8260D	182		5.00	10.0	10	ug/L
Xylenes, Total	01	SW8260D	240		10.0	30.0	10	ug/L
Ammonia as N	01	EPA350.1 R2.0	667		73.1	100	1000	mg/L
BOD	01	SM22 5210B-2011	1570		0.2	2.0	1	mg/L
COD	01	SM22 5220D-2011	1690		500	500	1	mg/L
TKN as N	01	EPA351.2 R2.0	879		33.6	100	200	mg/L
Total Recoverable Phenolics	01	SW9065	0.400		0.030	0.050	1	mg/L

4/4/2023 3:37:46PM

Date Issued:

Analysis Detects Report

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site ID:

Laboratory Sample ID: 23C0397-02 Client Sample ID: EW-59

							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Arsenic	02RE1	SW6010D	1.00		0.0100	0.0200	1	mg/L
Barium	02	SW6010D	0.683		0.0050	0.0100	1	mg/L
Chromium	02RE1	SW6010D	0.188		0.0080	0.0100	1	mg/L
Nickel	02RE1	SW6010D	0.1033		0.0070	0.0100	1	mg/L
Zinc	02	SW6010D	0.0538		0.0100	0.0100	1	mg/L
2-Butanone (MEK)	02	SW8260D	2770		30.0	100	10	ug/L
Acetone	02RE1	SW8260D	6810		700	1000	100	ug/L
Benzene	02	SW8260D	727		4.00	10.0	10	ug/L
Ethylbenzene	02	SW8260D	71.5		4.00	10.0	10	ug/L
Tetrahydrofuran	02	SW8260D	464		100	100	10	ug/L
Toluene	02	SW8260D	98.1		5.00	10.0	10	ug/L
Xylenes, Total	02	SW8260D	111		10.0	30.0	10	ug/L
Ammonia as N	02	EPA350.1 R2.0	1480		73.1	100	1000	mg/L
BOD	02	SM22 5210B-2011	9190		0.2	2.0	1	mg/L
COD	02	SM22 5220D-2011	10600		2000	2000	200	mg/L
TKN as N	02	EPA351.2 R2.0	1920		33.6	100	200	mg/L
Total Recoverable Phenolics	02	SW9065	13.9		0.300	0.500	10	mg/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Date Issued:

4/4/2023 3:37:46PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-58	23C0397-01	Ground Water	03/06/2023 10:45	03/08/2023 08:00
EW-59	23C0397-02	Ground Water	03/06/2023 10:33	03/08/2023 08:00
Trip Blank	23C0397-03	Ground Water	01/09/2023 14:30	03/08/2023 08:00

Analysis for Volatile Fatty Acids was subcontracted to Weck. The subcontracted results are attached at the end of this Certificate of Analysis.

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Client Sample ID: EW-58 Laboratory Sample ID: 23C0397-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA 6000/7000 Serie	s Methods											
Silver	01	7440-22-4	SW6010D	03/10/2023 12:30	03/13/2023 12:51	BLOD		0.0050	0.0100	1	mg/L	AB
Arsenic	01RE1	7440-38-2	SW6010D	03/10/2023 12:30	03/20/2023 14:30	1.07		0.0100	0.0200	1	mg/L	ACM
Barium	01	7440-39-3	SW6010D	03/10/2023 12:30	03/13/2023 12:51	0.406		0.0050	0.0100	1	mg/L	AB
Cadmium	01	7440-43-9	SW6010D	03/10/2023 12:30	03/13/2023 12:51	BLOD		0.0020	0.0040	1	mg/L	AB
Chromium	01RE1	7440-47-3	SW6010D	03/10/2023 12:30	03/20/2023 14:30	0.213		0.0080	0.0100	1	mg/L	ACM
Copper	01	7440-50-8	SW6010D	03/10/2023 12:30	03/13/2023 12:51	BLOD		0.0080	0.0100	1	mg/L	AB
Mercury	01	7439-97-6	SW7470A	03/09/2023 11:10	03/09/2023 14:14	BLOD		0.00020	0.00020	1	mg/L	SGT
Nickel	01RE1	7440-02-0	SW6010D	03/10/2023 12:30	03/20/2023 14:30	0.1254		0.0070	0.0100	1	mg/L	ACM
Lead	01	7439-92-1	SW6010D	03/10/2023 12:30	03/13/2023 12:51	BLOD		0.0060	0.0100	1	mg/L	AB
Selenium	01	7782-49-2	SW6010D	03/10/2023 12:30	03/13/2023 12:51	BLOD		0.0400	0.0500	1	mg/L	AB
Zinc	01	7440-66-6	SW6010D	03/10/2023 12:30	03/13/2023 12:51	0.0689		0.0100	0.0100	1	mg/L	AB
Volatile Organic Compounds by GCM	s											
2-Butanone (MEK)	01	78-93-3	SW8260D	03/09/2023 17:33	03/09/2023 17:33	257		30.0	100	10	ug/L	RJB
Acetone	01	67-64-1	SW8260D	03/09/2023 17:33	03/09/2023 17:33	375		70.0	100	10	ug/L	RJB
Benzene	01	71-43-2	SW8260D	03/09/2023 17:33	03/09/2023 17:33	1540		4.00	10.0	10	ug/L	RJB
Ethylbenzene	01	100-41-4	SW8260D	03/09/2023 17:33	03/09/2023 17:33	131		4.00	10.0	10	ug/L	RJB
Toluene	01	108-88-3	SW8260D	03/09/2023 17:33	03/09/2023 17:33	182		5.00	10.0	10	ug/L	RJB
Xylenes, Total	01	1330-20-7	SW8260D	03/09/2023 17:33	03/09/2023 17:33	240		10.0	30.0	10	ug/L	RJB
Tetrahydrofuran	01	109-99-9	SW8260D	03/09/2023 17:33	03/09/2023 17:33	353		100	100	10	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	01	96.8	% 70-120	03/09/2023 1	7:33 03/09/2023 17:3	3						
Surr: 4-Bromofluorobenzene (Surr)	01	92.2	% 75-120	03/09/2023 1	7:33 03/09/2023 17:3	3						
Surr: Dibromofluoromethane (Surr)	01	94.7	% 70-130	03/09/2023 1	7:33 03/09/2023 17:3	3						
Surr: Toluene-d8 (Surr)	01	98.3	% 70-130	03/09/2023 1	7:33 03/09/2023 17:3	3						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

4/4/2023 3:37:46PM

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Client Sample ID: EW-58 Laboratory Sample ID: 23C0397-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Semivolatile Organic Compounds by	GCMS											
Anthracene	01	120-12-7	SW8270E	03/09/2023 08:50	03/09/2023 17:25	BLOD		117	234	1	ug/L	KCS
Surr: 2,4,6-Tribromophenol (Surr)	01	194 9	% 5-136	03/09/2023 08:	50 03/09/2023 17:2	5						S
Surr: 2-Fluorobiphenyl (Surr)	01	65.5 9	% 9-117	03/09/2023 08:	50 03/09/2023 17:2	5						
Surr: 2-Fluorophenol (Surr)	01	26.0 9	% 5-60	03/09/2023 08:	50 03/09/2023 17:2	5						
Surr: Nitrobenzene-d5 (Surr)	01	67.5 9	% 5-151	03/09/2023 08:	50 03/09/2023 17:2	5						
Surr: Phenol-d5 (Surr)	01	25.0 9	% 5-60	03/09/2023 08:	50 03/09/2023 17:2	5						
Surr: p-Terphenyl-d14 (Surr)	01	74.5 9	% 5-141	03/09/2023 08:	50 03/09/2023 17:2	5						

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Client Sample ID: EW-58 Laboratory Sample ID: 23C0397-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Ammonia as N	01	7664-41-7	EPA350.1 R2.0	03/13/2023 14:04	03/13/2023 14:04	667		73.1	100	1000	mg/L	MKS
BOD	01	E1640606	SM22 5210B-2011	03/08/2023 09:57	03/08/2023 09:57	1570		0.2	2.0	1	mg/L	TMB
COD	01	NA	SM22 5220D-2011	03/10/2023 09:30	03/10/2023 09:30	1690		500	500	1	mg/L	MGC
Nitrate as N	01	14797-55-8	Calc.	03/16/2023 12:19	03/16/2023 12:19	BLOD		1.04	5.10	100	mg/L	LTN
Nitrate+Nitrite as N	01	E701177	SM22 4500-NO3F- 2011	03/16/2023 12:19	03/16/2023 12:19	BLOD		0.04	0.10	1	mg/L	NBT
Nitrite as N	01	14797-65-0	SM22 4500-NO2B- 2011	03/08/2023 09:05	03/08/2023 16:44	BLOD		1.00	5.00	100	mg/L	LTN
Total Recoverable Phenolics	01	NA	SW9065	03/10/2023 16:52	03/10/2023 16:52	0.400		0.030	0.050	1	mg/L	MAH
TKN as N	01	E17148461	EPA351.2 R2.0	03/16/2023 11:43	03/16/2023 11:43	879		33.6	100	200	mg/L	AAL

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Client Sample ID: EW-59 Laboratory Sample ID: 23C0397-02

Reference Sample Prep Analyzed Sample CAS Qual LOD LOQ DF Units Analyst Samp ID Method **Parameter** Date/Time Date/Time Results Metals (Total) by EPA 6000/7000 Series Methods Silver 02 SW6010D 03/10/2023 12:30 03/13/2023 12:52 **BLOD** 1 7440-22-4 AB 0.0050 0.0100 mg/L 02RE1 SW6010D 03/10/2023 12:30 1.00 Arsenic 7440-38-2 03/20/2023 14:35 0.0100 0.0200 1 mg/L **ACM** 02 SW6010D 03/10/2023 12:30 03/13/2023 12:52 0.683 **Barium** 7440-39-3 0.0100 1 0.0050 mg/L AΒ 02 Cadmium SW6010D 03/10/2023 12:30 03/13/2023 12:52 **BLOD** 7440-43-9 0.0040 1 AΒ 0.0020 mg/L Chromium 02RE1 7440-47-3 SW6010D 03/10/2023 12:30 03/20/2023 14:35 0.188 1 0.0080 0.0100 mg/L **ACM** 02 SW6010D 03/10/2023 12:30 03/13/2023 12:52 **BLOD** Copper 7440-50-8 1 0.0080 0.0100 mg/L AΒ 02 SW7470A **BLOD** Mercury 7439-97-6 03/09/2023 11:10 03/09/2023 14:16 0.00040 0.00040 1 mg/L SGT 02RE1 SW6010D 03/10/2023 12:30 03/20/2023 14:35 0.1033 Nickel 7440-02-0 0.0100 1 **ACM** 0.0070 mg/L 02 SW6010D 03/13/2023 12:52 **BLOD** Lead 03/10/2023 12:30 1 7439-92-1 0.0060 0.0100 mg/L AB Selenium 02 SW6010D 03/10/2023 12:30 03/13/2023 12:52 **BLOD** 7782-49-2 0.0400 0.0500 1 AB mg/L 02 SW6010D Zinc 7440-66-6 03/10/2023 12:30 03/13/2023 12:52 0.0538 0.0100 1 0.0100 ma/L AB

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Client Sample ID: EW-59 Laboratory Sample ID: 23C0397-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCMS												
2-Butanone (MEK)	02	78-93-3	SW8260D	03/09/2023 18:22	03/09/2023 18:22	2770		30.0	100	10	ug/L	RJB
Acetone	02RE1	67-64-1	SW8260D	03/09/2023 18:46	03/09/2023 18:46	6810		700	1000	100	ug/L	RJB
Benzene	02	71-43-2	SW8260D	03/09/2023 18:22	03/09/2023 18:22	727		4.00	10.0	10	ug/L	RJB
Ethylbenzene	02	100-41-4	SW8260D	03/09/2023 18:22	03/09/2023 18:22	71.5		4.00	10.0	10	ug/L	RJB
Toluene	02	108-88-3	SW8260D	03/09/2023 18:22	03/09/2023 18:22	98.1		5.00	10.0	10	ug/L	RJB
Xylenes, Total	02	1330-20-7	SW8260D	03/09/2023 18:22	03/09/2023 18:22	111		10.0	30.0	10	ug/L	RJB
Tetrahydrofuran	02	109-99-9	SW8260D	03/09/2023 18:22	03/09/2023 18:22	464		100	100	10	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	02	92.8	% 70-120	03/09/2023 18	8:22 03/09/2023 18	:22						
Surr: 4-Bromofluorobenzene (Surr)	02	93.2	% 75-120	03/09/2023 18	8:22 03/09/2023 18	:22						
Surr: Dibromofluoromethane (Surr)	02	93.4	% 70-130	03/09/2023 18	8:22 03/09/2023 18	:22						
Surr: Toluene-d8 (Surr)	02	98.4	% 70-130	03/09/2023 18	8:22 03/09/2023 18	:22						
Surr: 1,2-Dichloroethane-d4 (Surr)	02RE1	98.3	% 70-120	03/09/2023 18	8:46 03/09/2023 18.	:46						
Surr: 4-Bromofluorobenzene (Surr)	02RE1	96.3	% 75-120	03/09/2023 18	8:46 03/09/2023 18.	:46						
Surr: Dibromofluoromethane (Surr)	02RE1	95.1	% 70-130	03/09/2023 18	8:46 03/09/2023 18	:46						
Surr: Toluene-d8 (Surr)	02RE1	98.5	% 70-130	03/09/2023 18	8:46 03/09/2023 18	:46						
Semivolatile Organic Compounds by Go	CMS											
Anthracene	02	120-12-7	SW8270E	03/09/2023 08:50	03/10/2023 14:20	BLOD		51.0	102	10	ug/L	KCS
Surr: 2,4,6-Tribromophenol (Surr)	02	79.6	% 5-136	03/09/2023 08	8:50 03/10/2023 14	:20						
Surr: 2-Fluorobiphenyl (Surr)	02	30.0	% 9-117	03/09/2023 08	8:50 03/10/2023 14	:20						
Surr: 2-Fluorophenol (Surr)	02	12.7	% 5-60	03/09/2023 08	8:50 03/10/2023 14	:20						
Surr: Nitrobenzene-d5 (Surr)	02	69.0	% 5-151	03/09/2023 08	8:50 03/10/2023 14	:20						
Surr: Phenol-d5 (Surr)	02	0.100	% 5-60	03/09/2023 08	8:50 03/10/2023 14	:20						DS
Surr: p-Terphenyl-d14 (Surr)	02	23.4	% 5-141	03/09/2023 08	8:50 03/10/2023 14	:20						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Jennifer Robb

ngineers-Winchester Date Issued: 4/4/2023 3:37:46PM

Client Site I.D.: City of Bristol Landfill

Submitted To:

