Monthly Compliance Report

Solid Waste Permit #588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05 | December 9, 2022

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sec	tion			Page	
	Exec	utive S	ummary	1	
1.0	Gas	Collecti	on	1	
	1.1	Surfac	ee And Leachate Collection Emissions	1	
		1.1.1	Surface Emissions	1	
		1.1.2	Leachate Collection emissions	2	
	1.2	Existin	ng Gas Extraction System Performance	3	
	1.3	Remot	te monitoring System	4	
	1.4	Large-	Diameter Dual-Phase Extraction Wells	10	
	1.5	VDEQ	Concurrence on Wells	10	
2.0	Side	wall Od	or Mitigation	10	
	2.1	Perime	eter Gas Collection System	11	
	2.2	Sidew	all odor mitigation system	11	
	2.3	Pilot S	ystem Construction	11	
	2.4	Full Sy	stem Construction	12	
3.0	Wast	12			
	3.1	Tempe	erature Monitoring System design	12	
	3.2	Tempe	erature Monitoring System Installation	12	
4.0	Lead	hate Ex	traction and Monitoring	13	
	4.1	4.1 Existing System Optimization			
	4.2	Sampl	ling and Analysis Plan	16	
	4.3	Sampl	ling and Analysis	17	
		4.3.1	Sample Collection	17	
		4.3.2	Quality Assurance and Quality Control	17	
		4.3.3	Data Validation	19	
		4.3.4	Laboratory Analytical Results	19	
5.0	Settl	ement l	Monitoring and Management	22	
	5.1	1 Settlement Monitoring and Management Plan			
	5.2	Month	ıly Surveys	22	
		5.2.1	Topographic Data Collection	22	
		5.2.2	Settlement Plate Surveys	23	
6.0	Inter	mediate	e Cover and EVOH Cover System	24	
	6.1	Interm	nediate Cover Installation	24	
	6.2	EVOH	Cover System Design	26	

Table of Contents

Sect	ion	Pa	age			
	6.3	EVOH Cover System Procurement	. 26			
	6.4	EVOH Cover System Installation	. 26			
7.0	Storr	n Water Management	. 26			
8.0						
9.0	6.4 EVOH Cover System Installation					
	_					
10.0	•		•			
Eigur	o 1	S	2			
_			3			
_						
_						
_			9			
rigui	e o.		10			
Figur	<u>_</u> 0					
i igui	c J .	\cdot				
Figur	e 10.					
_						
Figur	e 13.	Intermediate Cover Depth Checks	. 25			
		Tables				
Table	e 1.	Summary of November Surface Emissions Monitoring	1			
Table	2.					
Table		Monthly LFG-EW Leachate Monitoring Event Summary				
Table		Leachate Composition Comparison				
Table	9.	Settlement Plate Locations	. 23			

Table of Contents

Appendice	es
Appendix A	Surface Emissions Monitoring Summary Letters
Appendix B	SCS-FS October Summary Report
Appendix C	Solid Waste Permit 588 Daily Wellhead Temperature Averages - November 30, 2022
Appendix D	Settlement Monitoring and Management Plan
Appendix E	Monthly Topography Analysis
Appendix F	Sample Collection Log and Lab Report
Appendix G	Landfill Temperature Monitoring System Drawings

Landfill Temperature Monitoring System Drill Logs

Section

Appendix H

Page

EXECUTIVE SUMMARY

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) outlining steps taken towards the action items outlined in the Plan of Action submitted to VDEQ on July 6, 2022. This report covers the Solid Waste Permit #588 landfill during the month of November.

1.0 GAS COLLECTION

The City has continued steps to operate, develop, and improve the facility's landfill gas collection and control system (GCCS). The following sections outline steps City is taking in collaboration with its consultants and operations and monitoring contractor.

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

1.1.1.1 Monitoring

In addition to standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on November 4, 2022, November 14, 2022, November 18, 2022, and November 23, 2022. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Section 3.5 of the Plan of Action in Response to the Expert Panel Report, submitted to VDEQ on July 6, 2022.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route included applicable areas of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area.

SCS submitted letters to VDEQ outlining the results on the November 9, 2022, November 16, 2022, November 23, 2022, and November 30, 2022. Copies of those submittals are included in Appendix A. Table 1 summarizes the results of the three monitoring events in October.

Table 1. Summary of November Surface Emissions Monitoring

Description	November 4, 2022	November 14, 2022	November 18, 2022	November 23, 2022
Number of Points Sampled	139	139	145	145
Number of Points in Serpentine Route	100	100	100	100
Number of Points at Surface Cover Penetrations	39	39	45	45

Description	November 4, 2022	November 14, 2022	November 18, 2022	November 23, 2022
Number of Exceedances ¹	10	11	6	10
Number of Serpentine Exceedances	0	0	0	0
Number of Pipe Penetration Exceedances	10	11	6	10

1.1.1.2 Corrective Actions

The City purchased Landtec polyvinyl chloride (PVC) well-bore seals (seals) from QED. The seals measure approximately 10 feet by 10 feet with a mounting boot in the center of the seal. The seals are designed to go around the landfill gas well casing and are intended to be buried approximately 1 foot below the surface.

Installation of the seals on existing wells presents challenges when compared to installation during well construction. The existing wells have multiple pipes attached that convey air, gas, and condensate and the removal of these lines requires substantial time and effort. Additionally, many of the wells were equipped with a flange adaptor that limits the feasibility of slipping the seals over the well. SCS believes that the most efficient method of installation would be to cut the seals to place the on the wells and then re-attach the edges of the seal. After consulting with the vendor and SCS' geosynthetics installation technician, SCS intends to reattach the edges of the seal by heat leistering the edges and pressing them together. This work is scheduled for completion in December.

1.1.2 Leachate Collection emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill during the month of November and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in SCS-FS' summary report for the month of November dated December 6, 2022. A copy of this report is included in Appendix B. The monitoring data for the clean-outs at the southern end of the landfill are listed as LC01 – LC10. The monitoring data for the clean-outs at the northern end of the landfill are listed as NC01 – NC10. Based on site records and correspondence, SCS prepared a summary of the pipe numbering relative to the function of the pipes shown in Table 2.

Table 2. Cleanout Pipe Identification

Northern Cleanouts		So	outhern Cleanouts
ID#	ID # Description		Description
NC01	Leachate East	LC01	Gradient West
NC02			Gradient East
NC03			Leachate Center
NC04	Witness East	LC04	Witness East
NC05	NC05 Witness Center		Leachate West
NC06	Witness West	LC06	Gradient Center West

¹ Exceedance locations were marked in the field with red flagging and were identified to landfill personnel to initiate corrective actions.

_

NC07	Gradient East	LC07	Leachate East
NC08	Gradient Center East	LC08	Gradient Center East
NC09	Gradient Center West	LC09	Leachate West
NC10	Gradient West	LC10	Witness Center

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in SCS-FS' summary report for the month of November.

In addition to the activities outlined in the report between November 14, 2022 and November 18, 2022 SCS-FS completed upgrades to the southern leachate clean-out gas collection system. Figure 1 shows the new GCCS connections to the southern leachate clean-outs.

The project involved replacing the existing 4-inch landfill gas (LFG) header connecting the wellheads on the southern cleanouts with the rest of the (GCCS) with a larger header. The header will be replaced by an 8-inch or 12-inch header depending on the location. The resulting upgrades are anticipated to increase LFG flows from the southern clean-outs. Header installation is shown in Figure 2.

Figure 2. Installation of 12-inch Header, 2-Inch Airline, and 4-Inch Forcemain in Common Trench

1.3 REMOTE MONITORING SYSTEM

SCS Remote Monitoring & Control (SCS-RMC) had previously furnished 25 industrial internet of things (IIoT) temperature sensors for installation on landfill gas wells at the Bristol Landfill, VA. The sensors are capable of recording and transmitting gas temperatures and GPS locations. The sensors will upload data collected via a cellular connection to a database managed by SCS-RMC

Two sensors were initially installed on wells and began recording temperature data. An initial review of the data and comparison with temperature readings recorded by field staff indicated that the measurements taken by the remote sensors were impacted by ambient air temperatures. The installation of additional sensors was put on hold until the installations could be modified to improve the accuracy of temperature readings.

The City, SCS, SCS-FS, and SCS-RMC had previously coordinated with the wellhead manufacturer to identify an installation configuration that provided more direct access to gas flow. The proposed

solution was to thread the sensor into a saddle that could be attached to the wellhead. The City procured the necessary adapter parts which were delivered to the site during the month of October. Figure 3 shows a sensor attached to the saddle adaptor.

Figure 3. Wellhead Temperature Sensor and Adaptor Saddle

Beginning on November 7, 2022, SCS-FS began the process of installing the sensors on the wellheads. Installation was completed on November 8, 2022. Figure 4 shows completed installation of the temperature sensor and transmitter.

Figure 4. Wellhead Temperature Sensor after Installation

An initial review of temperatures reported by the probes indicated that the temperatures reported by the wells varied compared with the GEM thermocouple that has historically been used to measure temperatures at the site. On November 10, 2022, after coordinating with the device manufacturer SCS-RMC modified the manner in which temperatures were calculated.

In order to further evaluate the precision of the remote wellhead temperature sensors, on November 17, 2022 SCS field staff measured the wellhead temperature using the GEM and compared those to the values reported by the remote sensor. Those readings indicated that the sensor was reading within 9 degrees Fahrenheit of the GEM. The sensor and GEM were also both placed in an ice bath. Readings in the ice bath were within 1 degree Fahrenheit. Figure 5 shows the remote sensor in the ice bath.

Figure 5. Testing Accuracy of Temperature Sensor using an Ice Bath

Following that exercise, SCS identified several wells where recent temperature readings taken using the GEM varied from values reported by remote sensors. On November 29, 2022 SCS took readings from 4 additional wells using a GEM and compared those temperatures to values reported by the remote sensors. Significant differences between the two sets of values were observed.

On November 30, 2022, SCS then took steps to assess if there was an issue with the function of the temperature sensors or if the placement of the sensors was impacting the precision of the readings. To perform this assessment, one of the sensors was placed in an ice bath and a pot of boiling water to compare the readings with known temperatures. In both cases temperatures reported by the sensors were within approximately 2 percent of expected values. Figure 6 shows a temperature sensor placed in a pot of boiling water.

Figure 6. Testing Accuracy of Temperature Sensor using Boiling Water

Based on this analysis, it is unlikely that discrepancies in temperature readings were due to sensor malfunction. SCS again contacted the manufacturer who indicated two possible factors that may contribute to the discrepancy:

- The sensor housings are exposed to ambient temperatures which are impacting the readings and
- The sensors themselves are not reaching far enough into the gas stream to precisely measure the gas temperature.

A review of the temperature sensor data indicated that temperature readings were lower at night and higher during the day. This supported impacts of ambient temperatures on the housings and subsequently the sensors. To mitigate this impact SCS placed pipe insulation on select sensor housings. The insulation was then covered with a layer of reflective tape. Figure 7 shows the insulation placed on a temperature sensor housing prior to the addition of reflective tape. SCS will review the temperature sensor data during the month of December to gauge the effectiveness of the insulation method.

Figure 7. Temperature Sensor Housing with Insulation

The second factor will be addressed by trialing temperature sensors with longer probes that are expected to project further into the gas stream. SCS has ordered sensors in two different lengths that will be trialed to assess their precision in this application.


Despite the system still being subject to ongoing commissioning, the City began sharing data with VDEQ on a daily basis per the Department's request. This reporting began with the November 30, 2022 data which was submitted on December 1, 2022. Daily averages for each wellhead were reported the following day. A copy of the first report is included as Appendix D.

The sensor on Well 55 did not report temperatures on November 30, 2022 because the transmitter lost cellular connection. The connection has since been restored. The sensor on Well 68 was damaged and is not currently reporting temperatures. A replacement sensor has been ordered and will be installed once it arrives on site. It should be noted that the system is still in the commissioning phase when making any interpretations based on the data in this report.

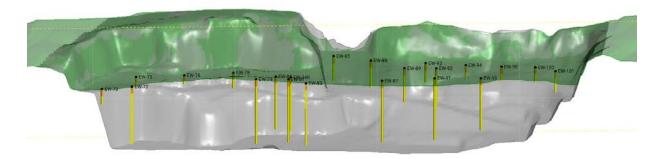
1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS continued design work on an expansion of the existing GCCS during the month of November. The proposed expansion is anticipated to include at least 5 large diameter dual-phase extraction wells. A conceptual cross section of the proposed additional wells is shown in Figure 8. SCS will submit the design to VDEQ prior to December 31, 2022. The City intends to initiate the bidding process for construction of the GCCS prior to December 31, 2022.

Figure 8. Conceptual Cross Section of Dual-Phase Extraction Wells included in Landfill GCCS Expansion

1.5 VDEQ CONCURRENCE ON WELLS

The City has engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. On October 27, 2022 SCS provided VDEQ with an overview of the proposed GCCS expansion design outlined in Section 1.4. The City and SCS intend to continue engaging with the Department throughout the design and installation process. The City intends to delay installation of temporary or final cover systems until the City and VDEQ agree that the GCCS is sufficient.


2.0 SIDEWALL ODOR MITIGATION

The City has initiated design work to address fugitive emissions emanating from the quarry sidewalls. Specific aspects of the proposed design features are outlined in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS' design of the GCCS expansion outlined in Section 1.5 will include perimeter LFG wells. These wells are intended to collect gas near the sidewalls that may not be collected by the rest of the GCCS. These wells will be placed closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells will supplement the sidewall odor mitigation system described in section 2.2. A conceptual cross section of the proposed additional wells is shown in Figure 9. SCS will submit a design to VDEQ which includes these wells prior to December 31, 2022. The City intends to initiate the bidding process for construction of the GCCS expansion prior to December 31, 2022.