Client Sample ID: EW-59 Laboratory Sample ID: 23C0397-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Ammonia as N	02	7664-41-7	EPA350.1 R2.0	03/13/2023 14:04	03/13/2023 14:04	1480		73.1	100	1000	mg/L	MKS
BOD	02	E1640606	SM22 5210B-2011	03/08/2023 09:59	03/08/2023 09:59	9190		0.2	2.0	1	mg/L	TMB
COD	02	NA	SM22 5220D-2011	03/10/2023 09:30	03/10/2023 09:30	10600		2000	2000	200	mg/L	MGC
Nitrate as N	02	14797-55-8	Calc.	03/16/2023 12:21	03/16/2023 12:21	BLOD		1.04	5.10	100	mg/L	LTN
Nitrate+Nitrite as N	02	E701177	SM22 4500-NO3F- 2011	03/16/2023 12:21	03/16/2023 12:21	BLOD		0.04	0.10	1	mg/L	NBT
Nitrite as N	02	14797-65-0	SM22 4500-NO2B- 2011	03/08/2023 09:05	03/08/2023 16:44	BLOD		1.00	5.00	100	mg/L	LTN
Total Recoverable Phenolics	02	NA	SW9065	03/15/2023 16:21	03/15/2023 16:21	13.9		0.300	0.500	10	mg/L	MAH
TKN as N	02	E17148461	EPA351.2 R2.0	03/16/2023 11:44	03/16/2023 11:44	1920		33.6	100	200	mg/L	AAL

Date Issued:

4/4/2023 3:37:46PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Client Sample ID: Trip Blank Laboratory Sample ID: 23C0397-03

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCMS	S											
2-Butanone (MEK)	03	78-93-3	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		3.00	10.0	1	ug/L	RJB
Acetone	03	67-64-1	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		7.00	10.0	1	ug/L	RJB
Benzene	03	71-43-2	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene	03	100-41-4	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		0.40	1.00	1	ug/L	RJB
Toluene	03	108-88-3	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total	03	1330-20-7	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran	03	109-99-9	SW8260D	03/09/2023 11:51	03/09/2023 11:51	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	03	94.0	% 70-120	03/09/2023 11.	:51 03/09/2023 11:5	:1						
Surr: 4-Bromofluorobenzene (Surr)	03	94.8	% 75-120	03/09/2023 11.	:51 03/09/2023 11:5	1						
Surr: Dibromofluoromethane (Surr)	03	95.8	% 70-130	03/09/2023 11.	:51 03/09/2023 11:5	1						
Surr: Toluene-d8 (Surr)	03	99.3	% 70-130	03/09/2023 11.	:51 03/09/2023 11:5	1						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

4/4/2023 3:37:46PM

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	BGC0322 - SW74		35							~~~
Blank (BGC0322-BLK1)				Prepared & Anal	yzed: 03/09/2023					
Mercury	ND	0.00020	mg/L		-					
LCS (BGC0322-BS1)				Prepared & Anal	yzed: 03/09/2023					
Mercury	0.00253	0.00020	mg/L	0.00250	-	101	80-120			
Matrix Spike (BGC0322-MS1)	Sou	rce: 23C0441-0	1	Prepared & Anal	yzed: 03/09/2023					
Mercury	0.00217	0.00020	mg/L	0.00250	BLOD	86.8	80-120			
Matrix Spike Dup (BGC0322-MSD1)	Sou	rce: 23C0441-0	1	Prepared & Anal	yzed: 03/09/2023					
Mercury	0.00205	0.00020	mg/L	0.00250	BLOD	82.1	80-120	5.56	20	
Batch	BGC0373 - EPA2	00.2/R2.8								
Blank (BGC0373-BLK1)				Prepared: 03/10/	/2023 Analyzed: 0	3/13/2023				
Arsenic	ND	0.0200	mg/L							
Barium	ND	0.0100	mg/L							
Cadmium	ND	0.0040	mg/L							
Chromium	ND	0.0100	mg/L							
Copper	ND	0.0100	mg/L							
Lead	ND	0.0100	mg/L							
Nickel	ND	0.0100	mg/L							
Selenium	ND	0.0500	mg/L							
Silver	ND	0.0100	mg/L							
Zinc	ND	0.0100	mg/L							
LCS (BGC0373-BS1)				Prepared: 03/10/	/2023 Analyzed: 0	3/13/2023				
Arsenic	0.550	0.0200	mg/L	0.500		110	80-120			
Barium	0.487	0.0100	mg/L	0.500		97.5	80-120			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BGC0373 - EPA2	00.2/R2.8								
LCS (BGC0373-BS1)				Prepared: 03/10/	/2023 Analyzed: 0	03/13/2023				
Cadmium	0.572	0.0040	mg/L	0.500		114	80-120			
Chromium	0.546	0.0100	mg/L	0.500		109	80-120			
Copper	0.564	0.0100	mg/L	0.500		113	80-120			
Lead	0.572	0.0100	mg/L	0.500		114	80-120			
Nickel	0.5629	0.0100	mg/L	0.500		113	80-120			
Selenium	0.566	0.0500	mg/L	0.500		113	80-120			
Silver	0.0991	0.0100	mg/L	0.100		99.1	80-120			
Zinc	0.525	0.0100	mg/L	0.500		105	80-120			
Matrix Spike (BGC0373-MS1)	Sour	ce: 23C0431-0)7	Prepared: 03/10/	/2023 Analyzed: 0	03/13/2023				
Arsenic	0.558	0.0200	mg/L	0.500	BLOD	112	75-125			
Barium	0.590	0.0100	mg/L	0.500	0.0756	103	75-125			
Cadmium	0.572	0.0040	mg/L	0.500	BLOD	114	75-125			
Chromium	0.558	0.0100	mg/L	0.500	BLOD	112	75-125			
Copper	0.566	0.0100	mg/L	0.500	BLOD	113	75-125			
Lead	0.571	0.0100	mg/L	0.500	BLOD	114	75-125			
Nickel	0.5703	0.0100	mg/L	0.500	0.0082	112	75-125			
Selenium	0.568	0.0500	mg/L	0.500	BLOD	114	75-125			
Silver	0.103	0.0100	mg/L	0.100	BLOD	103	75-125			E
Zinc	0.515	0.0100	mg/L	0.500	BLOD	103	75-125			
Matrix Spike (BGC0373-MS2)	Sour	ce: 23C0431-0)8	Prepared: 03/10/	/2023 Analyzed: 0	03/13/2023				
Arsenic	0.600	0.0200	mg/L	0.500	BLOD	120	75-125			
Barium	0.549	0.0100	mg/L	0.500	BLOD	110	75-125			
Cadmium	0.622	0.0040	mg/L	0.500	BLOD	124	75-125			
Chromium	0.596	0.0100	mg/L	0.500	BLOD	119	75-125			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGC0373 - EPA2	00.2/R2.8								
Matrix Spike (BGC0373-MS2)	Sour	ce: 23C0431-0	В	Prepared: 03/10/	2023 Analyzed: (03/13/2023				
Copper	0.620	0.0100	mg/L	0.500	BLOD	124	75-125			
Lead	0.623	0.0100	mg/L	0.500	BLOD	125	75-125			
Nickel	0.6141	0.0100	mg/L	0.500	BLOD	123	75-125			
Selenium	0.611	0.0500	mg/L	0.500	BLOD	122	75-125			
Silver	0.110	0.0100	mg/L	0.100	BLOD	110	75-125			Е
Zinc	0.555	0.0100	mg/L	0.500	BLOD	111	75-125			
Matrix Spike Dup (BGC0373-MSD1)	Sour	ce: 23C0431-0	7	Prepared: 03/10/	2023 Analyzed: 0	03/13/2023				
Arsenic	0.551	0.0200	mg/L	0.500	BLOD	110	75-125	1.15	20	
Barium	0.578	0.0100	mg/L	0.500	0.0756	100	75-125	2.18	20	
Cadmium	0.568	0.0040	mg/L	0.500	BLOD	114	75-125	0.754	20	
Chromium	0.554	0.0100	mg/L	0.500	BLOD	111	75-125	0.648	20	
Copper	0.562	0.0100	mg/L	0.500	BLOD	112	75-125	0.567	20	
Lead	0.568	0.0100	mg/L	0.500	BLOD	114	75-125	0.439	20	
Nickel	0.5659	0.0100	mg/L	0.500	0.0082	112	75-125	0.775	20	
Selenium	0.564	0.0500	mg/L	0.500	BLOD	113	75-125	0.672	20	
Silver	0.102	0.0100	mg/L	0.100	BLOD	102	75-125	1.08	20	E
Zinc	0.514	0.0100	mg/L	0.500	BLOD	103	75-125	0.194	20	
Matrix Spike Dup (BGC0373-MSD2)	Sour	ce: 23C0431-0	8	Prepared: 03/10/	2023 Analyzed: 0	03/13/2023				
Arsenic	0.560	0.0200	mg/L	0.500	BLOD	112	75-125	6.81	20	
Barium	0.507	0.0100	mg/L	0.500	BLOD	101	75-125	7.86	20	
Cadmium	0.580	0.0040	mg/L	0.500	BLOD	116	75-125	6.93	20	
Chromium	0.556	0.0100	mg/L	0.500	BLOD	111	75-125	7.01	20	
Copper	0.578	0.0100	mg/L	0.500	BLOD	116	75-125	7.08	20	
Lead	0.581	0.0100	mg/L	0.500	BLOD	116	75-125	6.91	20	

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte Batch	Result BGC0373 - EPA20	LOQ 00.2/R2.8	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Matrix Spike Dup (BGC0373-MSD2)	Sour	ce: 23C0431-0	8	Prepared: 03/10/	2023 Analyzed: (03/13/2023				
Nickel	0.5738	0.0100	mg/L	0.500	BLOD	115	75-125	6.79	20	
Selenium	0.574	0.0500	mg/L	0.500	BLOD	115	75-125	6.21	20	
Silver	0.104	0.0100	mg/L	0.100	BLOD	104	75-125	5.53	20	E
Zinc	0.512	0.0100	mg/L	0.500	BLOD	102	75-125	8.07	20	

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BG	C0325 - SW503	BOB-MS								
Blank (BGC0325-BLK1)			F	Prepared & Anal	yzed: 03/09/2023					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Tetrahydrofuran	ND	10.0	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	48.3		ug/L	50.0		96.6	70-120			
Surr: 4-Bromofluorobenzene (Surr)	47.7		ug/L	50.0		95.4	75-120			
Surr: Dibromofluoromethane (Surr)	47.9		ug/L	50.0		95.9	70-130			
Surr: Toluene-d8 (Surr)	49.1		ug/L	50.0		98.2	70-130			
LCS (BGC0325-BS1)			F	Prepared & Anal	yzed: 03/09/2023					
1,1,1,2-Tetrachloroethane	55.4	0.4	ug/L	50.0		111	80-130			
1,1,1-Trichloroethane	46.7	1	ug/L	50.0		93.5	65-130			
1,1,2,2-Tetrachloroethane	52.1	0.4	ug/L	50.0		104	65-130			
1,1,2-Trichloroethane	47.7	1	ug/L	50.0		95.4	75-125			
1,1-Dichloroethane	41.2	1	ug/L	50.0		82.4	70-135			
1,1-Dichloroethylene	40.1	1	ug/L	50.0		80.1	70-130			
1,1-Dichloropropene	42.8	1	ug/L	50.0		85.5	75-135			
1,2,3-Trichlorobenzene	55.7	1	ug/L	50.0		111	55-140			
1,2,3-Trichloropropane	51.7	1	ug/L	50.0		103	75-125			
1,2,4-Trichlorobenzene	57.9	1	ug/L	50.0		116	65-135			
1,2,4-Trimethylbenzene	51.7	1	ug/L	50.0		103	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	60.0	1	ug/L	50.0		120	50-130			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BGC0325 - SW503	0B-MS								
LCS (BGC0325-BS1)			F	Prepared & Analy	yzed: 03/09/2023	i				
1,2-Dibromoethane (EDB)	56.0	1	ug/L	50.0		112	80-120			
1,2-Dichlorobenzene	54.8	0.5	ug/L	50.0		110	70-120			
1,2-Dichloroethane	43.9	1	ug/L	50.0		87.8	70-130			
1,2-Dichloropropane	42.7	0.5	ug/L	50.0		85.4	75-125			
1,3,5-Trimethylbenzene	50.0	1	ug/L	50.0		100	75-125			
1,3-Dichlorobenzene	55.7	1	ug/L	50.0		111	75-125			
1,3-Dichloropropane	46.6	1	ug/L	50.0		93.2	75-125			
1,4-Dichlorobenzene	54.4	1	ug/L	50.0		109	75-125			
2,2-Dichloropropane	45.2	1	ug/L	50.0		90.5	70-135			
2-Butanone (MEK)	43.9	10	ug/L	50.0		87.9	30-150			
2-Chlorotoluene	54.1	1	ug/L	50.0		108	75-125			
2-Hexanone (MBK)	55.5	5	ug/L	50.0		111	55-130			
4-Chlorotoluene	54.0	1	ug/L	50.0		108	75-130			
4-Isopropyltoluene	52.9	1	ug/L	50.0		106	75-130			
4-Methyl-2-pentanone (MIBK)	53.6	5	ug/L	50.0		107	60-135			
Acetone	51.8	10	ug/L	50.0		104	40-140			
Benzene	45.7	1	ug/L	50.0		91.3	80-120			
Bromobenzene	58.0	1	ug/L	50.0		116	75-125			
Bromochloromethane	45.6	1	ug/L	50.0		91.2	65-130			
Bromodichloromethane	52.6	0.5	ug/L	50.0		105	75-120			
Bromoform	58.3	1	ug/L	50.0		117	70-130			
Bromomethane	46.3	1	ug/L	50.0		92.6	30-145			
Carbon disulfide	50.9	10	ug/L	50.0		102	35-160			
Carbon tetrachloride	51.8	1	ug/L	50.0		104	65-140			
Chlorobenzene	54.3	1	ug/L	50.0		109	80-120			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Date Issued:

4/4/2023 3:37:46PM

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BGC0325 - SW503	0B-MS								
.CS (BGC0325-BS1)			F	Prepared & Anal	yzed: 03/09/2023					
Chloroethane	42.4	1	ug/L	50.0		84.8	60-135			
Chloroform	43.2	0.5	ug/L	50.0		86.5	65-135			
Chloromethane	41.4	1	ug/L	50.0		82.8	40-125			
cis-1,2-Dichloroethylene	42.2	1	ug/L	50.0		84.4	70-125			
cis-1,3-Dichloropropene	37.8	1	ug/L	50.0		75.7	70-130			
Dibromochloromethane	53.1	0.5	ug/L	50.0		106	60-135			
Dibromomethane	50.7	1	ug/L	50.0		101	75-125			
Dichlorodifluoromethane	53.5	1	ug/L	50.0		107	30-155			
Ethylbenzene	53.9	1	ug/L	50.0		108	75-125			
Hexachlorobutadiene	58.2	0.8	ug/L	50.0		116	50-140			
Isopropylbenzene	51.4	1	ug/L	50.0		103	75-125			
m+p-Xylenes	107	2	ug/L	100		107	75-130			
Methylene chloride	44.8	4	ug/L	50.0		89.6	55-140			
Methyl-t-butyl ether (MTBE)	43.7	1	ug/L	50.0		87.3	65-125			
Naphthalene	49.0	1	ug/L	50.0		97.9	55-140			
n-Butylbenzene	52.0	1	ug/L	50.0		104	70-135			
n-Propylbenzene	51.6	1	ug/L	50.0		103	70-130			
o-Xylene	55.6	1	ug/L	50.0		111	80-120			
sec-Butylbenzene	54.2	1	ug/L	50.0		108	70-125			
Styrene	50.5	1	ug/L	50.0		101	65-135			
tert-Butylbenzene	51.2	1	ug/L	50.0		102	70-130			
Tetrachloroethylene (PCE)	51.7	1	ug/L	50.0		103	45-150			
Toluene	48.5	1	ug/L	50.0		97.0	75-120			
trans-1,2-Dichloroethylene	39.0	1	ug/L	50.0		78.1	60-140			
trans-1,3-Dichloropropene	41.9	1	ug/L	50.0		83.7	55-140			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BC	GC0325 - SW503	BOB-MS								
LCS (BGC0325-BS1)				Prepared & Anal	yzed: 03/09/2023	i				
Trichloroethylene	47.0	1	ug/L	50.0		94.1	70-125			
Trichlorofluoromethane	54.2	1	ug/L	50.0		108	60-145			
Vinyl chloride	51.2	0.5	ug/L	50.0		102	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	46.3		ug/L	50.0		92.5	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.6		ug/L	50.0		99.2	75-120			
Surr: Dibromofluoromethane (Surr)	46.8		ug/L	50.0		93.5	70-130			
Surr: Toluene-d8 (Surr)	50.3		ug/L	50.0		101	70-130			
Matrix Spike (BGC0325-MS1)	Sourc	e: 23C0431-0°	1	Prepared & Anal	yzed: 03/09/2023	}				
1,1,1,2-Tetrachloroethane	52.1	0.4	ug/L	50.0	BLOD	104	80-130			
1,1,1-Trichloroethane	43.4	1	ug/L	50.0	BLOD	86.8	65-130			
1,1,2,2-Tetrachloroethane	49.0	0.4	ug/L	50.0	BLOD	98.1	65-130			
1,1,2-Trichloroethane	45.8	1	ug/L	50.0	BLOD	91.7	75-125			
1,1-Dichloroethane	38.3	1	ug/L	50.0	BLOD	76.7	70-135			
1,1-Dichloroethylene	37.6	1	ug/L	50.0	BLOD	75.2	50-145			
1,1-Dichloropropene	39.2	1	ug/L	50.0	BLOD	78.5	75-135			
1,2,3-Trichlorobenzene	53.7	1	ug/L	50.0	BLOD	107	55-140			
1,2,3-Trichloropropane	48.7	1	ug/L	50.0	BLOD	97.4	75-125			
1,2,4-Trichlorobenzene	54.0	1	ug/L	50.0	BLOD	108	65-135			
1,2,4-Trimethylbenzene	48.6	1	ug/L	50.0	BLOD	97.1	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	56.8	1	ug/L	50.0	BLOD	114	50-130			
1,2-Dibromoethane (EDB)	52.7	1	ug/L	50.0	BLOD	105	80-120			
1,2-Dichlorobenzene	51.2	0.5	ug/L	50.0	BLOD	102	70-120			
1,2-Dichloroethane	42.5	1	ug/L	50.0	BLOD	84.9	70-130			
1,2-Dichloropropane	40.0	0.5	ug/L	50.0	BLOD	80.1	75-125			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BGC0325 - SW503	0B-MS								
Matrix Spike (BGC0325-MS1)	Source	e: 23C0431-0	1	Prepared & Anal	yzed: 03/09/2023					
1,3,5-Trimethylbenzene	46.1	1	ug/L	50.0	BLOD	92.2	75-124			
1,3-Dichlorobenzene	52.2	1	ug/L	50.0	BLOD	104	75-125			
1,3-Dichloropropane	44.8	1	ug/L	50.0	BLOD	89.6	75-125			
1,4-Dichlorobenzene	52.1	1	ug/L	50.0	BLOD	104	75-125			
2,2-Dichloropropane	41.5	1	ug/L	50.0	BLOD	82.9	70-135			
2-Butanone (MEK)	48.3	10	ug/L	50.0	BLOD	96.6	30-150			
2-Chlorotoluene	50.8	1	ug/L	50.0	BLOD	102	75-125			
2-Hexanone (MBK)	53.4	5	ug/L	50.0	BLOD	107	55-130			
4-Chlorotoluene	48.8	1	ug/L	50.0	BLOD	97.6	75-130			
4-Isopropyltoluene	49.0	1	ug/L	50.0	BLOD	98.1	75-130			
4-Methyl-2-pentanone (MIBK)	52.3	5	ug/L	50.0	BLOD	105	60-135			
Acetone	49.1	10	ug/L	50.0	BLOD	96.4	40-140			
Benzene	42.5	1	ug/L	50.0	BLOD	85.0	80-120			
Bromobenzene	54.7	1	ug/L	50.0	BLOD	109	75-125			
Bromochloromethane	44.2	1	ug/L	50.0	BLOD	88.3	65-130			
Bromodichloromethane	49.6	0.5	ug/L	50.0	BLOD	99.2	75-136			
Bromoform	55.5	1	ug/L	50.0	BLOD	111	70-130			
Bromomethane	44.7	1	ug/L	50.0	BLOD	89.3	30-145			
Carbon disulfide	49.8	10	ug/L	50.0	BLOD	99.6	35-160			
Carbon tetrachloride	47.4	1	ug/L	50.0	BLOD	94.9	65-140			
Chlorobenzene	50.2	1	ug/L	50.0	BLOD	100	80-120			
Chloroethane	40.2	1	ug/L	50.0	BLOD	80.4	60-135			
Chloroform	40.3	0.5	ug/L	50.0	BLOD	80.7	65-135			
Chloromethane	39.1	1	ug/L	50.0	BLOD	78.2	40-125			
cis-1,2-Dichloroethylene	39.6	1	ug/L	50.0	BLOD	79.3	70-125			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGC0325 - SW503	0B-MS								
Matrix Spike (BGC0325-MS1)	Source	e: 23C0431-0)1	Prepared & Anal	yzed: 03/09/2023	i				
cis-1,3-Dichloropropene	35.4	1	ug/L	50.0	BLOD	70.9	47-136			
Dibromochloromethane	51.4	0.5	ug/L	50.0	BLOD	103	60-135			
Dibromomethane	48.3	1	ug/L	50.0	BLOD	96.6	75-125			
Dichlorodifluoromethane	51.0	1	ug/L	50.0	BLOD	102	30-155			
Ethylbenzene	49.1	1	ug/L	50.0	BLOD	98.2	75-125			
Hexachlorobutadiene	53.6	0.8	ug/L	50.0	BLOD	107	50-140			
Isopropylbenzene	47.9	1	ug/L	50.0	BLOD	95.8	75-125			
m+p-Xylenes	99.3	2	ug/L	100	BLOD	99.3	75-130			
Methylene chloride	41.2	4	ug/L	50.0	BLOD	82.5	55-140			
Methyl-t-butyl ether (MTBE)	41.7	1	ug/L	50.0	BLOD	83.4	65-125			
Naphthalene	48.8	1	ug/L	50.0	BLOD	97.6	55-140			
n-Butylbenzene	46.8	1	ug/L	50.0	BLOD	93.5	70-135			
n-Propylbenzene	48.4	1	ug/L	50.0	BLOD	96.7	70-130			
o-Xylene	51.6	1	ug/L	50.0	BLOD	103	80-120			
sec-Butylbenzene	50.6	1	ug/L	50.0	BLOD	101	70-125			
Styrene	46.7	1	ug/L	50.0	BLOD	93.4	65-135			
tert-Butylbenzene	47.6	1	ug/L	50.0	BLOD	95.3	70-130			
Tetrachloroethylene (PCE)	45.4	1	ug/L	50.0	0.97	88.9	51-231			
Toluene	45.3	1	ug/L	50.0	BLOD	90.5	75-120			
trans-1,2-Dichloroethylene	36.3	1	ug/L	50.0	BLOD	72.7	60-140			
trans-1,3-Dichloropropene	40.0	1	ug/L	50.0	BLOD	79.9	55-140			
Trichloroethylene	43.9	1	ug/L	50.0	BLOD	87.8	70-125			
Trichlorofluoromethane	49.7	1	ug/L	50.0	BLOD	99.4	60-145			
Vinyl chloride	48.3	0.5	ug/L	50.0	BLOD	96.7	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	45.8		ug/L	50.0		91.7	70-120			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BG	C0325 - SW503	0B-MS								
Matrix Spike (BGC0325-MS1)	Sourc	e: 23C0431-0	1	Prepared & Anal	yzed: 03/09/2023					
Surr: 4-Bromofluorobenzene (Surr)	49.0		ug/L	50.0		98.0	75-120			
Surr: Dibromofluoromethane (Surr)	46.8		ug/L	50.0		93.5	70-130			
Surr: Toluene-d8 (Surr)	49.4		ug/L	50.0		98.7	70-130			
Matrix Spike Dup (BGC0325-MSD1)	Sourc	e: 23C0431-0	1	Prepared & Anal	yzed: 03/09/2023					
1,1,1,2-Tetrachloroethane	50.3	0.4	ug/L	50.0	BLOD	101	80-130	3.55	30	
1,1,1-Trichloroethane	40.5	1	ug/L	50.0	BLOD	81.1	65-130	6.84	30	
1,1,2,2-Tetrachloroethane	49.8	0.4	ug/L	50.0	BLOD	99.7	65-130	1.62	30	
1,1,2-Trichloroethane	45.9	1	ug/L	50.0	BLOD	91.8	75-125	0.196	30	
1,1-Dichloroethane	36.1	1	ug/L	50.0	BLOD	72.2	70-135	5.94	30	
1,1-Dichloroethylene	35.7	1	ug/L	50.0	BLOD	71.5	50-145	5.10	30	
1,1-Dichloropropene	36.9	1	ug/L	50.0	BLOD	73.8	75-135	6.17	30	M
1,2,3-Trichlorobenzene	53.4	1	ug/L	50.0	BLOD	107	55-140	0.448	30	
1,2,3-Trichloropropane	50.0	1	ug/L	50.0	BLOD	99.9	75-125	2.62	30	
1,2,4-Trichlorobenzene	53.6	1	ug/L	50.0	BLOD	107	65-135	0.688	30	
1,2,4-Trimethylbenzene	46.4	1	ug/L	50.0	BLOD	92.9	75-130	4.48	30	
1,2-Dibromo-3-chloropropane (DBCP)	57.8	1	ug/L	50.0	BLOD	116	50-130	1.88	30	
1,2-Dibromoethane (EDB)	52.6	1	ug/L	50.0	BLOD	105	80-120	0.342	30	
1,2-Dichlorobenzene	50.7	0.5	ug/L	50.0	BLOD	101	70-120	0.844	30	
1,2-Dichloroethane	41.3	1	ug/L	50.0	BLOD	82.6	70-130	2.79	30	
1,2-Dichloropropane	39.2	0.5	ug/L	50.0	BLOD	78.5	75-125	2.02	30	
1,3,5-Trimethylbenzene	45.0	1	ug/L	50.0	BLOD	90.0	75-124	2.37	30	
1,3-Dichlorobenzene	50.4	1	ug/L	50.0	BLOD	101	75-125	3.41	30	
1,3-Dichloropropane	45.4	1	ug/L	50.0	BLOD	90.7	75-125	1.31	30	
1,4-Dichlorobenzene	50.0	1	ug/L	50.0	BLOD	100	75-125	4.09	30	

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGC0325 - SW503	0B-MS								
Matrix Spike Dup (BGC0325-MSD1)	Sourc	e: 23C0431-0	1	Prepared & Anal	yzed: 03/09/2023					
2,2-Dichloropropane	39.1	1	ug/L	50.0	BLOD	78.1	70-135	5.94	30	
2-Butanone (MEK)	45.1	10	ug/L	50.0	BLOD	90.2	30-150	6.79	30	
2-Chlorotoluene	49.7	1	ug/L	50.0	BLOD	99.4	75-125	2.15	30	
2-Hexanone (MBK)	53.0	5	ug/L	50.0	BLOD	106	55-130	0.770	30	
4-Chlorotoluene	49.2	1	ug/L	50.0	BLOD	98.3	75-130	0.715	30	
4-Isopropyltoluene	46.7	1	ug/L	50.0	BLOD	93.4	75-130	4.91	30	
4-Methyl-2-pentanone (MIBK)	52.0	5	ug/L	50.0	BLOD	104	60-135	0.709	30	
Acetone	48.5	10	ug/L	50.0	BLOD	95.3	40-140	1.07	30	
Benzene	40.7	1	ug/L	50.0	BLOD	81.4	80-120	4.32	30	
Bromobenzene	53.0	1	ug/L	50.0	BLOD	106	75-125	3.25	30	
Bromochloromethane	42.6	1	ug/L	50.0	BLOD	85.3	65-130	3.50	30	
Bromodichloromethane	48.1	0.5	ug/L	50.0	BLOD	96.2	75-136	3.03	30	
Bromoform	54.8	1	ug/L	50.0	BLOD	110	70-130	1.23	30	
Bromomethane	43.6	1	ug/L	50.0	BLOD	87.2	30-145	2.47	30	
Carbon disulfide	49.1	10	ug/L	50.0	BLOD	98.2	35-160	1.42	30	
Carbon tetrachloride	45.4	1	ug/L	50.0	BLOD	90.8	65-140	4.37	30	
Chlorobenzene	48.5	1	ug/L	50.0	BLOD	97.0	80-120	3.36	30	
Chloroethane	38.4	1	ug/L	50.0	BLOD	76.7	60-135	4.63	30	
Chloroform	39.2	0.5	ug/L	50.0	BLOD	78.4	65-135	2.92	30	
Chloromethane	37.0	1	ug/L	50.0	BLOD	74.1	40-125	5.49	30	
cis-1,2-Dichloroethylene	38.3	1	ug/L	50.0	BLOD	76.6	70-125	3.46	30	
cis-1,3-Dichloropropene	34.6	1	ug/L	50.0	BLOD	69.3	47-136	2.23	30	
Dibromochloromethane	51.2	0.5	ug/L	50.0	BLOD	102	60-135	0.331	30	
Dibromomethane	48.4	1	ug/L	50.0	BLOD	96.7	75-125	0.145	30	
Dichlorodifluoromethane	47.9	1	ug/L	50.0	BLOD	95.8	30-155	6.19	30	