Figure 9. Conceptual Cross Section of Perimeter Gas Extraction Wells included in Landfill GCCS Expansion

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall, SCS designed a sidewall odor mitigation system during the month of October. On October 20, 2022 SCS provided an overview of the proposed system to VDEQ staff. The design of this system was prepared and submitted to VDEQ on November 1st. A project manual detailing the system specifications of the system was developed concurrently with the design of the system.

2.3 PILOT SYSTEM CONSTRUCTION

On November 7, 2022 the City posted an invitation to bid for the project on the City's website. On November 15, 2022 a pre-bid meeting was held for the project. The only attendees were representatives of the City and SCS. The original bid due date was listed as November 22, 2022 in the original bid posting.

In an attempt increase the likelihood that contractors would bid on the project, the City issued and addendum on November 21, 2022 that extended the deadline to November 29, 2022. In another effort to increase the likelihood that bids would be received, on November 22, 2022, Bristol City Council voted to allow SCS-FS to bid on the project.

On November 29, 2022 bidding concluded and SCS-FS was the only bidder. The City intends to award the project to SCS-FS pending approval by the City Council.

The proposed system is designed to be constructed in two phases. Phase 1 will include approximately 200 feet along the western sidewall. The intent is for Phase 1 to serve as a test segment prior to completing construction of the remainder of the system. The City included a

milestone date of December 31, 2022 in the contract for construction of Phase 1 of the proposed system.

2.4 FULL SYSTEM CONSTRUCTION

The remainder of the sidewall odor mitigation system will be constructed as part of Phase 2. Based on constructability and effectiveness of Phase 1, modifications to the design and methods of construction may be made prior to constructing Phase 2. The City intends to include contract times in the construction contract that require the contractor to complete Phase 2 before June 14, 2023.

3.0 WASTE TEMPERATURE MONITORING

On behalf of the City, SCS designed a temperature monitoring system to collect temperature data throughout the waste mass. The steps taken by the City to implement this system are outlined in the following sections.

3.1 TEMPERATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing will be placed in each borehole and the hole will be backfilled around the casing with aggregate. A series of temperature sensors will be placed inside the steel casing. At the top of each borehole, an industrial internet of things (IIoT) transmitter will collect the data from the sensors and transmit it to a cloud-based RMC system. The City submitted design of the temperature monitoring system to VDEQ on November 30, 2022. A copy of those drawings is included in Appendix G.

3.2 TEMPERATURE MONITORING SYSTEM INSTALLATION

On November 1, 2022 Connelly continued drilling for TP-1 reaching 180 feet. The desired depth of the borehole was 200 ft. but due to the projectile liquids evacuating from the borehole, they could no longer drill further in a safe or efficient way. Connelly pumped fluids in the hole hoping the probe would be able to advance in the borehole and loosen up, but the probe was caught on material and wouldn't let it advance. When the probe was brought up, the casing was damaged with a 40-ft portion of the probe remaining at the bottom of the boring.

On November 4, 2022, Connelly attempted to retrieve the 40 ft. of remaining steel casing from the bottom of the borehole. The pieces retrieved were damaged and not able to be used. The damaged casing is shown in Figure 10. Connelly was able to clear out all of the blockage, and decided to apply "geo-thermal" glue to the potential failure points of the probe to avoid future disconnections in future installations.

On November 7, 2022, Connelly completed installation on TP-1 by placing the probe as deep as it could go due to blockage, 165 ft., and backfilling the hole based on the design specifications.

On November 8, 2022, Connelly began drilling for TP-2. Its desired drilling depth was set at 160 ft. but the drill was not able to advance past 155 ft., so TP-2 was installed and placed to 155 ft. On the same day, drilling for TP-3 began however, they punctured the adjacent 2-in airline. The downslope 2-in airline isolation valve was closed, and upslope and downslope sections of the punctured airline were capped with 2-in PVC slip caps and duct tape.

Figure 10. TP-1 Casing Damage

On November 10, 2022, Connelly was able to complete TP-3 and install it at the desired depth of 220 ft with the probe being placed at 218 ft. On November 14 Connelly drilled the borehole for TP-5 and on Wednesday November 16, 2022, the borehole for TP-4. TP-4 was drilled to a depth of 200 ft., as proposed. Temperature probe TP-5 was drilled 25 feet shorter than the specifications due to a discrepancy in field documentation. On November 28, 2022, TP-7 was drilled to a depth of 200 ft. and drilling to the desired depth of 222 ft was completed on November 29, 2022.

After completing TP-7, Connelly began drilling TP-6. On November 30, Connelly finished drilling TP-6 to a depth of 208 feet and began drilling TP-8 with a target depth of 235 feet. The proposed depth was reduced by 2 feet, because the surveyed well location was on top of a pile of soil that had a height of approximately 2 feet. The pile was removed prior to drilling.

During the drilling process, temperatures of excavated waste were measured once for every 20 vertical feet of drilling. The Construction Quality Assurance (CQA) technician also recorded field observations² of the moisture content and waste characteristics. This data was recorded on the project drill logs. Drill logs for TP-1, TP-2, TP-3, TP-4, and TP-5 and included in Appendix H.

Recorded temperatures were generally highest toward the center of each boring. No temperatures were measured that exceeded 200 degrees Fahrenheit. In most cases, higher temperatures coincided with wet or damp waste conditions. Based on SCS' experience with other elevated temperature landfills (ETLFs), these conditions are consistent with ETLF conditions. The temperatures measured are generally lower than other ETLFs.

4.0 LEACHATE EXTRACTION AND MONITORING

The City has begun taking steps to improve the extraction of leachate from the waste mass and collect analytical data about the leachate. The following sections detail steps taken to achieve these goals.

2

² Moisture content and waste characteristics were not recorded during drilling of TP-1 due to the difficult drilling conditions.

4.1 EXISTING SYSTEM OPTIMIZATION

During mobilizations to conduct surface emissions monitoring outlined in Section 1.1.1, SCS also collected stroke counter data from the pumps installed in the GCCS wells. Stroke counts were collected from 18 wells on November 4, 2022; November 14, 2022; November 18, 2022; and November 23, 2022. The data collected is summarized in Table 3.

Table 3. Summary of Dual Extraction Well Pump Stroke Counter Data

Well	November	November	November	November
, , ,	4, 2022	14, 2022	18, 2022	23, 2022
GW64	97953	97953	97963	97969
GW61	211552	211552	211666	211751
GW50	567291	589508	589508	592666
GW49	438137	438137	438705	439612
GW60	55250	55269	55269	55269
GW52	227419	227419	227419	227419
GW68	1311931	1311931	1311931	1311931
GW67	87445	135015	135015	135015
GW54	105743	105751	105751	105751
GW55	529010	529010	529010	529010
GW58	1614727	1615362	1615365	1615366
GW59	703132	756994	757000	757001
GW57	124846	124846	124846	124846
GW65	562	562	1016	3365
GW63	47629	47629	47632	47669
GW62	113998	113999	113991	113971
GW53	893303	1482501	1482501	1492759

Based on this data and stroke counts taken on October 28, 2022, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke correlates to approximately 0.3 gallons of liquid removed from the well. This data will then be used to repair or replace pumps or replace nonfunctional stroke counters. Estimates of the quantities of liquids removed between the reading dates is shown in Table 4 below.

Table 4. Summary of Dual Extraction Well Pump Liquids Removal

Well	Liquids Removed (gal) October 28, 2022 to November 4, 2022	Liquids Removed (gal) November 4, 2022 to November 14, 2022	Liquids Removed (gal) November 14, 2022 to November 18, 2022	Liquids Removed (gal) November 18, 2022 to November 23, 2022
EW64	3.3	0	3	1.8
EW61	3.6	0	34.2	25.5
EW50	4776.6	6665.1	0	947.4
EW49	1.2	0	170.4	272.1
EW60	0	5.7	0	0
EW52 ³	0	0	0	0
EW68	15673.8	0	0	0
EW67	0	0	0	0
EW54	0	14271	0	0
EW55	0.9	2.4	0	0
EW584	0	0	0	0.3
EW59	1892.7	190.5	0.9	0.3
EW57	46731.3	16158.6	1.8	0
EW65	3.6	0	0	704.7
EW63	1.2	0	136.2	11.1
EW62	1.2	0	0.9	0
EW53	0.9	0.3	0	3077.4

During the month of November, Piedmont Industrial Services (Piedmont) replaced 9 pumps at GW-50, 52, 53, 54, 55, 57, 58, 60, and 67. The air hose for GW-68 was replaced, and the pump was able to stroke after that repair.

The effects of those repairs varied as shown in this data. In some cases repairs showed improvement in pump performance, but that performance was not always observed in the following week's stroke count data. The City's contractors will continue repairs of pumping infrastructure and pumps during the month of December.

The and SCS understand that operations of dewatering pumps are critical addressing issues related to heat, odors, and the efficient operation of the GCCS. The landfill conditions present a challenging environment for pump operations. Pumps require servicing after relatively short intervals. For example in Table 4, the pump in EW-57 operated effectively during two weeks following repair. The pump did not appear to be operating effectively during the last two weeks of the month. Figure 11

2

³ Subsequent investigation indicated that the pump in EW 52 is working but strokes are not being recorded.

⁴ Subsequent investigation indicated that the pump in EW 58 is working but strokes are not being recorded.

shows an example of challenges posed by the landfill conditions. This pump was clogged by materials in the gas well.

Figure 11. Material Clogging Landfill Gas Well Dewatering Pump

Such short maintenance intervals require significant resources to maintain operations of the pumps. The City and SCS are working to identify ways to improve pump reliability. As a first step SCS reached out to the pump manufacturers to identify ways to improve pump reliability. Site visits by representatives of the pump manufacturers are anticipated during the month of December.

4.2 SAMPLING AND ANALYSIS PLAN

On November 1, 2022, SCS submitted to VDEQ the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit #588 Landfill. The Plan documents procedures and instructions necessary to implement a leachate monitoring program for the Dual Phase Landfill Gas Extraction Wells (LFG-EWs) installed within the Permit #588 Landfill. The Plan was prepared in response to the Expert Panel Report prepared by the Expert Panel convened by the Virginia Department of Environmental Quality to address odor problems and operational concerns at the Facility.

On December 1, 2022, SCS submitted to VDEQ the revised Plan addressing comments provided by VDEQ in an email dated November 28, 2022 regarding laboratory analytical methods. The revised

Plan included modified sections addressing extraction well and pump maintenance and sample collection procedures.

4.3 SAMPLING AND ANALYSIS

4.3.1 Sample Collection

On November 16, 2022, SCS collected leachate samples from three Dual Phase LFG-EWs (EW-59, EW-61, and EW-65). Pumps were not running at the time of sample collection in the following wells: EW-49, EW-50, EW-52, EW-53, EW-54, EW-55, EW-57, EW-58, EW-60, EW-62, EW-63, EW-64, EW-67, and EW-68. There were no pumps in EW-51 and EW-56 at the time of sample collection. At the time of sample collection dissolved oxygen, oxidation-reduction potential, pH, specific conductance, temperature, and turbidity were measured and recorded. The sample collection log is included in **Appendix F**.

The samples were delivered to Enthalpy Analytical in Richmond, Virginia for analysis. The laboratory's Virginia Division of Consolidated Laboratory Services certifications are provided on the certificate of analysis included in **Appendix F**. The samples were analyzed for the following parameters utilizing the following analytical methods.

Table 5. Laboratory Analytical Parameters and Methods

Parameter	Analytical Method
Ammonia	EPA 350.1 R2.0
Biological Oxygen Demand	SM22 5210B-2021
Chemical Oxygen Demand	SM22 5220D-2011
Nitrate and Nitrite	SM22 4500-NO3F-2011
Total Kjeldahl Nitrogen	EPA 351.2 R2.0
Semi-Volatile Organic Compound: Anthracene	SW-846 Method 8270E
Total Metals: Arsenic, Barium, Cadmium, Chromium, Copper, Lead, Nickel, Selenium, Silver, and Zinc	SW-846 Method 6010D
Total Metal: Mercury	SW-846 Method 7470A
Total Recoverable Phenolics	SW-846 Method 9065
Volatile Fatty Acids: Acetic Acid, Butyric Acid, Lactic Acid, Propionic Acid, and Pyruvic Acid	SW-846 Method 8015
Volatile Organic Compounds: Acetone, Benzene, Ethyl benzene, Methyl ethyl ketone, Tetrahydrofuran, Toluene, and Total Xylenes	SW-846 Method 8260D

4.3.2 Quality Assurance and Quality Control

Field quality control (QC) involved the collection and analysis of trip blanks to verify that the sample collection and handling processes did not impair the quality of the samples. Trip blanks were prepared for volatile organic compound (VOC) analysis via Solid Waste (SW)-846 Method 8260D. In conjunction with the preparation of the groundwater sample collection bottle set, laboratory personnel filled each trip blank sample bottle with distilled/deionized water and transported them

with the empty bottle kits to SCS. Field personnel handled the trip blanks like a sample; they remained un-opened, were transported in the sample cooler, and were returned to the laboratory for analyses. A trip blank is used to indicate potential contamination due to the potential migration of VOCs from the air at the site or in the sample shipping containers, through the septum or around the lid of the sampling vials and into the sample.

Laboratory quality assurance/quality control (QA/QC) involves the routine collection and analysis of method reagent blanks, matrix spike (MS) and matrix spike duplicate (MSD) samples, and laboratory control samples (LCS). A brief summary of each of these is presented below:

- Method Blank The method blank is deionized water subjected to the same reagents
 and manipulations to which site samples are subjected. Positive results in the method
 blanks may indicate either contamination of the chemical reagents or the glassware and
 implements used to store or prepare the sample and resulting solutions.
- MS/MSD A MS is an aliquot of a field sample with a known concentration of target parameter added to it. A MSD is an intra-laboratory split sample spiked with a known concentration of target parameter. Spiking for each occurs prior to sample analysis. MS/MSD samples are collected for every batch of twenty or fewer samples. Matrix spike recoveries are used to indicate what effect the sample matrix may have on the reported concentration and/or the performance of the sample preparation and analysis.
- LCS These samples consist of distilled/deionized water injected with the parameters of
 interest for single parameter methods and selected parameters for multi-parameter
 methods according to the appropriate analytical method. LCS samples are prepared and
 analyzed for each batch containing twenty or fewer samples. LCS recoveries are used to
 monitor analytical accuracy.

Surrogate recoveries are also measured as a part of laboratory QA/QC. Surrogates are organic compounds that are similar to the parameters of interest in chemical composition, extraction, and chromatography, but are not normally found in environmental samples. These compounds are inserted into blank, standards, samples, and spiked samples prior to analysis for organic parameters only. Percent recoveries are calculated for each surrogate. Spike recoveries at or below acceptance criteria indicate whether analytical results can be considered biased high or biased low.

Field and laboratory QA/QC also involves the routine collection and analysis of duplicate field samples. These samples are collected at a rate of one per sample event. A duplicate is a separate sample collected independently in such a manner that it equally represents the medium at a given time and location. Co-located samples provide intra-laboratory precision information for the entire measurement system, including sample collection, homogeneity, handling, shipping, storage, preparation, and analysis.

The trip blank detection for the November 2022 monitoring event is presented on **Table 6**. No method blank detects were identified for the November 2022 monitoring event. The laboratory analysis report for the November 2022 monitoring event trip blank is included in **Appendix F**. The November 2022 monitoring event laboratory QA/QC report, including the method blank results, are included in **Appendix F**.

Table 6. Quality Control Blank Detection Summary

QC Blank	Parameter	November 2022 Concentration (ug/L)	LOD (ug/L)	LOQ (ug/L)
Trip Blank	Acetone	9.36 J	7	10

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

QC = Quality Control

ug/L = micrograms per liter

4.3.3 Data Validation

To identify analytical data that may not represent valid results, data from the monitoring events were validated by the Laboratory and SCS in accordance with United States Environmental Protection Agency (EPA) guidance⁵. Data flagged with a "J" qualifier indicates the quantitation of the parameter is less than the laboratory's limit of quantitation but greater than the laboratory's limit of detection (LOD); thus, the concentration is considered estimated. Samples with parameter detections less than five times that of the trip blank, field blank, and/or method blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Samples with common laboratory contaminant parameter detections less than 10 times that of the trip blank, field blank, and/or method/laboratory blank detection but greater than the laboratory's LOD are flagged with a "B" qualifier. Data with a "B" qualifier are considered not validated as the detection may be anomalous due to cross-contamination during sampling, transportation of samples, or laboratory analysis. No leachate results were flagged with a "B" qualifier for the November 2022 monitoring event as acetone was not detected less than 10 times the concentration detected in the trip blank.

4.3.4 Laboratory Analytical Results

Parameter results for the November 2022 monitoring event are presented on **Table 7**. The associated certificate of analysis is included in **Appendix F**.

Table 7. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-59	EW-61	EW-65	LOD	LOQ
Parameter	Concentration		LOD	LOQ	
Ammonia as N (mg/L)	1560	1400	1380	50	50
BOD (mg/L)	15700	5860	5140	0.2	2
COD (mg/l)		9790	10800	1000	1000
COD (mg/L)	23500			2000	2000

⁵ United States Environmental Protection Agency. Guidance for Data Usability in Risk Assessment (Part A-14). April 1992.

November Monthly Compliance Report, SWP#588

United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Inorganic Superfund Methods Data Review. January 2017. United States Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation. National Functional Guidelines for Organic Superfund Methods Data Review. January 2017.

Table 7. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-59	EW-61	EW-65	100	100
Parameter	Concentration		LOD	LOQ	
Nitrate+Nitrite as N (mg/L)	2.91	0.16	0.33	0.1	0.1
Total Kieldehl Nitreger (mg. //)		1290	1470	20	50
Total Kjeldahl Nitrogen (mg/L)	2110			50	125
Total Recoverable Phenolics		5.68	3	0.3	0.5
(mg/L)	28.8			0.75	1.25
SEMI-VOLATILE ORGANIC COM	POUND (ug/L)				
A satisfaction of the same		ND	ND	46.7	93.5
Anthracene	ND D20			93.5	187
TOTAL METALS (mg/L)					
Arsenic	0.863	0.464	1.3	0.02	0.04
Barium	0.871	0.485	0.36	0.01	0.02
Cadmium	ND	ND	ND	0.004	0.008
Chromium	0.208	0.112	0.354	0.016	0.02
Copper	ND	ND	ND	0.016	0.02
Lead	ND	ND	0.017 J	0.012	0.02
		0.00169	0.00053	0.0004	0.0004
Mercury	ND			0.0008	0.0008
Nickel	0.0866	0.1344	0.173	0.014	0.02
Selenium	ND	ND	ND	0.08	0.1
Silver	ND	ND	ND	0.01	0.02
Zinc	ND	0.032	0.694	0.02	0.02
VOLATILE FATTY ACIDS mg/L					
A +: - A -: -!		1600		25	100
Acetic Acid	3500		150 J	62	250
Duty wie A eigl		430		12	100
Butyric Acid	830		ND	29	250
Lastic Asid		ND		11	100
Lactic Acid	ND		ND	27	250
Draniania Asid		620		11	100
Propionic Acid	1600		73 J	27	250
Durantic Acid		46 J		12	100
Pyruvic Acid	98 J		ND	30	250
VOLATILE ORGANIC COMPOUNDS (ug/L)					
2 Putanona (MEV)	3510		1140	30	100
2-Butanone (MEK)		15600		300	1000
Acatana			4420	70	100
Acetone	16100	38300		700	1000

Table 7. Monthly LFG-EW Leachate Monitoring Event Summary

Well ID	EW-59	EW-61	EW-65	LOD	LOQ
Parameter	Concentration		LOD	LOQ	
Benzene	7.4 J	2860	50.4	4	10
Ethylbenzene	ND	194	16.2	4	10
Tabada da Cara	309		176	100	100
Tetrahydrofuran		8530		1000	1000
Toluene	ND	214	32.8	5	10
Xylenes, Total	ND	185	37.8	10	30

^{--- =} not applicable

4.3.5 Monitoring Data Evaluation and Interpretation

As an ETLF, the characteristics of leachate from the SWP588 Landfill are anticipated to be different than that of leachate from a typical sanitary landfill. **Table 8** provides a comparison of the concentrations detected in the leachate from the LFG-EWs to concentrations commonly detected in mature landfills⁶ (greater than 10 years old) for select parameters. The below table also provides data for leachate samples collected from the SWP588 Landfill's leachate collection system in July and November 2022.

Table 8. Leachate Composition Comparison

Parameter	Typical Mature Sanitary Landfill Leachate	SWP588 Dual Phase LFG-EWs Leachate	SWP588 Leachate Collection System
Ammonia as N (mg/L)	20 - 40	1380 - 1560	406
BOD (mg/L)	100 - 200	5140 - 15700	2170
COD (mg/L)	100 - 500	9790 - 23500	1760
pH (s.u.)	6.5 - 7.5	7.49 - 8.37	7.61

mg/L = milligrams per liter

ND = Not detected. Number shown in parenthesis is the laboratory's limit of detection.

s.u. = standard units

In addition to the parameters listed above, the concentrations of 2-butanone, acetone, benzene, and tetrahydrofuran detection in the leachate from the LFG-EWs is considered high for leachate from a sanitary landfill but typical for leachate from an ETLF and especially for samples collected from areas

November Monthly Compliance Report, SWP#588

J = Parameter was detected at a concentration greater than the laboratory's LOD, but less than the laboratory's LOQ. Concentration is considered estimated.

LOD = laboratory's Limit of Detection

LOQ = laboratory's Limit of Quantitation

mg/L = milligrams per liter

ND = Not Detected

ug/L = micrograms per liter

⁶ Tchobanoglous, George, Hilary Theisen, and Samuel Vigil. Integrated Solid Waste Management Engineering Principles and Management Issues. McGraw-Hill, Inc. New York. 1993.

of the landfill with very high temperatures. These high concentrations are the products of endothermic pyrolysis of the waste in an ETLF.

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN

On behalf of the City, SCS prepared a settlement monitoring and management plan. The plan provides for means and methods for monitoring surface elevations across the surface of the landfill, prior to, and after placement of the EVOH cover system. The settlement monitoring and management plan includes procedures for placement of settlement monitoring before and after the placement of the EVOH cover.

Settlement monitoring outlined in the plan includes two components:

- Installation and monitoring of settlement plates installed within the waste mass
- Monthly surveys of the landfill topography

The plan also addresses data collection procedures, settlement analysis, settlement plate design, and reporting procedures. The plan was submitted to VDEQ on November 15, 2022. A copy of the plan is included in Appendix D.

5.2 MONTHLY SURVEYS

5.2.1 Topographic Data Collection

The City, through SCS, collected topographic data of the Solid Waste Permit #588 Landfill using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). On November 8, 2022 the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 1 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by NV5 (formerly Quantum Spatial) using aerial Light Detection and Ranging (Lidar) on October 7, 2022. A drawing depicting the October 7, 2022 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 15,500 cubic yards. During that same time period approximately 8,300 cubic yards of fill were placed on the landfill. Based on the initial survey date of October 7, 2022, which is before intermediate cover placement activities had completed, this material is likely intermediate cover material placed on the landfill. This resulted in a net volume decrease of approximately 7,200 cubic yards. Filling primarily occurred in the southwestern and southeastern perimeters of the landfill. Settlement was spread across the remainder of the landfill. A visual depiction of settlement and filling at the landfill during this time is depicted on Sheet 4 in Appendix E.

SCS calculated the waste footprint for purposes of analysis to be 752,610 square feet. Based on that area and the net volume change, the average elevation change within the waste is approximately 0.3 feet.

SCS will collect topographic data covering the landfill surface again in December using photogrammetric methods via UAV. This data will be compared to the data collected in November. This data is expected to allow for better analysis since filling is anticipated to be limited.

5.2.2 **Settlement Plate Surveys**

On November 7, 2022 SCS field services installed 12 settlement plates on the Solid Waste Permit #588 landfill. The construction and installation of the settlement plates generally conforms to the design outline in the Settlement Monitoring and Management Plan. The tops of the PVC pipes were sprayed painted orange to improve visibility. Figure 12 shows one of the as-built settlement plates.

The locations of the settlement plates were surveyed by the City's surveyor on November 14, 2022. The settlement plate locations are depicted on Sheet 4 in Appendix E. The surveyed coordinates⁷ of the settlement plates are shown in Table 5.

Settlement Plate Locations

Table 9.

Settlement Plate	Northing	Easting	Elevation
SP-1	3,397,885.9970	10,412,077.7840	1,834.4090
SP-2	3,397,806.1050	10,412,363.9700	1,810.5630
SP-3	3,397,787.2650	10,412,536.7840	1,783.6680
SP-4	3,398,250.4640	10,412,183.3200	1,817.4870
SP-5	3,398,256.2360	10,412,338.7660	1,800.7700
SP-6	3,398,249.1900	10,412,510.8610	1,777.6560
SP-7	3,398,737.9410	10,412,157.1360	1,828.6250
SP-8	3,398,678.9270	10,412,290.3630	1,807.3480
SP-9	3,398,673.3100	10,412,400.7300	1,785.8620
SP-10	3,399,080.3870	10,412,092.1310	1,840.2000
SP-11	3,399,216.0930	10,412,183.7830	1,816.3270
SP-12	3,399,381.9200	10,412,019.6720	1,810.6600

The settlement plates will be surveyed again during the month of December. The elevations surveyed will be compared to the elevations surveyed in November.

⁷ Settlement plate locations and coordinates are based on a local coordinate system.

Figure 12. Settlement Plate after Installation

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City completed hauling and placement of a 12-inch thick intermediate cover across the entire landfill prior to October 10, 2022. The cover is being placed in accordance with 9VAC20-81-140(B)(1)(d).

On October 11, 2022 an employee of Golder Associates dug test holes which were observed by SCS' project manager Brandon King. All of the test holes indicated at least 12 inches of soil cover was in place on top of the waste. On October 20, 2022 SCS dug 7 additional test holes across the landfill confirm the depth of intermediate cover. The depth of intermediate cover exceeded 12 inches at all 7 locations. The approximate locations of the test holes are shown in Figure 13.

The intermediate cover soil will be supplemented as needed to address erosion or displacement of cover soil by other sources.

Legend Golder Depth Check SCS Depth Checks SCS ENGINEERS

Figure 13. Intermediate Cover Depth Checks

Intermediate Cover Depth Check Locations

6.2 EVOH COVER SYSTEM DESIGN

SCS has begun the process of preparing a scope for the EVOH cover system design for submittal to the City.