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	3GC0325 - SW503	0B-MS								
Matrix Spike Dup (BGC0325-MSD1)	Sourc	e: 23C0431-0)1	Prepared & Anal	yzed: 03/09/2023	1				
Ethylbenzene	47.0	1	ug/L	50.0	BLOD	94.0	75-125	4.43	30	
Hexachlorobutadiene	52.3	0.8	ug/L	50.0	BLOD	105	50-140	2.46	30	
Isopropylbenzene	45.3	1	ug/L	50.0	BLOD	90.6	75-125	5.64	30	
m+p-Xylenes	93.1	2	ug/L	100	BLOD	93.1	75-130	6.43	30	
Methylene chloride	39.9	4	ug/L	50.0	BLOD	79.7	55-140	3.40	30	
Methyl-t-butyl ether (MTBE)	41.3	1	ug/L	50.0	BLOD	82.7	65-125	0.915	30	
Naphthalene	49.9	1	ug/L	50.0	BLOD	99.9	55-140	2.29	30	
n-Butylbenzene	46.2	1	ug/L	50.0	BLOD	92.4	70-135	1.21	30	
n-Propylbenzene	47.1	1	ug/L	50.0	BLOD	94.2	70-130	2.60	30	
o-Xylene	49.1	1	ug/L	50.0	BLOD	98.2	80-120	4.96	30	
sec-Butylbenzene	48.8	1	ug/L	50.0	BLOD	97.6	70-125	3.70	30	
Styrene	44.8	1	ug/L	50.0	BLOD	89.6	65-135	4.20	30	
tert-Butylbenzene	46.5	1	ug/L	50.0	BLOD	92.9	70-130	2.49	30	
Tetrachloroethylene (PCE)	43.0	1	ug/L	50.0	0.97	84.1	51-231	5.41	30	
Toluene	43.1	1	ug/L	50.0	BLOD	86.2	75-120	4.91	30	
trans-1,2-Dichloroethylene	34.4	1	ug/L	50.0	BLOD	68.7	60-140	5.63	30	
trans-1,3-Dichloropropene	39.1	1	ug/L	50.0	BLOD	78.1	55-140	2.30	30	
Trichloroethylene	42.1	1	ug/L	50.0	BLOD	84.3	70-125	4.11	30	
Trichlorofluoromethane	47.0	1	ug/L	50.0	BLOD	94.0	60-145	5.59	30	
Vinyl chloride	45.3	0.5	ug/L	50.0	BLOD	90.6	50-145	6.45	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	47.0		ug/L	50.0		94.1	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.2		ug/L	50.0		98. <i>4</i>	75-120			
Surr: Dibromofluoromethane (Surr)	47.4		ug/L	50.0		94.7	70-130			
Surr: Toluene-d8 (Surr)	49.7		ug/L	50.0		99.5	70-130			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3GC0321 - SW351	I0C/EPA600	-MS							
Blank (BGC0321-BLK1)			F	Prepared & Anal	yzed: 03/09/2023	1				
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophenol (Surr)	108		ug/L	200		54.0	5-136			
Surr: 2-Fluorobiphenyl (Surr)	36.1		ug/L	100		36.1	9-117			
Surr: 2-Fluorophenol (Surr)	48.4		ug/L	200		24.2	5-60			
Surr: Nitrobenzene-d5 (Surr)	38.4		ug/L	100		38.4	5-151			
Surr: Phenol-d5 (Surr)	30.6		ug/L	200		15.3	5-60			
Surr: p-Terphenyl-d14 (Surr)	32.6		ug/L	100		32.6	5-141			
_CS (BGC0321-BS1)			F	Prepared & Anal	yzed: 03/09/2023	1				
1,2,4-Trichlorobenzene	26.8	10.0	ug/L	50.0		53.6	57-130			L
1,2-Dichlorobenzene	23.4	10.0	ug/L	50.0		46.8	22-115			
1,3-Dichlorobenzene	22.0	10.0	ug/L	50.0		44.0	22-112			
1,4-Dichlorobenzene	23.5	10.0	ug/L	50.0		47.0	13-112			
2,4,6-Trichlorophenol	25.6	10.0	ug/L	50.0		51.2	52-129			L
2,4-Dichlorophenol	26.7	10.0	ug/L	50.0		53.4	53-122			
2,4-Dimethylphenol	28.4	5.00	ug/L	50.0		56.7	42-120			
2,4-Dinitrophenol	16.4	50.0	ug/L	50.0		32.7	48-127			L
2,4-Dinitrotoluene	34.5	10.0	ug/L	50.0		69.0	10-173			
2,6-Dinitrotoluene	36.0	10.0	ug/L	50.0		72.1	68-137			
2-Chloronaphthalene	25.9	10.0	ug/L	50.0		51.9	65-120			L
2-Chlorophenol	26.9	10.0	ug/L	50.0		53.9	36-120			
2-Nitrophenol	33.7	10.0	ug/L	50.0		67.4	45-167			
3,3'-Dichlorobenzidine	26.2	10.0	ug/L	50.0		52.5	10-213			
4,6-Dinitro-2-methylphenol	35.2	50.0	ug/L	50.0		70.4	53-130			
4-Bromophenyl phenyl ether	37.3	10.0	ug/L	50.0		74.5	65-120			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BGC0321 - SW351	0C/EPA600	-MS							
.CS (BGC0321-BS1)			F	repared & Anal	yzed: 03/09/2023					
4-Chlorophenyl phenyl ether	29.4	10.0	ug/L	50.0		58.8	38-145			
4-Nitrophenol	9.19	50.0	ug/L	50.0		18.4	13-129			
Acenaphthene	27.0	10.0	ug/L	50.0		54.0	60-132			L
Acenaphthylene	27.5	10.0	ug/L	50.0		55.0	54-126			
Acetophenone	24.6	20.0	ug/L	50.0		49.2	0-200			
Anthracene	31.0	10.0	ug/L	50.0		61.9	43-120			
Benzidine	ND	50.0	ug/L	50.0			12-309			L
Benzo (a) anthracene	33.0	10.0	ug/L	50.0		66.0	42-133			
Benzo (a) pyrene	35.8	10.0	ug/L	50.0		71.7	32-148			
Benzo (b) fluoranthene	30.9	10.0	ug/L	50.0		61.8	42-140			
Benzo (g,h,i) perylene	41.4	10.0	ug/L	50.0		82.9	10-195			
Benzo (k) fluoranthene	30.5	10.0	ug/L	50.0		61.0	25-146			
bis (2-Chloroethoxy) methane	27.6	10.0	ug/L	50.0		55.2	49-165			
bis (2-Chloroethyl) ether	25.3	10.0	ug/L	50.0		50.6	43-126			
2,2'-Oxybis (1-chloropropane)	26.7	10.0	ug/L	50.0		53.4	63-139			L
bis (2-Ethylhexyl) phthalate	35.0	10.0	ug/L	50.0		70.1	29-137			
Butyl benzyl phthalate	37.1	10.0	ug/L	50.0		74.2	10-140			
Chrysene	33.6	10.0	ug/L	50.0		67.1	44-140			
Dibenz (a,h) anthracene	44.4	10.0	ug/L	50.0		88.8	10-200			
Diethyl phthalate	34.1	10.0	ug/L	50.0		68.3	10-120			
Dimethyl phthalate	31.7	10.0	ug/L	50.0		63.4	10-120			
Di-n-butyl phthalate	35.2	10.0	ug/L	50.0		70.5	10-120			
Di-n-octyl phthalate	27.3	10.0	ug/L	50.0		54.6	19-132			
Fluoranthene	37.3	10.0	ug/L	50.0		74.5	43-121			
Fluorene	30.5	10.0	ug/L	50.0		61.0	70-120			L

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGC0321 - SW351	0C/EPA600	-MS							
_CS (BGC0321-BS1)				Prepared & Analyze	ed: 03/09/2023	}				
Hexachlorobenzene	49.2	1.00	ug/L	50.0		98.3	10-142			
Hexachlorobutadiene	29.0	10.0	ug/L	50.0		57.9	38-120			
Hexachlorocyclopentadiene	17.4	10.0	ug/L	50.0		34.8	10-76			
Hexachloroethane	25.0	10.0	ug/L	50.0		50.1	55-120			L,
Indeno (1,2,3-cd) pyrene	44.4	10.0	ug/L	50.0		88.8	10-151			
Isophorone	17.9	10.0	ug/L	50.0		35.9	47-180			L
Naphthalene	24.9	5.00	ug/L	50.0		49.8	36-120			
Nitrobenzene	28.6	10.0	ug/L	50.0		57.1	54-158			
n-Nitrosodimethylamine	16.0	10.0	ug/L	50.0		32.1	10-85			
n-Nitrosodi-n-propylamine	22.0	10.0	ug/L	50.0		44.0	14-198			
n-Nitrosodiphenylamine	25.6	10.0	ug/L	50.0		51.2	12-97			
p-Chloro-m-cresol	29.8	10.0	ug/L	50.0		59.6	10-142			
Pentachlorophenol	20.8	20.0	ug/L	50.0		41.6	38-152			
Phenanthrene	32.8	10.0	ug/L	50.0		65.6	65-120			
Phenol	12.2	10.0	ug/L	50.5		24.1	17-120			
Pyrene	30.0	10.0	ug/L	50.0		60.0	70-120			L
Pyridine	17.4	10.0	ug/L	50.0		34.8	10-103			
Surr: 2,4,6-Tribromophenol (Surr)	102		ug/L	200		51.1	5-136			
Surr: 2-Fluorobiphenyl (Surr)	27.4		ug/L	100		27.4	9-117			
Surr: 2-Fluorophenol (Surr)	33.4		ug/L	200		16.7	5-60			
Surr: Nitrobenzene-d5 (Surr)	31.9		ug/L	100		31.9	5-151			
Surr: Phenol-d5 (Surr)	23.4		ug/L	200		11.7	5-60			
Surr: p-Terphenyl-d14 (Surr)	32.8		ug/L	100		32.8	5-141			
Matrix Spike (BGC0321-MS1)	Sourc	e: 23C0421-1	12	Prepared & Analyze	ed: 03/09/2023	1				

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BGC0321 - SW351	0C/EPA600	-MS							
Matrix Spike (BGC0321-MS1)	Sourc	e: 23C0421-1	12	Prepared & Anal	yzed: 03/09/2023					
1,2,4-Trichlorobenzene	44.5	10.0	ug/L	50.0	BLOD	89.0	44-142			
1,2-Dichlorobenzene	42.9	10.0	ug/L	50.0	BLOD	85.8	22-115			
1,3-Dichlorobenzene	39.8	10.0	ug/L	50.0	BLOD	79.6	22-112			
1,4-Dichlorobenzene	44.3	10.0	ug/L	50.0	BLOD	88.6	13-112			
2,4,6-Trichlorophenol	51.2	10.0	ug/L	50.0	BLOD	102	37-144			
2,4-Dichlorophenol	47.9	10.0	ug/L	50.0	BLOD	95.7	39-135			
2,4-Dimethylphenol	43.7	5.00	ug/L	50.0	BLOD	87.4	32-120			
2,4-Dinitrophenol	56.8	50.0	ug/L	50.0	BLOD	114	39-139			
2,4-Dinitrotoluene	50.4	10.0	ug/L	50.0	BLOD	101	10-191			
2,6-Dinitrotoluene	47.1	10.0	ug/L	50.0	BLOD	94.1	50-158			
2-Chloronaphthalene	46.0	10.0	ug/L	50.0	BLOD	92.0	60-120			
2-Chlorophenol	45.2	10.0	ug/L	50.0	BLOD	90.5	23-134			
2-Nitrophenol	47.7	10.0	ug/L	50.0	BLOD	95.4	29-182			
3,3'-Dichlorobenzidine	22.4	10.0	ug/L	50.0	BLOD	44.7	10-262			
4,6-Dinitro-2-methylphenol	60.6	50.0	ug/L	50.0	BLOD	121	10-181			
4-Bromophenyl phenyl ether	ND	10.0	ug/L	50.0	BLOD		53-127			M
4-Chlorophenyl phenyl ether	45.6	10.0	ug/L	50.0	BLOD	91.3	25-158			
4-Nitrophenol	19.0	50.0	ug/L	50.0	BLOD	38.0	10-132			
Acenaphthene	46.6	10.0	ug/L	50.0	BLOD	93.2	47-145			
Acenaphthylene	45.0	10.0	ug/L	50.0	BLOD	90.1	33-145			
Acetophenone	44.8	20.0	ug/L	50.0	BLOD	89.6	0-200			
Anthracene	46.4	10.0	ug/L	50.0	BLOD	92.8	27-133			
Benzidine	ND	50.0	ug/L	50.0	BLOD		12-309			M
Benzo (a) anthracene	47.7	10.0	ug/L	50.0	BLOD	95.4	33-143			
Benzo (a) pyrene	49.6	10.0	ug/L	50.0	BLOD	99.1	17-163			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BGC0321 - SW351	0C/EPA600	-MS							
Matrix Spike (BGC0321-MS1)	Sourc	e: 23C0421-1	2	Prepared & Anal	yzed: 03/09/2023					
Benzo (b) fluoranthene	47.8	10.0	ug/L	50.0	BLOD	95.6	24-159			
Benzo (g,h,i) perylene	37.1	10.0	ug/L	50.0	BLOD	74.2	10-219			
Benzo (k) fluoranthene	54.6	10.0	ug/L	50.0	BLOD	109	11-162			
bis (2-Chloroethoxy) methane	42.3	10.0	ug/L	50.0	BLOD	84.6	33-184			
bis (2-Chloroethyl) ether	43.4	10.0	ug/L	50.0	BLOD	86.8	12-158			
2,2'-Oxybis (1-chloropropane)	43.4	10.0	ug/L	50.0	BLOD	86.8	36-166			
bis (2-Ethylhexyl) phthalate	48.2	10.0	ug/L	50.0	BLOD	96.5	10-158			
Butyl benzyl phthalate	41.0	10.0	ug/L	50.0	BLOD	82.1	10-152			
Chrysene	56.6	10.0	ug/L	50.0	BLOD	113	17-169			
Dibenz (a,h) anthracene	46.4	10.0	ug/L	50.0	BLOD	92.8	10-227			
Diethyl phthalate	47.1	10.0	ug/L	50.0	BLOD	94.3	10-120			
Dimethyl phthalate	44.8	10.0	ug/L	50.0	BLOD	89.5	10-120			
Di-n-butyl phthalate	53.6	10.0	ug/L	50.0	BLOD	107	10-120			
Di-n-octyl phthalate	48.9	10.0	ug/L	50.0	BLOD	97.8	10-146			
Fluoranthene	58.7	10.0	ug/L	50.0	BLOD	117	26-137			
Fluorene	48.3	10.0	ug/L	50.0	BLOD	96.6	59-121			
Hexachlorobenzene	41.7	1.00	ug/L	50.0	BLOD	83.4	10-152			
Hexachlorobutadiene	47.9	10.0	ug/L	50.0	BLOD	95.8	24-120			
Hexachlorocyclopentadiene	32.3	10.0	ug/L	50.0	BLOD	64.6	10-90			
Hexachloroethane	45.1	10.0	ug/L	50.0	BLOD	90.1	40-120			
Indeno (1,2,3-cd) pyrene	45.0	10.0	ug/L	50.0	BLOD	89.9	10-171			
Isophorone	25.5	10.0	ug/L	50.0	BLOD	51.0	21-196			
Naphthalene	43.0	5.00	ug/L	50.0	BLOD	85.9	21-133			
Nitrobenzene	54.6	10.0	ug/L	50.0	BLOD	109	35-180			
n-Nitrosodimethylamine	27.3	10.0	ug/L	50.0	BLOD	54.6	10-85			