6.3 EVOH COVER SYSTEM PROCUREMENT

City has initiated discussion with the EVOH cover vendor, Viaflex, to facilitate future procurement of an EVOH cover system.

6.4 EVOH COVER SYSTEM INSTALLATION

Installation of the EVOH cover system will begin after the installation of other infrastructure is complete.

7.0 STORM WATER MANAGEMENT

SCS is reviewing the topography collected on October 7, 2022 to determine the scope of design needed to manage stormwater on the site. SCS is preparing an approach for submittal to the City that will address stormwater management design, construction, and stormwater sampling.

8.0 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit #588 landfill prior to September 12, 2022.

9.0 LONG-TERM PLAN

The City has begun reviewing available resources and the workload associated with long term maintenance and monitoring of the landfill.

10.0 COMMUNITY OUTREACH PROGRAM

The City's consultant leading community outreach, McGuireWoods Consulting, outlined the actions taken as part of their community outreach efforts. For the month of November, those actions include:

- November 1st: New website dedicated to the Bristol Quarry Landfill launched
 - BristolVALandfill.org contains history about the landfill and recent odor issues, information about the ongoing remediation at the site, updates integrated with the Bristol, Virginia government website, and a place for website visitors to sign up for updates and submit questions they may have about ongoing activities at the quarry landfill.
 - The website includes a "Recent Updates" section where timely and weekly updates are posted. For the past month updates have focused on the ongoing borehole

drilling for thermocouple installation and the bidding process for the pilot sidewall odor mitigation system.

- November 1st: Informational Open House hosted at City Council Chambers
 - The City of Bristol, Virginia hosted an Open House where residents of Bristol, Virginia and Bristol, TN came to learn more about the ongoing remediation progress at the quarry landfill. Over 40 members of the public attended the hour and a half event.
 - In attendance to answer questions at the Open House were: City Manager Randy Eads, Mayor Anthony Farnum, Vice Mayor Neal Osborne, Senior Vice President with SCS Engineers Robert B. Gardner, PE, BCEE and Craig Benson, PhD, PE, DGE, BCEE, NAE. Two consultants with McGuireWoods Consulting, LLC on contract with the City of Bristol were also in attendance.
- November 21st: Email communication sent to the list of members of the public signed up through the Bristol, VA website, the new BristolVALandfill.org website, or at the Open House to receive information via email
 - Email directed recipients to BristolVALandfill.org and more specifically to the Frequently Asked Questions portion of the website. The FAQs came from questions submitted by residents over the past several weeks.
- Week of November 28th: Informational mail piece sent to over 16,000 households, which included residents in both Bristol, VA and Bristol, TN
 - Mail piece included information on recent issues at the landfill, remediation steps the City of Bristol is taking to address the issues and included the timeline of remedial activities planned for the next 12 months.

Appendix A

Surface Emissions Monitoring Summary Letters

SCS ENGINEERS

November 9, 2022 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – November 4, 2022

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on November 4, 2022. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Section 3.5 of the Plan of Action in Response to the Expert Panel Report, submitted to VDEQ on July 6, 2022.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route included applicable areas of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	139
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	39
Number of Exceedances ¹	10
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	10

Proposed corrective actions at these locations involved addition and compaction of low permeability soil as well as vacuum adjustments to adjacent vertical wells. In some select locations a foam seal or a well bore skirt may be installed. Results of corrective actions and remonitoring results will be presented in subsequent reports.

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performed corrective actions including wellhead vacuum adjustments and addition of soil cover prior to this event at locations that previously exhibited elevated methane concentrations².

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations That continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

 $^{1\ {\}sf Exceedance\ locations\ were\ marked\ in\ the\ field\ with\ red\ flagging\ and\ were\ identified\ to\ landfill\ personnel\ to\ initiate\ corrective\ actions.}$

 Table 2.
 Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	11/4/22 Event	11/4/22 Event Result	Comments
EW-46	10/10/22	N/A	Pass	Requires 30-Day Retest
EW-67	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-56	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-57	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-41	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-53	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-40	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-51	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-68	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-42	8/12/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-52	8/19/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-39	8/19/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-48	8/26/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-47	8/26/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-54	9/2/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-35	9/9/22	N/A	Fail	Subject to 1960(c)(4)(v)

Mr. Jonathan Chapman November 9, 2022 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Lauren E. Harris

Associate Project Professional

SCS Engineers

Lucas S. Nachman Project Professional SCS Engineers

Lucus D. Nachman

LSN/LEH/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jake Chandler, City of Bristol

Crystal Bazyk, VDEQ

Charles Warren, SCS Engineers

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

November 16, 2022 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – November 14, 2022

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on November 14, 2022. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Section 3.5 of the Plan of Action in Response to the Expert Panel Report, submitted to VDEQ on July 6, 2022. Note that this monitoring was originally scheduled to be completed on November 11, 2022, but was rescheduled due to weather.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route included applicable areas of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area, with the exception at the surface cover penetration of EW-56, where monitoring was unable to be performed due to Health and Safety concerns. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	139
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	39
Number of Exceedances ¹	11
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	11

Proposed corrective actions at these locations involved addition and compaction of low permeability soil as well as vacuum adjustments to adjacent vertical wells. In some select locations a foam seal or a well bore skirt may be installed. Results of corrective actions and remonitoring results will be presented in subsequent reports.

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performed corrective actions including wellhead vacuum adjustments and addition of soil cover prior to this event at locations that previously exhibited elevated methane concentrations².

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations That continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

 $^{1\ {\}sf Exceedance\ locations\ were\ marked\ in\ the\ field\ with\ red\ flagging\ and\ were\ identified\ to\ landfill\ personnel\ to\ initiate\ corrective\ actions.}$

 Table 2.
 Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	11/14/22 Event	11/14/22 Event Result	Comments
EW-46	10/10/22	30-Day Retest	Pass	No Further Action
EW-50	11/4/22	10-Day Retest	Pass	Requires 30-Day Retest
EW-55	11/4/22	10-Day Retest	Fail	Requires 2 nd 10-Day Retest
EW-67	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-56	8/4/22	N/A	N/A	Subject to 1960(c)(4)(v)
EW-57	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-41	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-53	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-40	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-51	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-68	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-42	8/12/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-52	8/19/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-39	8/19/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-48	8/26/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-47	8/26/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-54	9/2/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-35	9/9/22	N/A	Fail	Subject to 1960(c)(4)(v)

Mr. Jonathan Chapman November 14, 2022 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Charles J. Warren

Associate Project Professional

SCS Engineers

Lucas S. Nachman Project Professional SCS Engineers

Lucus D. Nachman

LSN/LEH/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jake Chandler, City of Bristol

Under Varien

Crystal Bazyk, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 14, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

		Methane	_		ordinates	
	ID#	Concentration	Compliance	Lat.	Long.	Comments
	1	4.3 PPM	OK			Start Serpentine
	2	211.0 PPM	OK			Route
	3	14.9 PPM	OK			
	4	13.8 PPM	OK			
	5	74.9 PPM	OK			
	6	68.4 PPM	OK			
	7	10.1 PPM	OK			
	8	6.9 PPM	OK			
	9	4.3 PPM	OK			
	10	5.2 PPM	OK			
	11	15.0 PPM	OK			
İ	12	4.5 PPM	OK			
	13	16.1 PPM	OK			
	14	62.7 PPM	OK			
	15	16.6 PPM	OK			
	16	24.9 PPM	OK			
	1 <i>7</i>	32.4 PPM	OK			
	18	31.3 PPM	OK			
	19	15.8 PPM	OK			
	20	24.8 PPM	OK			
	21	11.1 PPM	OK			
	22	8.8 PPM	OK			
	23	7.4 PPM	OK			
	24	61.6 PPM	OK			
	25	20.6 PPM	OK			
	26	29.0 PPM	OK			
	27	26.1 PPM	OK			
	28	18.2 PPM	OK			
	29	6.6 PPM	OK			
	30	81.0 PPM	OK			
	31	13.0 PPM	OK			
	32	26.5 PPM	OK			
	33	6.3 PPM	OK			
	34	3.2 PPM	OK			
	35	21.8 PPM	OK			
	36	14.0 PPM	OK			
	37	11.5 PPM	OK			
	38	29.7 PPM	OK			
	39	14.9 PPM	OK			
	40	79.7 PPM	OK			
	41	11.8 PPM	OK			
	42	17.3 PPM	OK			

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 14, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6	14 13.8 15 30.6 16 72.8 17 1.9	3 PPM 8 PPM 6 PPM 8 PPM	OK OK OK	Long.	
4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6	14 13.6 15 30.6 16 72.6 17 1.6	8 PPM 6 PPM	OK		
4 4 4 5 5 5 5 5 5 5 5 5 6 6 6	30.6 46 72.8 47 1.9	6 PPM			
4 4 4 5 5 5 5 5 5 5 5 5 6 6 6	46 72.8 47 1.9		OK .		
4 4 5 5 5 5 5 5 5 5 5 6 6 6	1.9	B PPM			
5 5 5 5 5 5 5 5 5 6 6 6			OK		
5 5 5 5 5 5 5 5 5 6 6 6		9 PPM	OK		
5 5 5 5 5 5 5 5 6 6 6		2 PPM	OK		
5 5 5 5 5 5 5 6 6 6		1 PPM	OK		
5 5 5 5 5 5 6 6 6		1 PPM	OK		
5 5 5 5 5 6 6 6		9 PPM	OK		
5 5 5 5 5 6 6 6		5 PPM	OK		
5 5 5 5 6 6 6		5 PPM	OK		
5 5 5 6 6 6		5 PPM	OK		
5 5 5 6 6 6		3 PPM	OK		
5 5 6 6 6		9 PPM	OK		
5 6 6 6		6 PPM	OK		
6 6 6		7 PPM	OK		
6		6 PPM	OK		
6		7 PPM	OK		
6		1 PPM	OK		
		5 PPM	OK		
		6 PPM	OK		
		3 PPM	OK		
		2 PPM	OK		
		9 PPM	OK		
		4 PPM	OK		
		MAA C	OK		
		4 PPM	OK		
		3 PPM	OK		
		6 PPM	OK		
		3 PPM	OK		
		5 PPM O PPM	OK OK		
			OK OK		
		9 PPM	OK OK		
		D PPM	OK OK		
		1 PPM	OK OK		
		3 PPM	OK OK		
		O PPM 9 PPM	OK OK		
			OK OK		
		1 PPM			
		3 PPM 4 PPM	OK OK		
	33 2.2 34 5.0		OK OK		

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 14, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

		Methane GF			GPS Coordinates	
	ID#	Concentration	Compliance	Lat.	Long.	Comments
	85	4.2 PPM	OK			
	86	2.2 PPM	OK			
	87	5.6 PPM	OK			
	88	1.2 PPM	OK			
	89	3.2 PPM	OK			
	90	3.2 PPM	OK			
	91	91.9 PPM	OK			
	92	0.7 PPM	OK			
	93	1.9 PPM	OK			
	94	257.0 PPM	OK			
	95	9.5 PPM	OK			
	96	96.9 PPM	OK			
	97	14.8 PPM	OK			
	98	40.1 PPM	OK			
	99	27.0 PPM	OK			
	100	201.0 PPM	OK			End Serpentine
						Route
	101	2054.0 PPM	HIGH_ALRM	36.59916	-82.14769	EW-35
	102	16500.0 PPM	HIGH_ALRM	36.59900	-82.14750	EW-52
	103	167.0 PPM	OK			EW-60
	104	265.0 PPM	OK			EW-48
	105	9.7 PPM	OK			EW-61
	106	4.5 PPM	OK			EW-36
	107	253.0 PPM	OK			EW-34
	108	3.0 PPM	OK			EW-65
	109	72.9 PPM	OK			EW-50
	110	7310.0 PPM	HIGH_ALRM	36.59869	-82.14711	EW-55
	111	917.0 PPM	HIGH_ALRM	36.59865	-82.14743	EW-54
	112	89.0 PPM	OK			EW-47
	113	3043.0 PPM	HIGH_ALRM	36.59864	-82.14774	EW-67
	114	23.5 PPM	OK			EW-46
	115	2150.0 PPM	HIGH_ALRM	36.59842	-82.14735	EW-66
	116	8.7 PPM	OK			EW-58
	11 <i>7</i>	936.0 PPM	HIGH_ALRM	36.59815	-82.14750	EW-57
	118	195.0 PPM	OK			EW-59
	119	127.0 PPM	OK			EW-41
	120	8074.0 PPM	HIGH_ALRM	36.59841	-82.14793	EW-53
	121	722.0 PPM	HIGH_ALRM	36.59864	-82.14796	EW-40
	122	858.0 PPM	HIGH_ALRM	36.59884	-82.14786	EW-51
	123	2012.0 PPM	HIGH_ALRM	36.59906	-82.14800	EW-39
	124	121.0 PPM	OK			EW-68
Ī	125	40.1 PPM	OK			EW-38

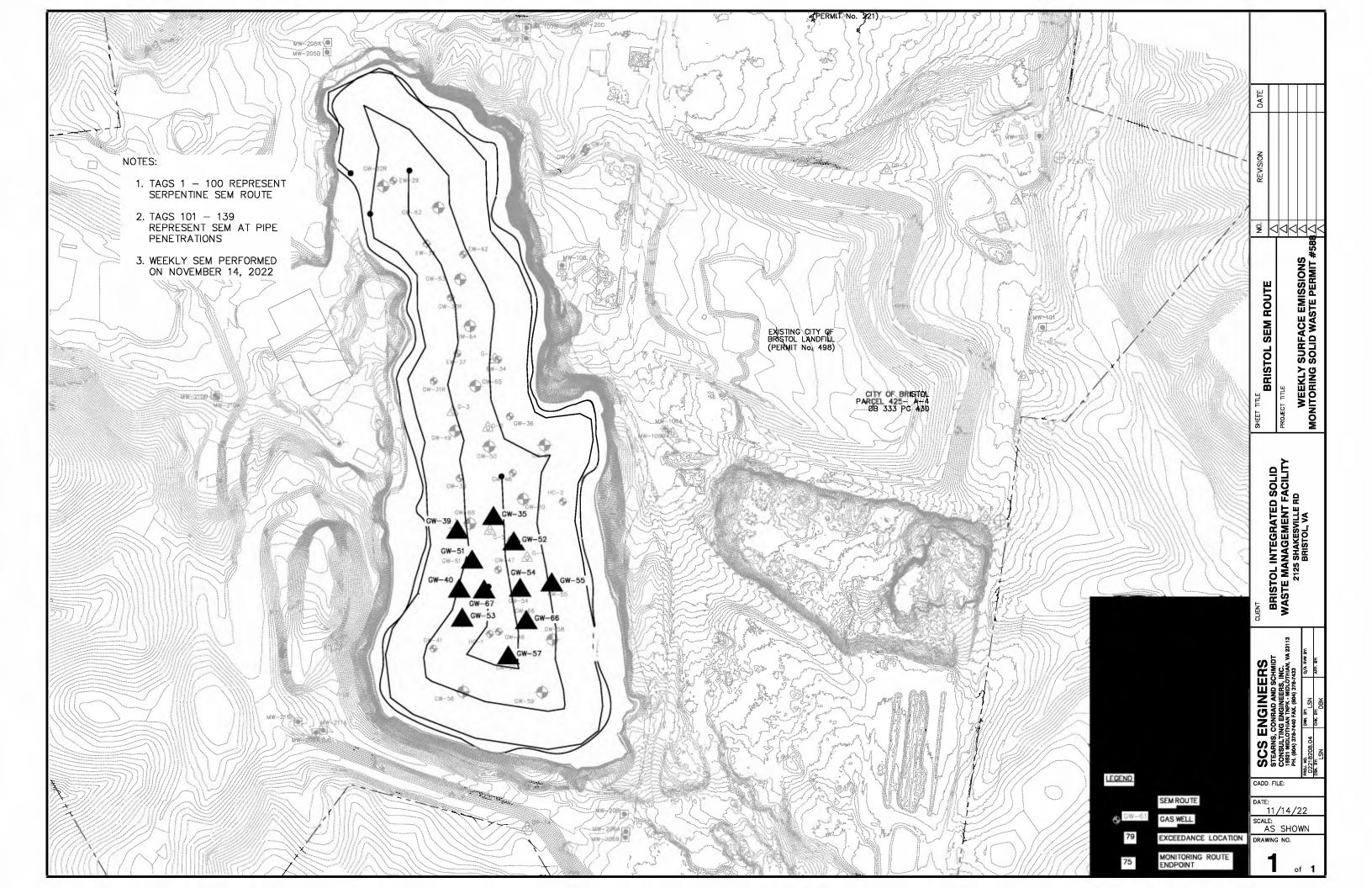
EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 14, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane			GPS Coordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments	
126	8.8 PPM	OK			EW-49	
127	2.3 PPM	OK			EW-31R	
128	5.3 PPM	OK			EW-37	
129	22.2 PPM	OK			EW-64	
130	270.0 PPM	OK			EW-30R	
131	221.0 PPM	OK			EW-63	
132	87.7 PPM	OK			EW-42	
133	249.0 PPM	OK			EW-33R	
134	296.0 PPM	OK			EW-62	
135	210.0 PPM	OK			EW-29R	
136	23.3 PPM	OK			EW-25	
137	34.0 PPM	OK			EW-24	
138	5.9 PPM	OK			EW-32	
139	159.0 PPM	ОК			EW-32R	

Number of locations sampled: 139
Number of exceedance locations: 11

NOTES:

Points 1 through 100 represent serpentine SEM route. Points 101 through 139 represent SEM at Pipe Penetrations Weather Conditions: Sunny $40^{\circ}F$ Wind: SE - 10 MPH


 Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm

 11/14/2022
 9:52
 ZERO
 0.0 PPM

 11/14/2022
 9:54
 SPAN
 501.0 PPM

Background Reading:

11/14/2022 11:06 Upwind 1.2 PPM 11/14/2022 11:08 Downwind 4.3 PPM

November 22, 2022 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – November 18, 2022

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on November 18, 2022. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Section 3.5 of the Plan of Action in Response to the Expert Panel Report, submitted to VDEQ on July 6, 2022.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route included applicable areas of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	145
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	45
Number of Exceedances ¹	6
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	6

Proposed corrective actions at these locations involved addition and compaction of low permeability soil as well as vacuum adjustments to adjacent vertical wells. In some select locations a foam seal or a well bore skirt may be installed. Results of corrective actions and remonitoring results will be presented in subsequent reports.

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performed corrective actions including wellhead vacuum adjustments and addition of soil cover prior to this event at locations that previously exhibited elevated methane concentrations².

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations That continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

 $^{1\ {\}sf Exceedance\ locations\ were\ marked\ in\ the\ field\ with\ red\ flagging\ and\ were\ identified\ to\ landfill\ personnel\ to\ initiate\ corrective\ actions.}$

 Table 2.
 Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	11/18/22 Event	11/18/22 Event Result	Comments
EW-50	11/4/22	N/A	Pass	Requires 30-Day Retest
EW-55	11/4/22	2 nd 10-Day Retest	Fail	Subject to 1960(c)(4)(v)
EW-66	11/14/22	10-Day Retest	Pass	Requires 30-Day Retest
EW-67	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-56	8/4/22	N/A	N/A	Subject to 1960(c)(4)(v)
EW-57	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-41	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-53	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-40	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-51	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-68	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-42	8/12/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-52	8/19/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-39	8/19/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-48	8/26/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-47	8/26/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-54	9/2/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-35	9/9/22	N/A	Fail	Subject to 1960(c)(4)(v)

Mr. Jonathan Chapman November 23, 2022 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Charles J. Warren Project Manager SCS Engineers Lucas S. Nachman Project Professional SCS Engineers

Lucus D. Nachman

LSN/LEH/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jake Chandler, City of Bristol

alale Varien

Crystal Bazyk, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 18, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	16.0 PPM	OK			Start Serpentine
2	9.1 PPM	OK			Route
3	176.0 PPM	OK			
4	123.0 PPM	OK			
5	11.7 PPM	OK			
6	12.8 PPM	OK			
7	20.4 PPM	OK			
8	113.0 PPM	OK			
9	8.8 PPM	OK			
10	4.7 PPM	OK			
11	6.6 PPM	OK			
12	7.5 PPM	OK			
13	4.0 PPM	OK			
14	16.4 PPM	OK			
15	3.7 PPM	OK			
16	28.9 PPM	OK			
1 <i>7</i>	11.2 PPM	OK			
18	7.6 PPM	OK			
19	3.9 PPM	OK			
20	28.0 PPM	OK			
21	15.5 PPM	OK			
22	46.8 PPM	OK			
23	3.7 PPM	OK			
24	3.2 PPM	OK			
25	9.7 PPM	OK			
26	19.7 PPM	OK			
27	9.4 PPM	OK			
28	5.3 PPM	OK			
29	30.0 PPM	OK			
30	7.2 PPM	OK			
31	43.6 PPM	OK			
32	39.8 PPM	OK			
33	39.8 PPM	OK			
34	13.0 PPM	OK			
35	16.3 PPM	OK			
36	11.2 PPM	OK			
37	23.3 PPM	OK			
38	131.0 PPM	OK			
39	77.8 PPM	OK			
40	91.2 PPM	OK			
41	60.4 PPM	OK			
42	13.0 PPM	OK			

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 18, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane			ordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments	
43	7.5 PPM	OK				
44	5.1 PPM	OK				
45	4.4 PPM	OK				
46	7.7 PPM	OK				
47	21.6 PPM	OK				
48	6.0 PPM	OK				
49	21.8 PPM	OK				
50	8.0 PPM	OK				
51	14.0 PPM	OK				
52	8.5 PPM	OK				
53	6.6 PPM	OK				
54	14.1 PPM	OK				
55	7.7 PPM	OK				
56	18.1 PPM	OK				
57	7.8 PPM	OK				
58	7.4 PPM	OK				
59	10.9 PPM	OK				
60	13.2 PPM	OK				
61	11.2 PPM	OK				
62	3.8 PPM	OK				
63	6.7 PPM	OK				
64	5.0 PPM	OK				
65	37.3 PPM	OK				
66	5.5 PPM	OK				
67	16.1 PPM	OK				
68	42.8 PPM	OK				
69	73.5 PPM	OK				
70	10.4 PPM	OK				
<i>7</i> 1	9.2 PPM	OK				
72	4.6 PPM	OK				
73	1 <i>5.7</i> PPM	OK				
74	39.3 PPM	OK				
75	27.4 PPM	OK				
76	7.3 PPM	OK				
77	216.0 PPM	OK				
78	17.3 PPM	OK				
79	14.0 PPM	OK				
80	37.5 PPM	OK				
81	92.5 PPM	OK				
82	175.0 PPM	OK				
83	29.2 PPM	OK				
84	3.6 PPM	OK				

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 18, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

Methane			GPS Co	ordinates		
ID#	Concentration	Compliance	Lat.	Long.	Comments	
85	3.0 PPM	OK				
86	2.7 PPM	OK				
87	5.7 PPM	OK				
88	3.3 PPM	OK				
89	4.3 PPM	OK				
90	8.9 PPM	OK				
91	14.4 PPM	OK				
92	15.4 PPM	OK				
93	62.5 PPM	OK				
94	84.5 PPM	OK				
95	83.4 PPM	OK				
96	140.0 PPM	OK				
97	7.7 PPM	OK				
98	143.0 PPM	OK				
99	5.0 PPM	OK				
100	3.9 PPM	OK			End Serpentine	
					Route	
101	3366.0 PPM	HIGH_ALRM	36.59916	-82.14769	EW-35	
102	415.0 PPM	OK			EW-52	
103	33.9 PPM	OK			TP-4	
104	441.0 PPM	OK			EW-60	
105	154.0 PPM	OK			EW-48	
106	27.4 PPM	OK			EW-61	
107	6.1 PPM	OK			EW-36	
108	155.0 PPM	OK			EW-34	
109	60.9 PPM	OK			EW-50	
110	3319.0 PPM	HIGH_ALRM	36.59864	-82.14774	EW-67	
111	158.0 PPM	OK			EW-47	
112	8548.0 PPM	HIGH_ALRM	36.59865	-82.14743	EW-54	
113	15700.0 PPM	HIGH_ALRM	36.59869	-82.14711	EW-55	
114	69.4 PPM	OK	00.07007	02.1.17.11	TP-2	
115	7.9 PPM	OK			EW-46	
116	192.0 PPM	OK			EW-66	
117	10.1 PPM	OK			EW-58	
118	200.0 PPM	OK			EW-57	
119	63.4 PPM	OK OK			TP-1	
120	8.2 PPM	OK			EW-59	
121	1178.0 PPM	HIGH_ALRM	36.59789	-82.14790	EW-56	
121	184.0 PPM	OK	30.37707	-02.14/ 70	EW-41	
123	51.5 PPM	OK OK			EW-53	
123	168.0 PPM	OK OK			EW-40	
125	329.0 PPM	OK OK			TP-3	

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 18, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