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BGC0321 - SW351	0C/EPA600	-MS							
Matrix Spike (BGC0321-MS1)	Sourc	e: 23C0421-1	2	Prepared & Anal	yzed: 03/09/2023					
n-Nitrosodi-n-propylamine	49.8	10.0	ug/L	50.0	BLOD	99.7	10-230			
n-Nitrosodiphenylamine	39.4	10.0	ug/L	50.0	BLOD	78.8	12-111			
p-Chloro-m-cresol	46.1	10.0	ug/L	50.0	BLOD	92.2	10-127			
Pentachlorophenol	43.3	20.0	ug/L	50.0	BLOD	86.6	14-176			
Phenanthrene	54.8	10.0	ug/L	50.0	BLOD	110	54-120			
Phenol	18.3	10.0	ug/L	50.5	BLOD	36.2	10-120			
Pyrene	43.7	10.0	ug/L	50.0	BLOD	87.3	52-120			
Pyridine	29.9	10.0	ug/L	50.0	BLOD	59.8	10-110			
Surr: 2,4,6-Tribromophenol (Surr)	96.0		ug/L	200		48.0	5-136			
Surr: 2-Fluorobiphenyl (Surr)	45.8		ug/L	100		45.8	9-117			
Surr: 2-Fluorophenol (Surr)	50.5		ug/L	200		25.2	5-60			
Surr: Nitrobenzene-d5 (Surr)	54.2		ug/L	100		54.2	5-151			
Surr: Phenol-d5 (Surr)	38.1		ug/L	200		19.1	5-60			
Surr: p-Terphenyl-d14 (Surr)	36.8		ug/L	100		36.8	5-141			
latrix Spike Dup (BGC0321-MSD1)	Source	e: 23C0421-1	2	Prepared & Anal	yzed: 03/09/2023					
1,2,4-Trichlorobenzene	36.8	10.0	ug/L	50.0	BLOD	73.6	44-142	18.8	20	
1,2-Dichlorobenzene	34.3	10.0	ug/L	50.0	BLOD	68.6	22-115	22.3	20	Р
1,3-Dichlorobenzene	32.3	10.0	ug/L	50.0	BLOD	64.6	22-112	20.8	20	Р
1,4-Dichlorobenzene	36.4	10.0	ug/L	50.0	BLOD	72.8	13-112	19.6	20	
2,4,6-Trichlorophenol	42.8	10.0	ug/L	50.0	BLOD	85.7	37-144	17.8	20	
2,4-Dichlorophenol	39.6	10.0	ug/L	50.0	BLOD	79.1	39-135	19.0	20	
2,4-Dimethylphenol	36.5	5.00	ug/L	50.0	BLOD	72.9	32-120	18.0	20	
2,4-Dinitrophenol	49.5	50.0	ug/L	50.0	BLOD	99.0	39-139	13.7	20	
2,4-Dinitrotoluene	43.0	10.0	ug/L	50.0	BLOD	85.9	10-191	15.9	20	

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGC0321 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGC0321-MSD1)	Sourc	e: 23C0421-1	12	Prepared & Anal	yzed: 03/09/2023					
2,6-Dinitrotoluene	42.2	10.0	ug/L	50.0	BLOD	84.3	50-158	11.0	20	
2-Chloronaphthalene	39.5	10.0	ug/L	50.0	BLOD	78.9	60-120	15.3	20	
2-Chlorophenol	36.7	10.0	ug/L	50.0	BLOD	73.5	23-134	20.7	20	Р
2-Nitrophenol	39.6	10.0	ug/L	50.0	BLOD	79.1	29-182	18.7	20	
3,3'-Dichlorobenzidine	18.3	10.0	ug/L	50.0	BLOD	36.5	10-262	20.2	20	Р
4,6-Dinitro-2-methylphenol	55.2	50.0	ug/L	50.0	BLOD	110	10-181	9.40	20	
4-Bromophenyl phenyl ether	37.4	10.0	ug/L	50.0	BLOD	74.9	53-127		20	
4-Chlorophenyl phenyl ether	39.9	10.0	ug/L	50.0	BLOD	79.8	25-158	13.4	20	
4-Nitrophenol	17.4	50.0	ug/L	50.0	BLOD	34.7	10-132	9.08	20	
Acenaphthene	39.8	10.0	ug/L	50.0	BLOD	79.5	47-145	15.8	20	
Acenaphthylene	38.7	10.0	ug/L	50.0	BLOD	77.3	33-145	15.2	20	
Acetophenone	37.4	20.0	ug/L	50.0	BLOD	74.8	0-200	18.1	20	
Anthracene	38.9	10.0	ug/L	50.0	BLOD	77.8	27-133	17.5	20	
Benzidine	ND	50.0	ug/L	50.0	BLOD		12-309		20	M
Benzo (a) anthracene	41.1	10.0	ug/L	50.0	BLOD	82.3	33-143	14.8	20	
Benzo (a) pyrene	41.6	10.0	ug/L	50.0	BLOD	83.3	17-163	17.4	20	
Benzo (b) fluoranthene	42.1	10.0	ug/L	50.0	BLOD	84.2	24-159	12.7	20	
Benzo (g,h,i) perylene	32.4	10.0	ug/L	50.0	BLOD	64.8	10-219	13.6	20	
Benzo (k) fluoranthene	42.2	10.0	ug/L	50.0	BLOD	84.5	11-162	25.5	20	Р
bis (2-Chloroethoxy) methane	36.8	10.0	ug/L	50.0	BLOD	73.6	33-184	14.0	20	
bis (2-Chloroethyl) ether	35.7	10.0	ug/L	50.0	BLOD	71.5	12-158	19.4	20	
2,2'-Oxybis (1-chloropropane)	35.1	10.0	ug/L	50.0	BLOD	70.2	36-166	21.2	20	Р
bis (2-Ethylhexyl) phthalate	41.8	10.0	ug/L	50.0	BLOD	83.6	10-158	14.4	20	
Butyl benzyl phthalate	37.9	10.0	ug/L	50.0	BLOD	75.9	10-152	7.87	20	
Chrysene	46.6	10.0	ug/L	50.0	BLOD	93.3	17-169	19.4	20	

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGC0321 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BGC0321-MSD1)	Sourc	e: 23C0421-1	12	Prepared & Anal	yzed: 03/09/2023	3				
Dibenz (a,h) anthracene	38.8	10.0	ug/L	50.0	BLOD	77.6	10-227	17.8	20	
Diethyl phthalate	40.3	10.0	ug/L	50.0	BLOD	80.6	10-120	15.7	20	
Dimethyl phthalate	38.8	10.0	ug/L	50.0	BLOD	77.6	10-120	14.3	20	
Di-n-butyl phthalate	44.1	10.0	ug/L	50.0	BLOD	88.2	10-120	19.5	20	
Di-n-octyl phthalate	45.2	10.0	ug/L	50.0	BLOD	90.4	10-146	7.95	20	
Fluoranthene	47.0	10.0	ug/L	50.0	BLOD	94.1	26-137	22.0	20	Р
Fluorene	41.5	10.0	ug/L	50.0	BLOD	83.0	59-121	15.1	20	
Hexachlorobenzene	36.1	1.00	ug/L	50.0	BLOD	72.2	10-152	14.4	20	
Hexachlorobutadiene	39.9	10.0	ug/L	50.0	BLOD	79.8	24-120	18.2	20	
Hexachlorocyclopentadiene	26.6	10.0	ug/L	50.0	BLOD	53.1	10-90	19.4	20	
Hexachloroethane	36.1	10.0	ug/L	50.0	BLOD	72.1	40-120	22.2	20	Р
Indeno (1,2,3-cd) pyrene	38.8	10.0	ug/L	50.0	BLOD	77.5	10-171	14.9	20	
Isophorone	22.1	10.0	ug/L	50.0	BLOD	44.2	21-196	14.3	20	
Naphthalene	35.8	5.00	ug/L	50.0	BLOD	71.6	21-133	18.2	20	
Nitrobenzene	44.0	10.0	ug/L	50.0	BLOD	88.0	35-180	21.5	20	Р
n-Nitrosodimethylamine	14.8	10.0	ug/L	50.0	BLOD	29.5	10-85	59.7	20	Р
n-Nitrosodi-n-propylamine	39.9	10.0	ug/L	50.0	BLOD	79.8	10-230	22.1	20	Р
n-Nitrosodiphenylamine	34.4	10.0	ug/L	50.0	BLOD	68.8	12-111	13.6	20	
p-Chloro-m-cresol	37.6	10.0	ug/L	50.0	BLOD	75.2	10-127	20.2	20	Р
Pentachlorophenol	37.3	20.0	ug/L	50.0	BLOD	74.7	14-176	14.8	20	
Phenanthrene	46.0	10.0	ug/L	50.0	BLOD	91.9	54-120	17.5	20	
Phenol	14.4	10.0	ug/L	50.5	BLOD	28.5	10-120	23.8	20	Р
Pyrene	38.2	10.0	ug/L	50.0	BLOD	76.4	52-120	13.4	20	
Pyridine	16.9	10.0	ug/L	50.0	BLOD	33.7	10-110	55.7	20	Р
Surr: 2,4,6-Tribromophenol (Surr)	82.8		ug/L	200		41.4	5-136			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

4/4/2023 3:37:46PM

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
-	BGC0321 - SW351	0C/EPA600-MS							
Matrix Spike Dup (BGC0321-MSD1)	Sourc	e: 23C0421-12	Prepared & Ana	lyzed: 03/09/2023					
Surr: 2-Fluorobiphenyl (Surr)	39.0	ug/	_ 100		39.0	9-117			
Surr: 2-Fluorophenol (Surr)	27.4	ug/	_ 200		13.7	5-60			
Surr: Nitrobenzene-d5 (Surr)	44.8	ug/	_ 100		44.8	5-151			
Surr: Phenol-d5 (Surr)	29.7	ug/	_ 200		14.9	5-60			
Surr: p-Terphenyl-d14 (Surr)	29.3	ug/	_ 100		29.3	5-141			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

4/4/2023 3:37:46PM

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bate	ch BGC0274 - No Prej	o Wet Chem	1							
Blank (BGC0274-BLK1)				Prepared & Analy	/zed: 03/08/2023					
BOD	0.4	2.0	mg/L							
LCS (BGC0274-BS1)				Prepared & Analy	zed: 03/08/2023					
BOD	220	2	mg/L	198		111	84.6-115.4			
Duplicate (BGC0274-DUP1)	Source	e: 23C0316-0	1	Prepared & Analy	/zed: 03/08/2023					
BOD	5.3	2.0	mg/L		5.3			0.567	20	
Bato	ch BGC0305 - No Prej	Wet Chem								
Blank (BGC0305-BLK1)				Prepared & Analy	/zed: 03/08/2023					
Nitrite as N	ND	0.05	mg/L							
LCS (BGC0305-BS1)				Prepared & Analy	/zed: 03/08/2023					
Nitrite as N	0.10	0.05	mg/L	0.100		103	80-120			
Matrix Spike (BGC0305-MS1)	Source	e: 23C0489-0	2	Prepared & Analy	/zed: 03/08/2023					
Nitrite as N	0.10	0.05	mg/L	0.100	BLOD	105	80-120			
Matrix Spike Dup (BGC0305-MSD1)	Source	e: 23C0489-0	2	Prepared & Analy	/zed: 03/08/2023					
Nitrite as N	0.10	0.05	mg/L	0.100	BLOD	105	80-120	0.00	20	
Bato	ch BGC0411 - No Prep	Wet Chem	l							
Blank (BGC0411-BLK1)				Prepared & Analy	yzed: 03/10/2023					
COD	ND	10.0	mg/L							

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Date Issued:

4/4/2023 3:37:46PM

Wet Chemistry Analysis - Quality Control

				Spike	Source		%REC		RPD	
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch I	BGC0411 - No Prep	Wet Chem								
LCS (BGC0411-BS1)				Prepared & Analy	yzed: 03/10/2023					
COD	47.4	10.0	mg/L	50.0		94.9	88-119			
Matrix Spike (BGC0411-MS1)	Source	: 23C0451-01		Prepared & Analy	yzed: 03/10/2023					
COD	54.2	10.0	mg/L	50.0	BLOD	108	72.4-130			
Matrix Spike Dup (BGC0411-MSD1)	Source	: 23C0451-01		Prepared & Analy	yzed: 03/10/2023					
COD	53.2	10.0	mg/L	50.0	BLOD	106	72.4-130	1.92	20	
Batch	BGC0423 - No Prep	Wet Chem								
Blank (BGC0423-BLK1)				Prepared & Analy	yzed: 03/10/2023					
Total Recoverable Phenolics	ND	0.050	mg/L							
LCS (BGC0423-BS1)				Prepared & Analy	yzed: 03/10/2023					
Total Recoverable Phenolics	0.45	0.050	mg/L	0.500		89.2	80-120			
Matrix Spike (BGC0423-MS1)	Source	: 23C0427-01		Prepared & Analy	yzed: 03/10/2023					
Total Recoverable Phenolics	0.54	0.050	mg/L	0.500	BLOD	108	70-130			
Matrix Spike Dup (BGC0423-MSD1)	Source	: 23C0427-01		Prepared & Analy	yzed: 03/10/2023					
Total Recoverable Phenolics	0.52	0.050	mg/L	0.500	BLOD	104	70-130	3.39	20	
Batch I	BGC0460 - No Prep	Wet Chem								
Blank (BGC0460-BLK1)				Prepared & Analy	yzed: 03/13/2023					
Ammonia as N	ND	0.10	mg/L							