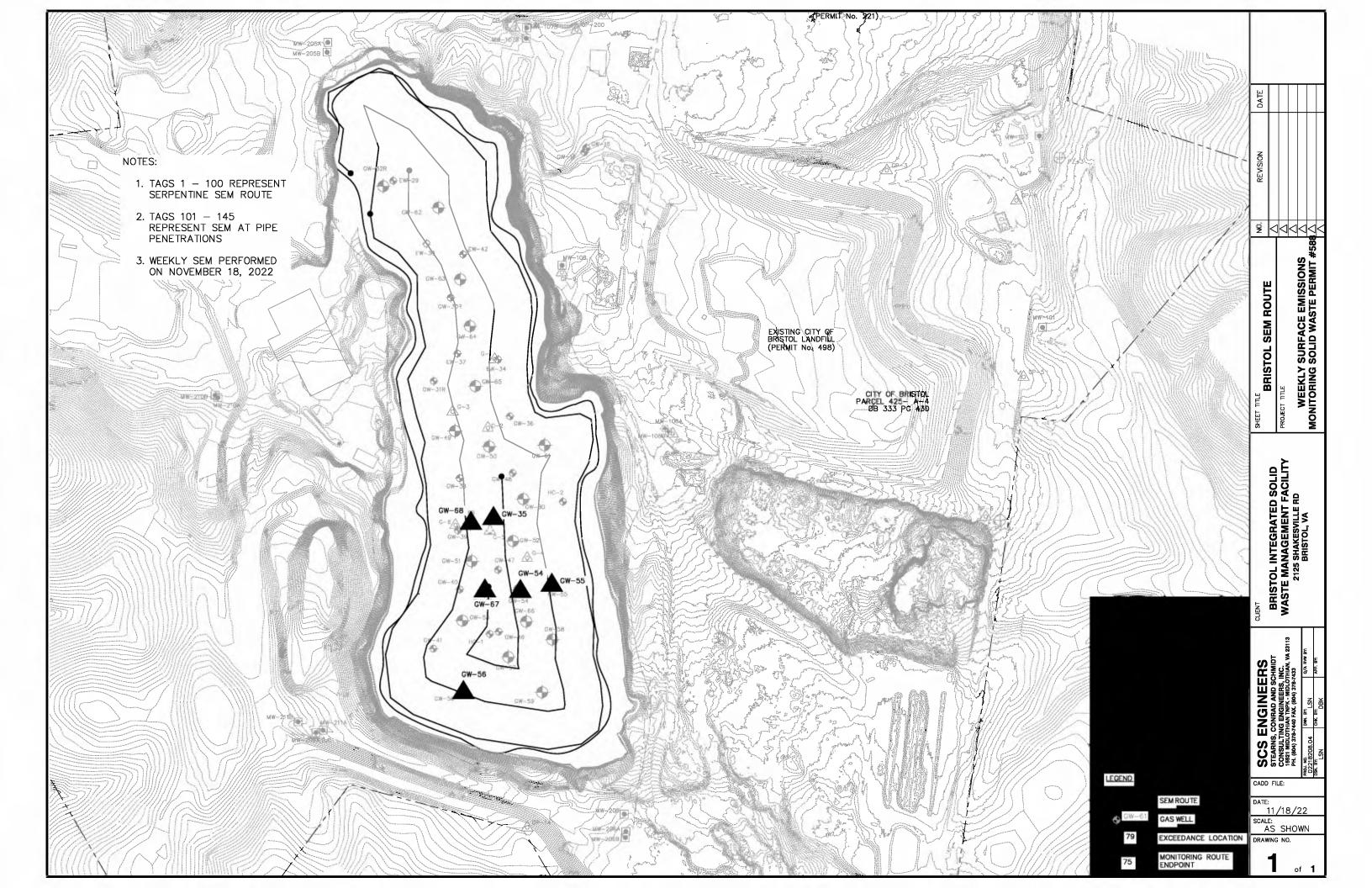
	Methane		GPS Coordinates			
ID#	Concentration	Compliance	Lat.	Long.	Comments	
126	290.0 PPM	ОК			EW-51	
127	241.0 PPM	OK			EW-39	
128	6.2 PPM	OK			TP-5	
129	6307.0 PPM	HIGH_ALRM	36.59912	-82.14790	EW-68	
130	127.0 PPM	OK			EW-38	
131	4.7 PPM	OK			EW-49	
132	8.2 PPM	OK			EW-31R	
133	6.9 PPM	OK			EW-65	
134	5.5 PPM	OK			EW-37	
135	5.6 PPM	OK			EW-64	
136	5.5 PPM	OK			EW-30R	
137	4.7 PPM	OK			EW-63	
138	16.5 PPM	OK			EW-42	
139	5.7 PPM	OK			EW-33R	
140	5.5 PPM	OK			EW-62	
141	2.0 PPM	OK			EW-29R	
142	53.1 PPM	OK			EW-25	
143	24.5 PPM	OK			EW-24	
144	4.1 PPM	OK			EW-32	
145	7.3 PPM	OK			EW-32R	

Number of locations sampled: 145
Number of exceedance locations: 6

NOTES:

Points 1 through 100 represent serpentine SEM route. Points 101 through 145 represent SEM at Pipe Penetrations Weather Conditions: Sunny $35^{\circ}F$ Wind: W - 15 MPH

 Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm


 11/18/2022
 9:46
 ZERO
 0.0 PPM

 11/18/2022
 9:47
 SPAN
 501.0 PPM

Background Reading:

 11/18/2022
 9:54
 Upwind
 4.1 PPM

 11/18/2022
 9:58
 Downwind
 1.9 PPM

November 30, 2022 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – November 23, 2022

Bristol Integrated Solid Waste Facility - Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on November 23, 2022. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Section 3.5 of the Plan of Action in Response to the Expert Panel Report, submitted to VDEQ on July 6, 2022.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route included applicable areas of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area, including at the newly installed temperature probes. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Table 1. Summary of Surface Emissions Monitoring

Description	Quantity
Number of Points Sampled	145
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	45
Number of Exceedances ¹	10
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	10

Proposed corrective actions at these locations involved addition and compaction of low permeability soil as well as vacuum adjustments to adjacent vertical wells. In some select locations a foam seal or a well bore skirt may be installed. Results of corrective actions and remonitoring results will be presented in subsequent reports.

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performed corrective actions including wellhead vacuum adjustments and addition of soil cover prior to this event at locations that previously exhibited elevated methane concentrations.

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations That continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

¹ Exceedance locations were marked in the field with red flagging and were identified to landfill personnel to initiate corrective actions.

 Table 2.
 Ongoing Weekly SEM Exceedances

Point ID	Initial Exceedance Date	11/28/22 Event	11/28/22 Event Result	Comments		
EW-50	11/4/22	N/A	Pass	Requires 30-Day Retest		
EW-66	11/14/22	2 nd 10-Day Retest	Fail	Requires 30-Day Retest		
EW-67	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)		
EW-56	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)		
EW-57	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)		
EW-41	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)		
EW-53	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)		
EW-40	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)		
EW-51	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)		
EW-68	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)		
EW-42	8/12/22	N/A	Pass	Subject to 1960(c)(4)(v)		
EW-52	8/19/22	N/A	Fail	Subject to 1960(c)(4)(v)		
EW-39	8/19/22	N/A	Pass	Subject to 1960(c)(4)(v)		
EW-48	8/26/22	N/A	Pass	Subject to 1960(c)(4)(v)		
EW-47	8/26/22	N/A	Fail	Subject to 1960(c)(4)(v)		
EW-54	9/2/22	N/A	Fail	Subject to 1960(c)(4)(v)		
EW-35	9/9/22	N/A	Fail	Subject to 1960(c)(4)(v)		
EW-55	11/4/22	N/A	Pass	Subject to 1960(c)(4)(v)		

Mr. Jonathan Chapman November 30, 2022 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

Charles J. Warren Project Manager SCS Engineers Lucas S. Nachman Project Professional SCS Engineers

Lucus D. Nachman

LSN/LEH/cjw

cc: Randall Eads, City of Bristol

Mike Martin, City of Bristol Joey Lamie, City of Bristol Jake Chandler, City of Bristol

alale Varien

Crystal Bazyk, VDEQ

Encl. Surface Emissions Monitoring Results

Bristol SEM Route Drawing

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 23, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
1	4.1 PPM	ОК			Start Serpentine
2	61.3 PPM	OK			Route
3	23.1 PPM	OK			
4	25.5 PPM	OK			
5	26.4 PPM	OK			
6	46.2 PPM	OK			
7	28.9 PPM	OK			
8	17.5 PPM	OK			
9	1 <i>7</i> .1 PPM	OK			
10	12.5 PPM	OK			
11	27.7 PPM	OK			
12	142.0 PPM	OK			
13	89.5 PPM	OK			
14	26.9 PPM	OK			
15	56.2 PPM	OK			
16	423.0 PPM	OK			
1 <i>7</i>	60.7 PPM	OK			
18	46.9 PPM	OK			
19	183.0 PPM	OK			
20	124.0 PPM	OK			
21	222.0 PPM	OK			
22	174.0 PPM	OK			
23	214.0 PPM	OK			
24	200.0 PPM	OK			
25	264.0 PPM	OK			
26	240.0 PPM	OK			
27	225.0 PPM	OK			
28	171.0 PPM	OK			
29	182.0 PPM	OK			
30	317.0 PPM	OK			
31	199.0 PPM	OK			
32	65.4 PPM	OK			
33	88.4 PPM	OK			
34	95.5 PPM	OK			
35	56.9 PPM	OK			
36	41.6 PPM	OK			
37	309.0 PPM	OK			
38	166.0 PPM	OK			
39	323.0 PPM	OK			
40	114.0 PPM	OK			
41	266.0 PPM	OK			
42	348.0 PPM	OK			

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 23, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

ID#	Methane Concentration	Compliance	GPS Coo	ordinates Long.	Comments
1D #	Concentration	Compliance	Lui.	Long.	Comments
43	20.8 PPM	OK			
44	21.6 PPM	OK			
45	3.7 PPM	OK			
46	4.2 PPM	OK			
47	5.6 PPM	OK			
48	2.0 PPM	OK			
49	2.4 PPM	OK			
50	2.7 PPM	OK			
51	24.9 PPM	OK			
52	11.7 PPM	OK			
53	14.3 PPM	OK			
54	27.1 PPM	OK			
55	26.0 PPM	OK			
56	37.6 PPM	OK			
57	25.6 PPM	OK			
58	49.0 PPM	OK			
59	7.8 PPM	OK			
60	11.2 PPM	OK			
61	26.7 PPM	OK			
62	104.0 PPM	OK			
63	3.4 PPM	OK			
64	26.1 PPM	OK			
65	10.3 PPM	OK			
66	6.9 PPM	OK			
67	10.3 PPM	OK			
68	8.8 PPM	OK			
69	41.8 PPM	OK			
70	3.2 PPM	OK			
71	19.7 PPM	OK			
72	329.0 PPM	OK			
73	145.0 PPM	OK			
74	81.1 PPM	OK			
75	104.0 PPM	OK			
76	87.7 PPM	OK			
77	1.7 PPM	ОК			
78	2.1 PPM	OK			
79	53.7 PPM	OK			
80	23.9 PPM	OK			
81	2.1 PPM	OK			
82	140.0 PPM	OK			
83	94.5 PPM	OK			
84	48.2 PPM	OK			

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 23, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
85	28.6 PPM	OK			
86	5.8 PPM	OK			
87	4.0 PPM	OK			
88	4.7 PPM	OK			
89	3.1 PPM	OK			
90	2.8 PPM	OK			
91	44.0 PPM	OK			
92	22.2 PPM	OK			
93	10.4 PPM	OK			
94	6.4 PPM	OK			
95	121.0 PPM	OK			
96	12.0 PPM	OK			
97	48.2 PPM	OK			
98	4.1 PPM	OK			
99	82.4 PPM	OK			
100	293.0 PPM	OK			End Serpentine
					Route
101	5624.0 PPM	HIGH_ALRM	36.59916	-82.14769	EW-35
102	1118.0 PPM	HIGH_ALRM	36.59900	-82.14750	EW-52
103	66.9 PPM	OK			TP-4
104	990.0 PPM	HIGH_ALRM	36.59931	-82.14742	EW-60
105	173.0 PPM	OK			EW-48
106	77.8 PPM	OK			EW-61
107	7.4 PPM	OK			EW-36
108	356.0 PPM	OK			EW-34
109	97.8 PPM	OK			EW-50
110	4341.0 PPM	HIGH_ALRM	36.59864	-82.14774	EW-67
111	13600.0 PPM	HIGH_ALRM	36.59879	-82.14763	EW-47
112	1467.0 PPM	HIGH_ALRM	36.59865	-82.14743	EW-54
113	202.0 PPM	OK	00.07000	02.11 17 10	EW-55
114	6.4 PPM	OK			TP-2
115	5.6 PPM	OK			EW-46
116	789.0 PPM	HIGH_ALRM	36.59842	-82.14735	EW-66
117	194.0 PPM	OK	30.37042	-02.14/ 00	EW-58
118	274.0 PPM	OK			EW-57
119	75.8 PPM	OK OK			TP-1
120	221.0 PPM	OK OK			EW-59
121	3077.0 PPM	HIGH_ALRM	36.59789	-82.14790	EW-56
121	455.0 PPM	OK	30.377 07	-02.14/70	EW-30
122	3739.0 PPM	HIGH_ALRM	36.59841	-82.14793	EW-41 EW-53
123	2296.0 PPM	HIGH_ALRM	36.59864	-82.14793 -82.14796	EW-33 EW-40
124	153.0 PPM	OK	30.37004	-02.14/70	TP-3

EXHIBIT 1. SURFACE EMISSIONS MONITORING RESULTS WEEKLY MONITORING EVENT - NOVEMBER 23, 2022 BRISTOL INTEGRATED SOLID WASTE FACILITY - BRISTOL, VIRGINIA

	Methane		GPS Co	ordinates	
ID#	Concentration	Compliance	Lat.	Long.	Comments
126	350.0 PPM	OK			EW-51
127	23.4 PPM	OK			EW-39
128	32.1 PPM	OK			TP-5
129	125.0 PPM	OK			EW-68
130	372.0 PPM	OK			EW-38
131	17.6 PPM	OK			EW-49
132	5.7 PPM	OK			EW-31R
133	5.3 PPM	OK			EW-65
134	3.2 PPM	OK			EW-37
135	2.1 PPM	OK			EW-64
136	2.1 PPM	OK			EW-30R
1 <i>37</i>	3.8 PPM	OK			EW-63
138	152.0 PPM	OK			EW-42
139	2.6 PPM	OK			EW-33R
140	1.7 PPM	OK			EW-62
141	9.4 PPM	OK			EW-29R
142	130.0 PPM	OK			EW-25
143	81.4 PPM	OK			EW-24
144	5.5 PPM	OK			EW-32
145	1.8 PPM	OK			EW-32R

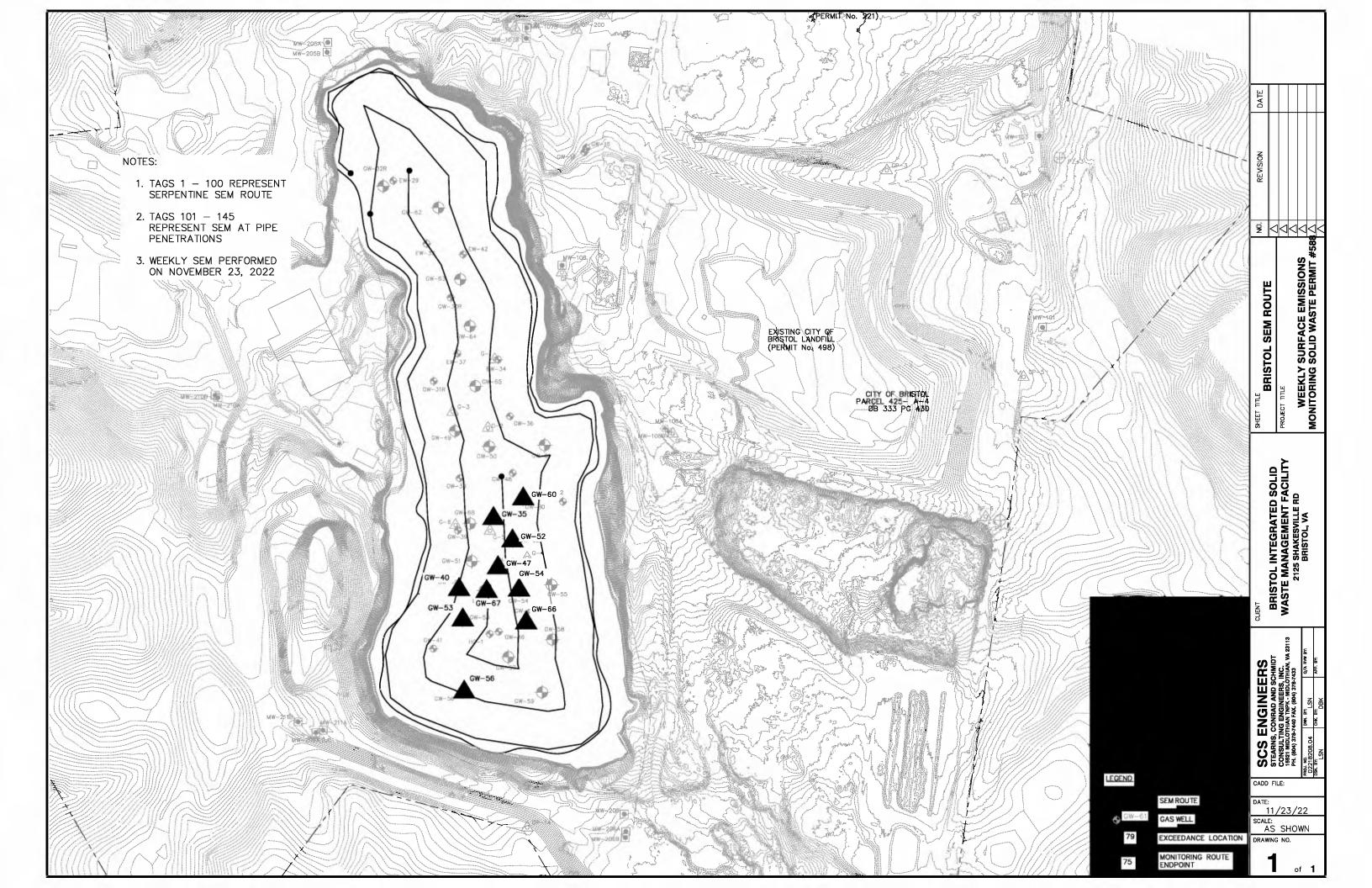
Number of locations sampled: 145
Number of exceedance locations: 10

NOTES:

Points 1 through 100 represent serpentine SEM route. Points 101 through 145 represent SEM at Pipe Penetrations

Weather Conditions: Sunny $50^{\circ}F$ Wind: 0 MPH

 Sampling Calibration: Methane - 500 ppm, Zero Air - 0.0 ppm


 11/23/2022
 9:34
 ZERO
 0.1 PPM

 11/23/2022
 9:36
 SPAN
 499.0 PPM

Background Reading:

 11/23/2022
 9:40
 Upwind
 2.9 PPM

 11/23/2022
 9:53
 Downwind
 8.1 PPM

Appendix B SCS-FS October Summary Report

SCS FIELD SERVICES

December 6, 2022 Job No. 07220028.00

Mr. Michael Martin City of Bristol 2125 Shakesville Road Bristol, VA 24201

Subject: Summary of Operation, Monitoring, and Maintenance (OM&M) Services for Gas

Collection Control System (GCCS) at the City of Bristol Landfill, Bristol, Virginia

November 2022

Dear Mr. Martin:

SCS Field Services (SCS-FS) visited the Bristol Landfill during the month of November, 2022, for routine and non-routine monitoring and maintenance on the gas collection and control system (GCCS). This report summarizes the work performed and presents the data collected. The monitoring data is presented in the following attachments:

Attachment 1. Wellfield Monitoring Data

Attachment 2. Exceedance Detail Report

Attachment 3. Enhanced Monitoring Record Form and Analytical Results

Attachment 4. Daily Logs

GCCS SITE ACTIVITES

On November 3, SCS-FS visited the landfill for routine and non-routine monitoring. The Flare was operating and the Ingenco Power Plant was not operating. SCS-FS monitored the blower/flare station (BFS), the extraction wells (EW) in Cell 221 and 588 and the North and South Leachate Clean-outs.

On November 4, SCS-FS conducted non-routine recheck enhanced monitoring and carbon monoxide (CO) analysis (enhanced monitoring) for compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAP) at wells EW-31R, -46, -51, -52, -53, and -67. SCS-FS sampled for CO at EW-46, -51, -52, and -67, and submitted the samples to Enthalpy Analytical for analysis. Analytical results are included in Attachment 3. SCS-FS monitored the north and south leachate clean outs.

Between November 7 and 23, SCS-FS made the following repairs and system modifications:

- Installed new 8- and 12-inch header piping and air and force main piping to the south leachate clean-outs, and installed new QED wellheads.
- Installed remote temperature probes on selected wells in Cell 588.

On November 10, SCS-FS monitored the BFS and conducted non-routine enhanced monitoring at EW-37, -46, -51, and -52. Samples were collected for CO at EW-37, -46, and -67, and submitted to Enthalpy Analytical for analysis. A sample could not be collected from EW-52 due to liquid at the

Mr. Michael Martin December 6, 2022 Page 2

sampling port. SCS-FS conducted non-routine recheck monitoring at EW-3 for a pressure exceedance and monitored a slight vacuum.

On November 17, SCS-FS monitored the BFS and conducted non-routine enhanced monitoring and CO analysis sampling at EW-37, -52, and -67, and submitted the samples to Enthalpy Analytical for analysis. SCS-FS conducted non-routine recheck monitoring for the pressure exceedance at EW-3 and noted that vacuum was present.

On November 29th, SCS-FS monitored the BFS and conducted non-routine enhanced monitoring and CO analysis sampling at EW-67 and submitted to Enthalpy Analytical for analysis. SCS-FS monitored GW-19 in Cell 498 since vacuum was restored earlier in the month and noted the valve is set at 10% open.

RECOMMENDATIONS

SCS-FS has the following recommendations based on observations made during our site visits:

- Continue adding cover to the landfill surface and realigning the header so liquid drains to condensate sumps.
- Maintain spare pumps in working order.
- Connect wells GW-20 and -21 in permit area 498 to the active extraction system.

Thomas M. Lock

SCS FIELD SERVICES

Vice President / Northeast Region Manager

SCS-FS appreciates the opportunity to provide our services. Please contact either of the undersigned if you have any questions or need additional information.

Very truly yours,

Mike Gibbons Project Manager

mil lite

SCS FIELD SERVICES

Attachments

cc: Bob Dick, SCS Engineers

Attachments

- 1. Wellfield Monitoring Data
- 2. Exceedance Detail Report
- 3. Enhanced Monitoring Record Forms and Analytical Results
- 4. Daily Logs

Attachment 1

Wellfield Monitoring Data

Bristol Virginia Landfill - Blower/Flare Data - 11/01/2022 to 11/30/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Static Pressure ("H2O)	Temp (F)	Flow (scfm)	Comments
Blower Inlet	11/3/2022 10:18	33.8	32.1	4.7	29.4	-24.9	0.0	0	
Blower Inlet	11/3/2022 10:21	31.8	31.2	4.9	32.1	-24.1	82.1	315	
Blower Inlet	11/3/2022 14:35	32.6	31.9	4.4	31.1	-24.2	85.0	280	
Blower Inlet	11/4/2022 08:35	0.0	0.2	20.9	78.9	0.1	61.8	0	
Blower Inlet	11/4/2022 08:38	50.0	35.1	0.0	14.9	-0.1	62.1	0	
Blower Inlet	11/4/2022 08:42	33.9	33.6	4.1	28.4	-24.3	62.3	328	
Blower Inlet	11/10/2022 10:14	31.9	30.4	5.2	32.5	-24.3	74.8	298	
Blower Inlet	11/10/2022 12:03	32.0	30.1	5.0	32.9	-24.3	82.2	290	
Blower Inlet	11/17/2022 10:33	33.2	32.0	5.0	29.8	-24.1	69.9	300	
Blower Inlet	11/17/2022 11:34	35.4	32.7	5.2	26.7	-24.2	67.5	298	
Blower Inlet	11/29/2022 10:37	34.0	32.1	4.5	29.4	-24.3	50.0	360	
Blower Inlet	11/29/2022 11:34	35.2	32.2	4.6	28.0	-24.2	74.4	360	
Blower Outlet	11/3/2022 10:21	33.7	31.6	4.8	29.9	0.2	0.0	0	
L221 Header	11/3/2022 10:18	25.8	19.7	10.2	44.3	-24.0	83.6	315	
Technician/Weather									
Field Technician	Record Date	Ambient Temp	Barometric Pressure	Wind Speed	Wind Direction	General Weather			
Will Fabre	11/3/2022	53	28.32	12	NE	Partly cloudy			
Ryan Seymour	11/4/2022	62	28.27	3	NE	Partly cloudy			
Ryan Seymour	11/10/2022	60	28.24	3	NE	Partly cloudy			
Ryan Seymour	11/17/2022	33	28.23	7	SE	Partly cloudy			
Ryan Seymour	11/29/2022	50	28.15	4	SE	Partly cloudy			

Bristol Virginia Landfill - Extraction Well Data - 11/01/2022 to 11/30/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	Temp (F)	Flow (scfm)	System Pressure ("H20)	Comments
01	11/3/2022 11:09	56.2	39.1	1.0	3.7	-22.8	-22.9	65.1		-22.5	
02	11/3/2022 11:00	31.3	20.2	11.0	37.5	-15.3	-15.3	79.0		-23.3	
03	11/3/2022 10:56	59.4	40.3	0.2	0.1	0.5	-0.3	76.3		-23.4	
03	11/10/2022 10:22	59.1	40.9	0.0	0.0	-0.1	0.0	71.2	5.7	-10.6	Adjustment Up
03	11/17/2022 10:38	31.0	23.0	9.6	36.4	-2.6	-2.6	49.6	50.9	-13.4	
04	11/3/2022 10:40	49.9	37.1	2.6	10.4	-6.2	-6.2	74.1		-23.3	
05	11/3/2022 10:36	55.3	40.8	0.9	3.0	-23.1	-22.7	69.5		-23.2	
06	11/3/2022 11:56	61.5	37.5	0.0	1.0	1.3	-1.9	89.8		-23.3	
06	11/3/2022 11:58	54.5	34.3	2.1	9.1	-5.9	-6.4	66.3		-23.3	Adjusted up
07	11/3/2022 11:45	56.1	39.0	0.5	4.4	-10.2	-10.1	74.5		-23.4	
07	11/3/2022 11:50	56.2	39.5	0.4	3.9	-11.7	-11.7	87.8		-23.4	Adjusted up
08	11/3/2022 11:41	31.2	20.7	10.0	38.1	-0.1	-0.1	84.2		-23.5	
09	11/3/2022 11:31	53.0	36.9	1.7	8.4	-22.7	-22.7	85.4		-23.6	
10	11/3/2022 11:27	56.4	42.0	0.4	1.2	-6.1	-6.1	82.9	140.6	-23.4	
11	11/3/2022 11:22	22.3	15.8	12.9	49.0	-23.2	-23.2	77.5		-23.3	
12	11/3/2022 11:13	32.7	23.3	9.1	34.9	-23.7	-23.6	71.6	21.7	-23.5	
13	11/3/2022 10:49	54.2	38.6	0.9	6.3	-23.4	-23.3	65.1		-23.4	
14	11/3/2022 11:36	42.3	25.7	6.3	25.7	-2.4	-2.4	77.4		-23.4	
15	11/3/2022 11:04	57.8	39.3	0.7	2.2	-23.4	-23.5	73.7		-23.4	
16	11/3/2022 12:14	33.6	35.0	0.6	30.8	-11.9	-11.9	80.4		-23.4	
17	11/3/2022 12:17	44.2	36.2	0.7	18.9	-18.0	-17.9	77.0		-23.3	
18	11/3/2022 13:26	44.9	37.0	1.1	17.0	-12.0	-11.9	79.7	3.0	-23.3	
19	11/29/2022 10:43	3.0	11.7	6.2	79.1	-13.9	-13.8	70.0			Needs system pressure port
23	11/3/2022 12:05	0.2	0.3	20.6	78.9	-2.1	-2.0	65.1		-23.5	
23	11/3/2022 12:10	0.1	0.3	20.8	78.8	-2.7	-2.7	61.1		-23.4	
24	11/3/2022 13:55	5.5	4.9	17.8	71.8	-2.3	-2.3	89.0	4.3	-20.7	
25	11/3/2022 13:58	0.3	8.3	18.9	72.5	-1.1	-1.0	93.3	3.2	-20.8	
29	11/3/2022 14:05	58.9	38.3	0.2	2.6	-9.2	-9.2	117.6	191.7	-11.2	
30R	11/3/2022 14:02	23.1	19.4	6.7	50.8	-1.6	-1.6	130.6	74.4	-12.7	
31R	11/3/2022 13:35	19.5	44.5	3.4	32.6	-16.6	-17.7	164.6		-17.5	
31R	11/4/2022 09:09	18.5	20.2	7.3	54.0	-0.7	-0.7	131.0		-0.7	
32	11/3/2022 14:21	54.7	39.3	0.3	5.7	-5.6	-5.4	86.7	150.0	-9.7	
32	11/10/2022 12:28	58.0	41.6	0.4	0.0	-4.8	-4.8	72.0		-7.9	Slightly Open
33	11/3/2022 14:24	43.2	36.0	0.5	20.3	-2.2	-2.2	76.9	96.0	-2.2	
34	11/3/2022 13:47	29.1	68.9	0.8	1.2	-13.2	-6.4	123.1		-12.8	