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

4/4/2023 3:37:46PM

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
				20701	rtocait	701120	Liiiito	111 5	Liiiik	Quai
Batch I	BGC0460 - No Pre	ep Wet Chen	1							
LCS (BGC0460-BS1)				Prepared & Analy	yzed: 03/13/2023					
Ammonia as N	1.98	0.1	mg/L	2.00		99.1	90-110			
Matrix Spike (BGC0460-MS1)	Source	ce: 23C0661-0	1	Prepared & Analy	yzed: 03/13/2023					
Ammonia as N	2.03	0.10	mg/L	2.00	0.09	96.6	89.3-131			
Matrix Spike Dup (BGC0460-MSD1)	Source	ce: 23C0661-0	1	Prepared & Analy	yzed: 03/13/2023					
Ammonia as N	1.97	0.10	mg/L	2.00	0.09	93.9	89.3-131	2.75	20	
Batch I	BGC0578 - No Pre	ep Wet Chem	1							
Blank (BGC0578-BLK1)				Prepared & Analy	yzed: 03/15/2023					
Total Recoverable Phenolics	ND	0.050	mg/L							
LCS (BGC0578-BS1)				Prepared & Analy	yzed: 03/15/2023					
Total Recoverable Phenolics	0.45	0.050	mg/L	0.500		90.4	80-120			
Matrix Spike (BGC0578-MS1)	Source	ce: 23C0769-0	2	Prepared & Analy	yzed: 03/15/2023					
Total Recoverable Phenolics	0.52	0.050	mg/L	0.500	BLOD	104	70-130			
Matrix Spike Dup (BGC0578-MSD1)	Source	ce: 23C0769-0	2	Prepared & Analy	yzed: 03/15/2023					
Total Recoverable Phenolics	0.53	0.050	mg/L	0.500	BLOD	106	70-130	1.90	20	
Batch I	BGC0587 - No Pre	ep Wet Chem	า							
Blank (BGC0587-BLK1)				Prepared & Analy	yzed: 03/16/2023					
TKN as N	ND	0.50	mg/L							

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

4/4/2023 3:37:46PM

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BGC0587 - No Pre	p Wet Chen	n							
LCS (BGC0587-BS1)				Prepared & Analy	zed: 03/16/2023					
TKN as N	10.5	0.50	mg/L	10.0		105	90-110			
Matrix Spike (BGC0587-MS1)	Sourc	e: 23C0779-0	2	Prepared & Analy	zed: 03/16/2023					
TKN as N	8.74	0.50	mg/L	10.0	BLOD	87.4	90-110			М
Matrix Spike (BGC0587-MS2)	Sourc	e: 23C0507-0	1	Prepared & Analy	zed: 03/16/2023					
TKN as N	10.6	0.50	mg/L	10.0	0.39	102	90-110			
Matrix Spike Dup (BGC0587-MSD1)	Sourc	e: 23C0779-0	2	Prepared & Analy	zed: 03/16/2023					
TKN as N	6.72	0.50	mg/L	10.0	BLOD	67.2	90-110	26.2	20	M
Matrix Spike Dup (BGC0587-MSD2)	Sourc	e: 23C0507-0	1	Prepared & Analy	/zed: 03/16/2023					
TKN as N	10.7	0.50	mg/L	10.0	0.39	103	90-110	1.45	20	
Batch I	BGC0609 - No Pre	p Wet Chen	n							
Blank (BGC0609-BLK1)				Prepared & Analy	yzed: 03/16/2023					
Nitrate+Nitrite as N	ND	0.02	mg/L							
LCS (BGC0609-BS1)				Prepared & Analy	yzed: 03/16/2023					
Nitrate+Nitrite as N	2.73	0.1	mg/L	2.50		109	90-110			
Matrix Spike (BGC0609-MS1)	Sourc	e: 23C0339-0	1	Prepared & Analy	/zed: 03/16/2023					
Nitrate+Nitrite as N	3.50	0.1	mg/L	2.50	0.09	136	90-110			М
Matrix Spike Dup (BGC0609-MSD1)	Sourc	e: 23C0339-0	1	Prepared & Analy	/zed: 03/16/2023					
Nitrate+Nitrite as N	3.46	0.1	mg/L	2.50	0.09	135	90-110	1.06	20	М

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Analytical Summary

23C0397-01 Subcontract 23C0397-02 Subcontract

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.2/R2.8	
23C0397-01	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
23C0397-01RE1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0689	AC30187
23C0397-02	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
23C0397-02RF1	50 0 ml / 50 0 ml	SW6010D	BGC0373	SGC0689	AC30187

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Ana	alysis		Preparation Method:	No Prep Wet Chem	
23C0397-01	300 mL / 300 mL	SM22 5210B-2011	BGC0274	SGC0427	
23C0397-02	300 mL / 300 mL	SM22 5210B-2011	BGC0274	SGC0427	
23C0397-01	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
23C0397-02	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
23C0397-01	0.0400 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
23C0397-02	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
23C0397-01	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103
23C0397-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146
23C0397-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146
23C0397-02	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
23C0397-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
23C0397-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
23C0397-01	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
23C0397-02	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued: 4/4/2023 3:37:46PM

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	c Compounds by GCMS		Preparation Method:	SW3510C/EPA600-	-MS
23C0397-01	1070 mL / 25.0 mL	SW8270E	BGC0321	SGC0358	AL20040
23C0397-02	980 mL / 1.00 mL	SW8270E	BGC0321	SGC0408	AL20040
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
23C0397-01	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
23C0397-02	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
23C0397-02RE1	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
23C0397-03	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	SW7470A	
23C0397-01	20.0 mL / 20.0 mL	SW7470A	BGC0322	SGC0341	AC30132
23C0397-02	10.0 mL / 20.0 mL	SW7470A	BGC0322	SGC0341	AC30132

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Preparation Factors

Jennifer Robb Submitted To:

QC Analytical Summary

<u>Cer</u>	<u>tificate</u>	of Ana	<u>ysis</u>	

Date Issued: 4/4/2023 3:37:46PM

Sample ID	Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	6000/7000 Series Methods		Preparation Method:	EPA200.2/R2.8	
BGC0373-BLK1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
BGC0373-BS1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
BGC0373-MS1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
BGC0373-MS2	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
BGC0373-MSD1	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
BGC0373-MSD2	50.0 mL / 50.0 mL	SW6010D	BGC0373	SGC0432	AC30141
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	rsis		Preparation Method:	No Prep Wet Chem	
BGC0274-BLK1	300 mL / 300 mL	SM22 5210B-2011	BGC0274	SGC0427	
BGC0274-BS1	300 mL / 300 mL	SM22 5210B-2011	BGC0274	SGC0427	
BGC0274-DUP1	300 mL / 300 mL	SM22 5210B-2011	BGC0274	SGC0427	
BGC0305-BLK1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
BGC0305-BS1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
BGC0305-MRL1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
BGC0305-MS1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
BGC0305-MSD1	25.0 mL / 25.0 mL	SM22 4500-NO2B-2011	BGC0305	SGC0294	AJ20138
BGC0411-BLK1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
BGC0411-BS1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
BGC0411-MRL1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
BGC0411-MS1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
BGC0411-MSD1	2.00 mL / 2.00 mL	SM22 5220D-2011	BGC0411	SGC0407	AB30171
BGC0423-BLK1	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Preparation Factors

City of Bristol Landfill

Jennifer Robb Submitted To:

Client Site I.D.:

Date Issued: 4/4/2023 3:37:46PM

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	rsis		Preparation Method:	No Prep Wet Chem	
BGC0423-BS1	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103
BGC0423-MRL1	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103
BGC0423-MS1	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103
BGC0423-MSD1	5.00 mL / 10.0 mL	SW9065	BGC0423	SGC0415	AL20103
BGC0460-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146
BGC0460-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146
BGC0460-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146
BGC0460-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BGC0460	SGC0461	AC30146
BGC0578-BLK1	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
BGC0578-BS1	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
BGC0578-MRL1	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
BGC0578-MS1	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
BGC0578-MSD1	5.00 mL / 10.0 mL	SW9065	BGC0578	SGC0557	AL20103
BGC0587-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0587-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BGC0587	SGC0596	AC30171
BGC0609-BLK1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
BGC0609-BS1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
BGC0609-MRL1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
BGC0609-MS1	50.0 mL / 50.0 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
BGC0609-MSD1	50.0 mL / 50.0 mL	SM22 4500-NO3F-2011	BGC0609	SGC0599	AC30173
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-M	3

Page 41 of 56

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Date Issued: 4/4/2023 3:37:46PM

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600	-MS
BGC0321-BLK1	1000 mL / 1.00 mL	SW8270E	BGC0321	SGC0358	AL20040
BGC0321-BLK2		SW8270E	BGC0321	SGC0360	AL20040
BGC0321-BS1	1000 mL / 1.00 mL	SW8270E	BGC0321	SGC0358	AL20040
BGC0321-MS1	1000 mL / 1.00 mL	SW8270E	BGC0321	SGC0361	AB30070
BGC0321-MSD1	1000 mL / 1.00 mL	SW8270E	BGC0321	SGC0361	AB30070
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
BGC0325-BLK1	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
BGC0325-BS1	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
BGC0325-MS1	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
BGC0325-MSD1	5.00 mL / 5.00 mL	SW8260D	BGC0325	SGC0351	AB30127
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	SW7470A	
BGC0322-BLK1	20.0 mL / 20.0 mL	SW7470A	BGC0322	SGC0341	AC30132
BGC0322-BS1	20.0 mL / 20.0 mL	SW7470A	BGC0322	SGC0341	AC30132
BGC0322-MS1	20.0 mL / 20.0 mL	SW7470A	BGC0322	SGC0341	AC30132
BGC0322-MSD1	20.0 mL / 20.0 mL	SW7470A	BGC0322	SGC0341	AC30132

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued: 4/4/2023 3:37:46PM

Certified Analyses included in this Report

Analyte	Certifications
EPA350.1 R2.0 in Non-Potable Water	
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP
EPA351.2 R2.0 in Non-Potable Water	
TKN as N	VELAP,NCDEQ,WVDEP
SM22 4500-NO2B-2011 in Non-Potable Water	
Nitrite as N	VELAP,WVDEP
SM22 4500-NO3F-2011 in Non-Potable Water	
Nitrate+Nitrite as N	VELAP,WVDEP
SM22 5210B-2011 in Non-Potable Water	
BOD	VELAP,NCDEQ,WVDEP
SM22 5220D-2011 in Non-Potable Water	
COD	VELAP,NCDEQ,PADEP,WVDEP
SW6010D in Non-Potable Water	
Arsenic	VELAP,WVDEP
Barium	VELAP,WVDEP,PADEP
Cadmium	VELAP,WVDEP,PADEP
Chromium	VELAP,WVDEP
Copper	VELAP,WVDEP
Lead	VELAP,WVDEP
Nickel	VELAP,WVDEP
Selenium	VELAP,WVDEP
Silver Zinc	VELAP,WVDEP,PADEP VELAP,WVDEP
	VELAF,VVVDEF
SW7470A in Non-Potable Water	
Mercury	VELAP,NCDEQ,WVDEP

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Date Issued: 4/4/2023 3:37:46PM

Certified Analyses included in this Report

Analyte	Certifications
SW8260D in Non-Potable Water	
2-Butanone (MEK)	VELAP,NCDEQ,PADEP,WVDEP
Acetone	VELAP,NCDEQ,PADEP,WVDEP
Benzene	VELAP,NCDEQ,PADEP,WVDEP
Ethylbenzene	VELAP,NCDEQ,PADEP,WVDEP
Toluene	VELAP,NCDEQ,PADEP,WVDEP
Xylenes, Total	VELAP,NCDEQ,PADEP,WVDEP
Tetrahydrofuran	VELAP,PADEP
SW8270E in Non-Potable Water	
Anthracene	VELAP,PADEP,NCDEQ,WVDEP
SW9065 in Non-Potable Water	
Total Recoverable Phenolics	VELAP,WVDEP

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

City of Bristol Landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	12/31/2023
NCDEQ	North Carolina DEQ	495	12/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12069	04/01/2024
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
SCDHEC	South Carolina Dept of Health and Environmental Control Certificate 93016001	93016	06/14/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Qualifiers and Definitions

DS Surrogate concentration reflects a dilution factor.

E Estimated concentration, outside calibration range

J The reported result is an estimated value.

LCS recovery is outside of established acceptance limits

M Matrix spike recovery is outside established acceptance limits

Duplicate analysis does not meet the acceptance criteria for precision

S Surrogate recovery was outside acceptance criteria

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

LOD Limit of Detection

BLOD Below Limit of Detection

LOQ Limit of Quantitation

DF Dilution Factor

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are

estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

1941 REYMET ROAD RICHMOND, VIRGINIA 23237 (804) 358-8295 PHONE (804)358-8297 FAX

CHAIN OF CUSTODY

COMPANY NAME: SCS Engineers	INVOICE TO:	SAME	PROJECT NAME/Quote #:	PAGE 1 OF 1				
CONTACT: Jennifer Robb	INVOICE CONTACT:		SITE NAME: City of Bristol Land	fill				
ADDRESS: 11260 Roger Bacon Drive,	INVOICE ADDRESS:		PROJECT NUMBER: 02218208.15 Task 1					
Ste. 300, Reston VA 20190	INVOICE PHONE #:		P.O. #:					
PHONE #: 703-471-6150 EMAIL: <u>ir</u>	bb@scsengineers.com		Pretreatment Program:					
	atory State: V A Is san	nple from a chlorinated sup	PWS I.D. #:					
SAMPLER NAME (PRINT): Anthony Minicel Sichola	CAMPLER SIGN	NATURE:	Model Turn Around Time	e: 10 Day(s)				
Matrix Codes: WW=Waste Water/Storm Water GW=Ground Water DW=Dr	nking Water S=Soil/Solids OR=Orga	nic A=Air WP=Wipe OT=Other		COMMENTS				
		ANAL		Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid				
Composite Field Filtered (Dissolved Metals) Composite Start Date	Composite Start Time Composite Start Time Composite Stop Date Composite Stop Date Time Preserved	Matrix (See Codes) Matrix (See Codes) Mamonia - EPA 350.1 Mamonia - E	ite SM22 1 DC (Anthra DC (Anthra DC) N - EPA 36 Curry - 74 al Recove anolics - 9 cuty Acids (\$C\$ (See L)	H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol Note VOC 8260 NOTE PRESERVATIVE(S), NTERFERENCE CHECKS or PUMP RATE (L/min)				
5)			S-W 23C0397					
6)			y of Bristol Semi-Annual					
7)		GW		AND I				
8)		~	d: 03/08/2023 Due: 03/22/2023					
9)		GW	v130325002	AND THE RESERVE OF THE PERSON				
10) RELINQUISHED: DATE / T)ME RECEIVED:	DATE /	DI	B USE ONLY Therm ID: 27/ COOLE	R TEMP 2.4 °C				
RELINQUISHED: DATE / TIME RECEIVED: CW RELINQUISHED: DATE / TIME RECEIVED:) DATE / :	Cus		eceived on ice? (Y/N)				

Sample Preservation Log

Order I	D	230	0	397	7										Date	e Peri	form	ned: _	3	15	8/:	23			_				Ana	alyst	Perfo	rming C	Check:	_(<u>'S13</u>							
<u>0</u>	é	L	Meta			yani Has		ı	Sulfi			mmo			TK	N	F	Phos,		N	O3+	NO2		DR		(80 PC	CB DV	8/508) V only	(52	SVO	C 1/625)		1 * **	T	Pest/P (508) SVOC(5	PCB)/	С	OD	_	Ph	enolic	cs
Sample ID	Container ID	Red	Other	Final pH	Ros	Other	Ē	Г	H as ceived Other	120	Г	H as celved Other	3		celved Other	ᇐ	Re	pH as eceived	Final pH	Ro	H as coived Other	Final pH	Г	pH as eceived		Ro	celvod es. Cl	final + or -	Re	s. CI	final + or -	Received	Final pH	Ro	ocelved Other	Hd lan		other			elved Other	
01	Α		7	42							Γ			Τ			Γ						T			Ť			Ť	Ť				 ``	Outer	\vdash	-	Other	\vdash	一	Other	\vdash
01	B											6	42	Т	6	42				Г	6	42	Τ				\vdash	┢						t			\vdash	6	42	\vdash	\vdash	\vdash
01	\mathcal{D}													Τ			Γ			Г		T	T		T	Т			Г					十					1-2	一	6	42
01	E													Г			Γ						T		1	T			┢					┢	<u> </u>				\vdash	\vdash		
02	Α		7	42													Γ						T		\top	\vdash	T		T					T				\vdash	一			\vdash
02	B							П				6	42		6	42	Г				6	42	T		T	╁	T							十		H		6	۷2		H	
02	D										Г						Г				<u> </u>	-	T	t	T	Τ	\vdash	<u> </u>	<u> </u>					t		H			- 2		4	42
02	Ε	П						П									Г						T		\vdash			H				-		t				-				-2
											П						T						T		<u> </u>	T		 						┢	\vdash	\vdash		\vdash			\vdash	
											П												T				┢							┢	\vdash	-					\vdash	
								П								П				П			T			T								H	-	\square			H		$\vdash \vdash$	$\vdash \vdash$
		П						П															T		_	T								H		\square			H	$\vdash\vdash$	\vdash	\Box
		П						П			П			П							_						\vdash							\vdash					H	$\vdash \vdash$		
		П									П			П									T	\vdash	-										\vdash				\vdash	$\vdash \vdash$	$\vdash \vdash$	\dashv
														П																				\vdash			\dashv	\square	-		\vdash	
NaOH II	D:							_ '	HNO	3 ID:	3	Ao.	32	<u>7</u> 7			 _	CrVI ;	prese	erve	d dat	e/tim	e:							Anal	vst Ini	itials:		ш								
H2SO4 I	D:	210	019	44														* pH m Buffer	ust b	e adj	usted	betwe	een S		7					- 4141	y-00 111											
HCL ID:																		1N Na												5N N	laOH:	:										
																																			$\overline{}$				_			

Metals were received with pH = 7. HNO3
was added at 0900 on 08 Mar
2023 by CSB in the Log-In room to bring
pH = <2.

4/4/2023 3:37:46PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Page 49 of 56

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: City of Bristol Landfill

Submitted To: Jennifer Robb

Date Issued: 4/4/2023 3:37:46PM

Laboratory Order ID: 23C0397

Sample Conditions Checklist

Samples Received at:	2.40°C
How were samples received?	Logistics Courier
Were Custody Seals used? If so, were they received intact?	Yes
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	Yes
Are all volatile organic and TOX containers free of headspace?	Yes
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	Yes
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	No

H2SO4-preserved containers for samples -01: EW-58 and -02: EW-59 received with pH 6; H2SO4 added to bring pH to <2. Jennifer Robb notified via email. MRS 03/0823 1130

FINAL REPORT

Work Orders: 3C09089 Report Date: 4/03/2023

Received Date: 3/9/2023

Turnaround Time: Normal

Phones: (804) 358-8295

Fax:

P.O. #: 042132

Billing Code:

Attn: JP Verheul

Project: 23C0397

Client: Enthalpy Analytical - Richmond VA

1941 Reymet Road Richmond, VA 23237

Dod-ELAP ANAB #ADE-2882 • Dod-ISO ANAB # • ELAP-CA #1132 • EPA-UCMR #CA00211 • ISO17025 ANAB #L2457.01 • LACSD #10143

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear JP Verheul,

Enclosed are the results of analyses for samples received 3/09/23 with the Chain-of-Custody document. The samples were received in good condition, at 3.5 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Alejandra D. Gomez Project Manager

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237 Project Number: 23C0397

Project Manager: JP Verheul

Reported:

04/03/2023 16:59

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
23C0397-01: EW-58	Client	3C09089-01	Water	03/06/23 10:45	
23C0397-02: EW-59	Client	3C09089-02	Water	03/06/23 10:33	

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237 Project Number: 23C0397

Project Manager: JP Verheul

Reported:

04/03/2023 16:59

Sample Results

Sample: 23C0397-01: EW-58

Sampled: 03/06/23 10:45 by Client

3C09089-01 (Water						
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Alcohols by GC/FID						
Method: EPA 8015M		Instr: GC09				
Batch ID: W3C2245	Preparation: _NONE (SVOC)	Prepared: 03/2	7/23 10:03			Analyst: ecs
Acetic acid	ND	500	mg/l	50	03/27/23	M-05
Butyric acid	ND	500	mg/l	50	03/27/23	M-05
Heptanoic acid	ND	500	mg/l	50	03/27/23	M-05
Hexanoic acid	ND	500	mg/l	50	03/27/23	M-05
Isobutyric acid	ND	500	mg/l	50	03/27/23	M-05
Isocaproic acid	ND	500	mg/l	50	03/27/23	M-05
Isovaleric acid	ND	500	mg/l	50	03/27/23	M-05
Propionic acid	ND	500	mg/l	50	03/27/23	M-05
Valeric acid	ND	500	mg/l	50	03/27/23	M-05

Analyte

Sample Results

3C09089-02 (Water)

Sample: 23C0397-02: EW-59

Sampled: 03/06/23 10:33 by Client

Qualifier

Analyzed

Allalyte	Result	IVIILE	Oilles	Dii	Allalyzeu	Quanner
Alcohols by GC/FID						
Method: EPA 8015M		Instr: GC09				
Batch ID: W3C2245	Preparation: _NONE (SVOC)	Prepared: 03/2	27/23 10:03			Analyst: ecs
Acetic acid	640	500	mg/l	50	03/27/23	M-05
Butyric acid	ND	500	mg/l	50	03/27/23	M-05
Heptanoic acid	ND	500	mg/l	50	03/27/23	M-05
Hexanoic acid	ND	500	mg/l	50	03/27/23	M-05
Isobutyric acid	ND	500	mg/l	50	03/27/23	M-05
Isocaproic acid	ND	500	mg/l	50	03/27/23	M-05
Isovaleric acid	ND	500	mg/l	50	03/27/23	M-05
Propionic acid	ND	500	mg/l	50	03/27/23	M-05
Valeric acid	ND	500	mg/l	50	03/27/23	M-05

Result

MRL

Units

Dil

3C09089 Page 3 of 6

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237

Project Number: 23C0397

Project Manager: JP Verheul

Reported:

04/03/2023 16:59

Ouglity Control Results

Alcohols by GC/FID										
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W3C2245 - EPA 8015M			22							4
Blank (W3C2245-BLK1)				Prepared & A	nalyzed: 03/	27/23				
Acetic acid	ND	10	mg/l	•	•					
Butyric acid	ND	10	mg/l							
Heptanoic acid	ND	10	mg/l							
Hexanoic acid	ND	10	mg/l							
Isobutyric acid	ND	10	mg/l							
Isocaproic acid	ND	10	mg/l							
Isovaleric acid	ND	10	mg/l							
Propionic acid	ND	10	mg/l							
Valeric acid	ND	10	mg/l							
LCS (W3C2245-BS1)				Prepared & A	nalyzed: 03/	27/23				
Acetic acid	52.0	10	mg/l	50.0	-	104	50-150			
Butyric acid	48.4	10	mg/l	50.0		97	50-150			
Heptanoic acid	42.8	10	mg/l	50.0		86	50-150			
Hexanoic acid	42.7	10	mg/l	50.0		85	50-150			
Isobutyric acid	48.0	10	mg/l	50.0		96	50-150			
Isocaproic acid	41.9	10	mg/l	50.0		84	50-150			
Isovaleric acid	45.9	10	mg/l	50.0		92	50-150			
Propionic acid	42.6	10	mg/l	50.0		85	50-150			
Valeric acid	45.9	10	mg/l	50.0		92	50-150			
Matrix Spike (W3C2245-MS1)	Source: 3C08046	5-01		Prepared & A	nalyzed: 03/	27/23				
Acetic acid	65.4	10	mg/l	50.0	ND	131	50-150			
Butyric acid	51.6	10	mg/l	50.0	ND	103	50-150			
Heptanoic acid	44.4	10	mg/l	50.0	ND	89	50-150			
Hexanoic acid	45.7	10	mg/l	50.0	ND	91	50-150			
Isobutyric acid	50.2	10	mg/l	50.0	ND	100	50-150			
Isocaproic acid	43.8	10	mg/l	50.0	ND	88	50-150			
Isovaleric acid	48.6	10	mg/l	50.0	ND	97	50-150			
Propionic acid	47.0	10	mg/l	50.0	ND	94	50-150			
Valeric acid	49.3	10	mg/l	50.0	ND	99	50-150			
Matrix Spike Dup (W3C2245-MSD1)	Source: 3C08046	5-01		Prepared & A	nalyzed: 03/	27/23				
Acetic acid	58.9	10	mg/l	50.0	ND	118	50-150	11	25	
Butyric acid	45.6	10	mg/l	50.0	ND	91	50-150	12	25	
Heptanoic acid	38.8	10	mg/l	50.0	ND	78	50-150	13	25	
Hexanoic acid	39.0	10	mg/l	50.0	ND	78	50-150	16	25	
Isobutyric acid	43.1	10	mg/l	50.0	ND	86	50-150	15	25	
Isocaproic acid	38.1	10	mg/l	50.0	ND	76	50-150	14	25	
Isovaleric acid	41.8	10	mg/l	50.0	ND	84	50-150	15	25	
Propionic acid	42.5	10	mg/l	50.0	ND	85	50-150	10	25	
Valeric acid	41.6	10	mg/l	50.0	ND	83	50-150	17	25	
C09089										Page 4

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237 Project Number: 23C0397

Reported:

04/03/2023 16:59

(Continued)

Quality Control Results

Project Manager: JP Verheul

Alcohols by GC/FID (Continued)

Spike Source %REC RPD

Analyte Result MRL Units Level Result %REC Limits RPD Limit Qualifier

Batch: W3C2245 - EPA 8015M (Continued)

Matrix Spike Dup (W3C2245-MSD1) Source: 3C08046-01 Prepared & Analyzed: 03/27/23

FINAL REPORT

Enthalpy Analytical - Richmond VA 1941 Reymet Road Richmond, VA 23237 Project Number: 23C0397

Project Manager: JP Verheul

Reported:

04/03/2023 16:59

Item

Notes and Definitions

M-05	Due to the nature of matrix interferences, sample was diluted prior to analysis. The MDL and MRL were raised due to the dilution.
%REC	Percent Recovery
Dil	Dilution
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ)
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
RPD	Relative Percent Difference
Source	Sample that was matrix spiked or duplicated.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	100	100
Parameter	Monitoring Event					Conc	entration					LOD	LOQ
	November-2022					1560		1400	1380			50	50
	December-2022	1700	2280	2110		1410	1310			1150	1780	100	100
Ammonia as N (mg/L)	January-2023	1520			1500				1330			50	50
Arritionia as in (ing/L)	January-202					2440						100	100
	February-2023										1490	100	100
	March-2023				667	1480						73.1	100
	November-2022					15700		5860	5140			0.2	2
	December-2022	6440	12500	11400		9240	3330			8360	6770	0.2	2
Biological Oxygen Demand (mg/L)	January-2023	9920			999	28100			7060			0.2	2
	February-2023										7230	0.2	2
	March-2023				1570	9190						0.2	2
	November-2022							9790	10800			1000	1000
	NOVEITIDEI-2022					23500						2000	2000
		7440										1000	1000
	December-2022					13200	8000			20300	14100	2000	2000
	December-2022			22400								5000	5000
Chemical Oxygen Demand (mg/L)			86800									10000	10000
enomical exygen bemana (mg/t/					3630							500	500
	January-2023	14900							8430			2000	2000
						47600						5000	5000
	February-2023										9210	1000	1000
	March-2023				1690							500	500
	7VIGICI1 2025					10600						2000	2000

Well ID	Well ID		EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conc	entration					LOD	LOQ
Nitrate+Nitrite as N (mg/L)	November-2022					2.91		0.16	0.33			0.1	0.1
										ND		0.2	0.2
	December-2022						ND					0.2	0.6
	December-2022	ND	ND	ND		ND						1.1	5.1
											ND	1.5	5.5
Nitrate as N (mg/L)					ND							0.35	1.35
	January-2023								ND			1.1	1.1
		3.9										2.1	2.1
						ND						2.2	2.2
	February-2023										ND	0.35	1.35
	March-2023				ND	ND						1.04	5.1
	December-2022						0.12 J					0.1	0.5
	DCCCTTDCT-2022	ND	ND	ND		ND				ND	ND	1	5
					ND							0.25	1.25
Nitrite as N (mg/L)	January-2023								ND			1	1
		ND				ND						2	2
	February-2023										0.48 J	0.25	1.25
	March-2023				ND	ND						1	5
	November-2022							1290	1470			20	50
	TYOVCITIBOT 2022					2110						50	125
Total Kjeldahl Nitrogen (mg/L)	December-2022	1510	3570	1790		1830	1490			1340	1940	200	500
	January-2023	1840			881				1410			20	50
	Jan 10ai y-2023					2970						40	100
	February-2023										1870	16.8	50
	March-2023				879	1920						33.6	100

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conc	entration					LOD	LOQ
	November-2022							5.68	3			0.3	0.5
	November-2022					28.8						0.75	1.25
Total Recoverable Phenolics (mg/L)	December-2022						8.94					0.3	0.5
	December-2022	24.9	54.6	28.3		32				20.2	36	1.5	2.5
	January 2022	27.2			1.3				20.2			0.75	1.25
	January-2023					56.5						1.5	2.5
	February-2023										22.4	1.5	2.5
	March-2023				0.4							0.03	0.05
						13.9						0.3	0.5
SEMI-VOLATILE ORGANIC COMPOUND (Jg/L)												
	November-2022							ND	ND			46.7	93.5
	NOVEITIBET 2022					ND						93.5	187
						ND	ND				ND	9.35	9.35
	December-2022			ND						ND		11.7	11.7
	DCCCITIBCI-2022		ND							20.2 2		23.4	23.4
		ND										485	971
Anthracene					ND							243	485
	January-2023								ND			253	505
	Julioury-2023	ND										490	980
						ND						500	1000
	February-2023										ND	187	374
	March-2023					ND						51	102
	741G1C11-2023				ND							117	234
TOTAL METAL (mg/L)										,			
	November-2022					0.863		0.464	1.3			0.02	0.04
	December-2022	1.02	0.406	0.174		1.69	0.49			0.159	0.574	0.02	0.04
Arsenic	January-2023	0.285			0.596	0.225			0.846			0.01	0.02
	February-2023										0.29	0.005	0.01
	March-2023				1.07	1						0.01	0.02

Well ID	Well ID		EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conc	entration					LOD	LOQ
TOTAL METALS (mg/L)													
	November-2022					0.871		0.485	0.36			0.01	0.02
	December-2022	0.566	0.803	0.978		0.438	0.214			0.856	0.793	0.01	0.02
Barium	January-2023	0.643			0.683	1.92			0.554			0.005	0.01
	February-2023										1.04	0.01	0.05
	March-2023				0.406	0.683						0.005	0.01
	November-2022					ND		ND	ND			0.004	0.008
	December-2022	ND	0.0104	ND		ND	ND			ND	ND	0.004	0.008
Cadmium	January-2023	ND			ND	ND			ND			0.002	0.004
	February-2023										0.000297 J	0.0001	0.001
	March-2023				ND	ND						0.002	0.004
	November-2022					0.208		0.112	0.354			0.016	0.02
	December-2022	0.503	1.08	1.76		0.274	0.319			0.499	0.822	0.016	0.02
Chromium	January-2023	0.31			0.488	0.178			0.155			0.008	0.01
	February-2023										0.277	0.004	0.01
	March-2023				0.213	0.188						0.008	0.01
	November-2022					ND		ND	ND			0.016	0.02
	December-2022	ND	ND	ND		ND	ND			ND	ND	0.016	0.02
Copper	January-2023	ND			0.0127	0.0256			ND			0.008	0.01
	February-2023										0.00365	0.0003	0.001
	March-2023				ND	ND						0.008	0.01
	November-2022					ND		ND	0.017 J			0.012	0.02
	December-2022	ND	0.0381	ND		ND	ND			ND	ND	0.012	0.02
Lead	January-2023	ND			ND	ND			ND			0.006	0.01
	February-2023										0.006	0.001	0.001
	March-2023				ND	ND						0.006	0.01

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conc	entration					LOD	LOQ
TOTAL METALS (mg/L)													
	November-2022							0.00169	0.00053			0.0004	0.0004
	November-2022					ND						0.0008	0.0008
		0.00051										0.0004	0.0004
	December-2022			0.00118		ND	0.00588			0.0048	ND	0.0008	0.0008
Mercury			ND									0.004	0.004
Mercury	1	ND			ND				ND			0.0004	0.0004
	January-2023					ND						0.004	0.004
	February-2023										ND	0.0004	0.0004
	March-2023				ND							0.0002	0.0002
	March-2023					ND						0.0004	0.0004
	November-2022					0.0866		0.1344	0.173			0.014	0.02
	December-2022	0.1722	0.5025	0.2989		0.1299	0.287			0.1853	0.346	0.014	0.02
Nickel	January-2023	0.1074			0.1442	0.0407			0.0769			0.007	0.01
	February-2023										0.1726	0.001	0.001
	March-2023				0.1254	0.1033						0.007	0.01
	November-2022					ND		ND	ND			0.08	0.1
	December-2022	ND	ND	ND		ND	ND			ND	ND	0.08	0.1
Selenium	January-2023	ND			ND	ND			ND			0.04	0.05
	February-2023										0.00199	0.00085	0.001
	March-2023				ND	ND						0.04	0.05
	November-2022					ND		ND	ND			0.01	0.02
	December-2022	ND	0.0187 J	ND		ND	ND			ND	ND	0.01	0.02
Silver	January-2023	ND			ND	ND			ND			0.005	0.01
	February-2023										ND	0.00006	0.001
	March-2023				ND	ND						0.005	0.01
	November-2022					ND		0.032	0.694			0.02	0.02
	December-2022	0.208	29.7	0.162		0.0686	0.75			0.364	0.286	0.02	0.02
inc	January-2023	0.133			0.15	0.074			0.0752			0.01	0.01
	February-2023										0.0851	0.0025	0.005
	March-2023				0.0689	0.0538						0.01	0.01

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	IOD	100
Parameter	Monitoring Event					Conc	entration					LOD	LOQ
VOLATILE FATTY ACIDS mg/L													
	November-2022							1600				25	100
	November-2022					3500			150 J			62	250
Acetic Acid	December-2022	1800										62	250
Acetic Acid	January-2023	ND			ND	4400			ND				500
	February-2023										ND		500
	March-2023				ND	640							500
	November-2022							430				12	100
	NOVEITIDEI-2022					830			ND			29	250
Butyric Acid	December-2022	ND										29	250
boryric Acid	January-2023	ND			ND	1800			ND				500
	February-2023										ND		500
	March-2023				ND	ND							500
	November-2022							ND				11	100
Lactic Acid	NOVEITIDEI-2022					ND			ND			27	250
	December-2022	90 J										27	250
	N 0000							620				11	100
	November-2022					1600			73 J			27	250
Propionic Acid	December-2022	640										27	250
Topionic Acid	January-2023	ND			ND	2000			ND				500
	February-2023										ND		500
	March-2023				ND	ND							500
	November-2022							46 J				12	100
Pyruvic Acid	NOVEITIDEI-2022					98 J			ND			30	250
	December-2022	ND										30	250

Well ID		EW-50	EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event					Conc	entration					LOD	LOQ
VOLATILE ORGANIC COMPOUNDS (ug/L))												
	N					3510			1140			30	100
	November-2022							15600				300	1000
	5 1 0000	3140					3390					30	100
Q. D. Harron a. (NAEK)	December-2022		26800	27700		5670				21700	7150	300	1000
2-Butanone (MEK)	10000	3480			632							30	100
	January-2023					7840			5470			300	1000
	February-2023 March-2023										14400	600	2000
					257	2770						30	100
	Naa.ala.a., 0000								4420			70	100
	November-2022					16100		38300				700	1000
						15600	5170				9800	700	1000
	December-2022	8500										1750	2500
			53100	49900						45600		3500	5000
Acetone					1530							70	100
	January-2023					22200			14000			700	1000
	,	8130										1750	2500
	February-2023										23900	1400	2000
	March-2023				375							70	100
	March-2023					6810						700	1000
	November-2022					7.4 J		2860	50.4			4	10
	December-2022	301	2960			6.3 J	622			1750	179	4	10
Benzene	December-2022			6550								40	100
Delizerie	January-2023	240			28.7	1620			167			4	10
	February-2023										1370	4	10
	March-2023				1540	727						4	10
December-2022 November-2022	67.3	172	287		ND	48.5			108	27.4	4	10	
	November-2022					ND		194	16.2			4	10
Ethylbenzene	January-2023	65.1			ND	93.9			20.8			4	10
	February-2023										151	4	10
	March-2023				131	71.5						4	10

Well ID	Well ID		EW-52	EW-57	EW-58	EW-59	EW-60	EW-61	EW-65	EW-67	EW-68	LOD	LOQ
Parameter	Monitoring Event		Concentration							LOD	LOQ		
VOLATILE ORGANIC COMPOUNDS (ug/L)												
	November-2022					309			176			100	100
	November-2022							8530				1000	1000
	Doggmbor 2022	151				170	1120				663	100	100
Tetrahydrofuran	December-2022		5210	19800						6130		1000	1000
	January-2023	183			566	1810			352			100	100
	February-2023										3760	2000	2000
	March-2023				353	464						100	100
	November-2022					ND		214	32.8			5	10
	December-2022	122	175	195		ND	113			113	48.3	5	10
Toluene	January-2023	122			8 J	139			35.3			5	10
	February-2023										224	5	10
	March-2023				182	98.1						5	10
	November-2022					ND		185	37.8			10	30
	December-2022	161	222	186		ND	112			197	59.9	10	30
Xylenes, Total	January-2023	138			ND	134			38.1			10	30
	February-2023										240	10	30
	March-2023				240	111						10	30

^{--- =} not applicable/available

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter ND = Not Detected

LOD = laboratory's Limit of Detection

ug/L = micrograms per liter

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

Appendix G Monitoring, Maintenance, and Repair Plan Implementation Letter

Environmental Consultants & Contractors

SCS ENGINEERS

March 31, 2023 File No. 02218208.05

Mr. Jonathan Chapman Enforcement Specialist VA DEQ – Southwest Regional Office 355-A Deadmore Street Abingdon, Virginia

Subject: Implementation of the Monitoring, Maintenance, and Repair Plan

Integrated Solid Waste Management Facility - Solid Waste Permit No. 588

Bristol, Virginia

Dear Mr. Chapman:

SCS Engineers (SCS) and SCS Field Services (SCS-FS) are submitting this letter on behalf of the City of Bristol, Virginia (City) to describe actions that the City has taken to implement the procedures contained in the Monitoring, Maintenance, and Repair Plan (Plan) for the Solid Waste Permit (SWP) No. 588 landfill. The Plan was submitted to the Virginia Department of Environmental Quality (VDEQ) on December 30, 2022. The City has implemented those portions of the plan that are appropriate given the current status of remediation efforts. A summary of implementation activities completed to date includes the following:

- Neither the interim EVOH cover system nor the Final Cover system have been installed at this time. Inspections of the intermediate cover are being completed at least quarterly by City Staff. Records of these inspections are scanned and stored on the landfill computer server in a folder designated for the purpose of storing environmental records.
- SCS is currently performing surface emission monitoring at the landfill on behalf of the
 City. Locations where measurements indicate the methane is present in concentrations
 above 500 ppm are investigated and actions are taken to reduce emissions at the
 location. Monitoring includes both a serpentine route over the surface of the landfill and
 pipe penetrations. Results of these monitoring events are currently being submitted to
 VDEQ.
- At this time only soil cover is in place on the SWP No. 588 Landfill. Maintenance of the
 intermediate cover primary consists of placing additional fill in areas soil cover has been
 removed through erosion or disturbed by construction activities. Maintenance of the
 intermediate cover is based on observations documented during quarterly inspections.
- SCS is currently reading stroke counts on the landfill gas liquids extraction wells on a
 regular basis. Stroke counts are currently documented during surface emissions
 monitoring events. Based on a review of the stroke count data, SCS-FS schedules the
 pumps and supporting equipment for maintenance and repairs. Stroke count data and

Mr. Jonathan Chapman March 31, 2023 Page 2

estimates of liquids removed from the system are documented in monthly compliance reports submitted to VDEQ.

- SCS-FS is currently performing monitoring activities on the landfill gas collection system
 as the City's designated OM&M contractor as described in the Plan. Based on
 observations during monitoring activities, SCS-FS is also making appropriate repairs to
 the landfill gas collection system.
- At this time stormwater conveyance features have not been installed on the landfill.
 Those features will be installed once other remediation activities on the site are completed. Once installed, those features will be inspected at least quarterly.
 Maintenance and repairs to the stormwater conveyance features will be performed based on observations documented during inspections.

If you have questions, please contact either of the undersigned at the letterhead address.

Uguen

Sincerely,

Charles J. Warren, PE Project Manager

SCS Engineers

Mike Gibbons Project Manager SCS Field Services

mil Who

CJW/MWG

CC: Randall Eads, City of Bristol
Mike Martin, City of Bristol
Joey Lamie, City of Bristol
Jake Chandler, City of Bristol
Jon Hayes, City of Bristol
Jeff Hurst, VDEQ
Susan Blalock, VDEQ
Stacy Bowers, VDEQ
Daniel Scott, VDEQ

SCS ENGINEERS

Transmittal

Midlothian, VA

PROJECT: City Bristol, LF Engineering,

DATE: 4/10/2023

ISWMF, VA 02218208.05

SUBJECT: March Monthly Compliance

TRANSMITTAL ID: 00012

Reports SWP #588, SWP #498,

& SWP #221

PURPOSE: For Record VIA: Info Exchange

FROM

NAME	COMPANY	EMAIL	PHONE
Charles Warren Midlothian, VA	SCS Engineers	CWarren@scsengineers.com	+1-804-486-1903

TO

NAME	COMPANY	EMAIL	PHONE
Jonathan Chapman 355-A Deadmore Street Abingdon VA 24210 United States	Virginia Department of Environmental Quality	Jonathan.chapman@deq.virg inia.gov	

REMARKS: Jonathan,

In accordance with Item 8.iii of Appendix A and Item 8 of Appendix B of the Consent Decree between the City and VDEQ, SCS is submitting the Monthly Compliance Reports for the Solid Waste Permit #588, #498, and #221 Landfills on behalf of the City of Bristol, Virginia. The reports can be downloaded using the links below. Please note that the data from monthly gas monitoring of leachate collection components (Item 1.i of Appendix A), sampling and analysis of dual extraction wells (Item 4.ii of Appendix A), and topographic survey (Item 5.ii of Appendix A) are contained within the Solid Waste Permit #588 report. Let us know if you have questions about the contents of these reports.

Regards, Charles

DESCRIPTION OF CONTENTS

QTY	DATED	TITLE	NOTES
1	4/10/2023	March 2023 Compliance Report - SWP 588.pdf	
1	4/10/2023	March Compliance Report - SWP 498.pdf	
1	4/10/2023	March Compliance Report - SWP 221.pdf	

Transmittal

DATE: 4/10/2023
TRANSMITTAL ID: 00012

COPIES:

Michael Martin
Jonathan Hayes
Robert Gardner
Bob Dick
Charles Warren

(Bristol, VA, City of)
(SCS Engineers)
(SCS Engineers)
(SCS Engineers)

Stacy Bowers (Virginia Department of Environmental Quality)
Daniel Scott (Virginia Department of Environmental Quality)

Jimmy Jewett (McGuireWoods LLP)
Lucas Nachman (SCS Engineers)
Jacob Chandler (Bristol, VA, City of)

Erin Willard (Environmental Protection Agency)

Joey Lamie (Bristol, VA, City of)
Tom Lock (SCS Engineers)

Jeffery Hurst (Virginia Department of Environmental Quality)

Randall Eads (City of Bristol)

Susan Blalock (Virginia Department of Environmental Quality)

Erin Malone (Environmental Protection Agency)

Austin Wubbe (SCS Engineers)
Brandon King (SCS Engineers)
Jennifer Robb (SCS Engineers)
Quinn Bernier (SCS Engineers)