Bristol Virginia Landfill - Extraction Well Data - 11/01/2022 to 11/30/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Static Pressure	Adj Static Pressure	Temp (F)	Flow (scfm)	System Pressure	Comments
						("H2O)	("H20)	. ,		("H20)	
35	11/3/2022 12:31	53.9	32.1	4.3	9.7	-1.5	-3.4	90.2		-14.6	
36	11/3/2022 13:05	41.7	22.5	8.1	27.7	-19.5	-19.4	85.8		-19.4	
37	11/10/2022 10:40	18.2	24.0	7.1	50.7	-13.8	-13.8	147.6		-14.1	Fully Open
37	11/17/2022 10:50	18.4	24.7	7.3	49.6	-8.9	-8.9	147.2	161.2	-8.8	Fully Open
38	11/3/2022 13:13	52.5	32.3	4.0	11.2	-6.5	-6.4	87.4	161.6	-6.3	
39	11/3/2022 12:41	59.4	40.3	0.3	0.0	-15.9	-14.7	111.3		-15.3	
40	11/3/2022 11:51	58.1	41.7	0.2	0.0	-2.3	-2.2	128.9	10.7	-13.8	
41	11/3/2022 11:40	57.7	41.8	0.5	0.0	-16.4	-16.3	117.4		-15.8	
42	11/3/2022 14:10	53.4	37.0	1.7	7.9	-1.6	-1.5	123.8	75.1	-1.5	
46	11/3/2022 11:34	51.8	41.1	0.5	6.6	-7.7	-7.6	153.8		-15.8	
46	11/4/2022 09:24	47.0	41.4	1.1	10.5	-7.3	-7.3	149.7		-16.9	
46	11/10/2022 10:59	57.6	39.6	0.9	1.9	-5.6	-5.6	150.2		-17.0	Slightly Open
47	11/3/2022 12:06	59.0	40.8	0.2	0.0	-18.3	-17.9	134.6	58.4	-17.6	
48	11/3/2022 12:56	45.2	28.8	6.2	19.8	-18.4	-18.3	80.7		-17.6	
49	11/3/2022 13:30	36.2	30.4	3.6	29.8	-6.4	-6.9	135.2		-16.5	
50	11/3/2022 13:10	40.8	26.2	6.0	27.0	-1.2	-0.9	126.9	12.5	-17.8	
51	11/3/2022 12:36	50.5	44.7	2.5	2.3	-16.5	-15.9	164.4		-16.6	
51	11/4/2022 09:17	43.1	43.8	2.0	11.1	-15.5	-16.6	160.2		-17.5	
51	11/10/2022 10:53	20.4	49.2	6.6	23.8	-10.9	-11.9	117.5		-12.2	Fully Open
52	11/3/2022 12:24	31.8	60.8	1.3	6.1	-14.8	-14.7	168.0		-16.7	
52	11/4/2022 09:34	26.8	61.1	0.7	11.4	-14.5	-14.5	164.3		-17.8	
52	11/17/2022 10:55	8.5	12.4	17.0	62.1	-17.5	-17.5	108.6	42.6	-17.5	Fully Open
53	11/3/2022 11:47	54.5	45.3	0.2	0.0	-12.2	-12.3	151.4	3.2	-15.7	
53	11/4/2022 09:29	52.2	44.3	3.5	0.0	-12.8	-12.8	134.6	3.1	-16.7	
53	11/10/2022 11:10	56.0	43.0	1.0	0.0	-13.8	-13.7	141.7	5.6	-16.5	Slightly Open
54	11/3/2022 12:12	36.4	63.6	0.0	0.0	-10.6	-10.8	137.5		-17.6	
55	11/3/2022 12:16	26.3	18.5	9.4	45.8	-16.2	-16.1	118.0		-16.1	
56	11/3/2022 10:55	53.4	46.2	0.3	0.1	-16.4	-16.4	143.7	12.6	-16.9	80% Open
57	11/3/2022 11:05	50.6	49.2	0.2	0.0	-17.2	-17.1	144.3		-17.3	
58	11/3/2022 11:11	36.4	45.5	1.1	17.0	-3.9	-3.9	128.0	6.7	-16.9	
59	11/3/2022 10:59	34.4	37.6	4.4	23.6	-1.7	-1.6	126.8	23.2	-18.4	
60	11/3/2022 12:49	48.8	33.2	0.6	17.4	-14.8	-14.4	136.4	27.2	-17.2	
61	11/3/2022 13:00	24.5	16.8	11.3	47.4	-0.7	-0.7	109.3	45.0	-0.6	
62	11/3/2022 14:19	18.9	15.7	9.8	55.6	-1.1	-1.0	130.4	33.2	-1.0	
63	11/3/2022 14:05	26.8	24.0	5.8	43.4	-0.5	-0.4	130.4	0.0	-0.4	

Bristol Virginia Landfill - Extraction Well Data - 11/01/2022 to 11/30/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	Temp (F)	Flow (scfm)	System Pressure ("H20)	Comments
64	11/3/2022 13:57	28.8	26.9	6.1	38.2	-0.3	-0.4	144.4	34.5	-13.5	
65	11/3/2022 13:41	5.2	9.1	12.3	73.4	-8.7	-1.9	138.7	27.0	-1.8	
66	11/3/2022 11:18	49.2	48.7	0.1	2.0	-2.5	-2.5	140.6	92.9	-16.7	
67	11/3/2022 12:00	37.4	62.6	0.0	0.0	-18.3	-17.6	154.1	57.0	-17.9	
67	11/4/2022 09:20	33.7	59.5	0.3	6.5	-18.6	-18.5	145.4	7.5	-18.5	
67	11/10/2022 10:55	38.1	61.9	0.0	0.0	-16.6	-16.6	169.3		-18.4	Slightly Open
67	11/17/2022 10:59	32.2	62.0	0.1	5.7	-19.0	-19.0	154.6		-20.0	
67	11/29/2022 11:14	36.3	63.7	0.0	0.0	-19.4	-19.4	153.7	41.3	-19.8	Fully Open
68	11/3/2022 12:44	58.1	36.5	2.6	2.8	-6.3	-6.4	131.1	7.0	-15.5	
HC01	11/3/2022 11:27	8.3	5.6	17.4	68.7	-16.9	-15.7	75.3	0.0		

Bristol Virginia Landfill - North and South Leachate Clean-outs Data - 11/01/2022 to 11/30/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Static Pressure ("H2O)	Temp (F)	Comments
LC01	11/3/2022 12:34	51.0	46.5	0.6	1.9	-14.3	88.2	
LC02	11/3/2022 12:36	38.9	38.9	4.7	17.5	-14.9	88.3	
LC03	11/3/2022 12:41	45.6	38.3	2.8	13.3	-15.8	80.6	
LC04	11/3/2022 12:44	38.7	33.1	5.1	23.1	-15.9	78.2	
LC05	11/3/2022 12:45	48.2	47.0	0.8	4.0	-20.8	85.6	
LC06	11/3/2022 12:47	40.0	32.6	5.4	22.0	-18.6	87.7	
LC08	11/3/2022 12:48	46.6	43.8	1.1	8.5	-16.8	88.4	
LC09	11/3/2022 12:50	49.0	43.2	1.6	6.2	-16.1	88.1	
LC10	11/3/2022 12:52	50.0	44.3	1.2	4.5	-15.8	87.6	
NC01	11/3/2022 12:59	0.5	0.3	21.3	77.9	-13.8	86.4	
NC02	11/3/2022 13:01	0.8	0.5	21.2	77.5	-14.0	90.2	
NC03	11/3/2022 13:04	2.3	1.4	20.5	75.8	-14.0	91.0	
NC03	11/3/2022 13:18	2.0	1.4	19.9	76.7	-14.2	92.3	
NC04	11/3/2022 13:09	0.1	0.0	21.1	78.8	-13.9	96.2	
NC05	11/3/2022 13:10	0.1	0.0	21.1	78.8	-13.9	94.5	
NC06	11/3/2022 13:11	0.1	0.0	21.1	78.8	-13.8	94.3	
NC07	11/3/2022 13:14	33.9	18.1	6.7	41.3	-14.2	95.7	
NC08	11/3/2022 13:15	45.0	24.9	1.7	28.4	-14.1	94.6	
NC09	11/3/2022 13:16	45.4	24.6	3.1	26.9	-14.1	93.0	
NC10	11/3/2022 13:05	1.4	0.7	20.8	77.1	-14.0	92.7	
NC10	11/3/2022 13:07	1.3	0.7	20.7	77.3	-14.0	96.1	

Attachment 2

Exceedance Detail Report

Report Date: 12/06/2022 Site Name: Bristol Virginia Landfill

						% by Vo	lume	Tempera	iture (°F)	Static P	ressure							
Point ID	Point Name	Record Date	Days Between Readings	Point Status	Effective Date	CH4	O2	Initial Temp	Adjusted Temp	Initial Static Pressure (H2O)	Adjusted Static Pressure (H2O)	Operation Comments	CO Req	Total Days Open	Corrective Action Comments	Corre	ctive Action Due	Dates
BRTLGW06				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	06	11/3/2022 11:56:53 AM	0			61.5	0	89.8	74.7	1.27	-1.8	7 Comments:,,,,,	N		good reading on 11/03/2022	11/7/2022	11/17/2022	3/2/2023
	06	11/3/2022 11:58:35 AM	0		_	54.5	2.1	66.3	64.8	-5.91	-6.3	Comments:,,,,,	N	1	1			
BRTLGW03				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	03	11/3/2022 10:56:11 AM	0			59.4	0.2	76.3	70.4	0.52	-0.29	9 Comments:,,,,,	N		good reading on 11/17/2022	11/7/2022	11/17/2022	3/2/2023
	03	11/10/2022 10:22:56 AM	7	ı		59.1	0	71.2	70.9	-0.06	0.00	see notes,,,,,,	N		good reading on 11/17/2022			
	03	11/17/2022 10:38:00 AM	7			31	9.6	49.6	48.7	-2.62	-2.58	Comments:,,,,,,	N	15	5			
BRTLGW37				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	37	3/30/2022 12:20:33 PM	0			13.8	6.4	150	150	-1.24	-1 7	5 heck,,,,,	N			4/3/2022	4/13/2022	7/27/2022
	37	4/6/2022 12:14:16 PM	7			14.2	7.3	149				5 Comments:No Change,,,,,,	N			4/5/2022	4/10/2022	1/21/2022
	37	4/13/2022 1:45:11 PM	7			16.5	7.3	159				Comments:,,,,,	N					
	37	4/13/2022 1:47:58 PM	0	ı		16.5	7	159				4 Comments:,,,,,	N					
	37	4/21/2022 7:24:55 AM	0			13.1	8.3	159				7 Comments:,,,,,	N					
	37		0									.						
	37	5/4/2022 12:21:07 PM	13 12			13	7.3 9.8	149				2 Open,No Change,,,,,	N					
		5/16/2022 10:51:43 AM				11.6		150				9 Comments:Adjustment,,,,,,	N					
	37	5/16/2022 2:09:00 PM	0			14.9	9.8	159		-2.48		3 Comments:,,,,,	N					
	37	5/24/2022 10:23:52 AM	8			17	7.8	150				3 Comments:,,,,,	N					
	37	5/24/2022 10:26:15 AM	0			17.3	7.9	150				4 Comments:,,,,,	N					
	37	6/1/2022 12:43:16 PM	8			22	6.2	150				9 Comments:,,,,,	N					
	37	6/8/2022 11:34:45 AM	7			6.5	14.8	155.8	155.9			3 Comments:,,,,,,	N					
	37	6/16/2022 1:35:06 PM	8	ł		21.6	6.7	153.9	153.8			4 Comments:,,,,,,	N					
	37	7/6/2022 12:59:43 PM	20			19.2	6.6	154.2	153.8			3 Comments:,,,,,	N					
	37	7/11/2022 1:31:12 PM	5			19.8	6.7	155.5	155.5		-2.19	9 Comments:,,,,,	N					
	37	7/11/2022 1:36:48 PM	0			19.6	6.5	155.7	155.8			Comments:,,,,,	N					
	37	8/3/2022 12:31:49 PM	23			20	7.3	155.5	155.5	-2.39	-2.38	3 Comments:,,,,,	N					
	37	8/3/2022 12:35:39 PM	0			20.2	7.3	155.4	155.4	-2.72		7 Comments:,,,,,	N					
	37	8/3/2022 2:29:58 PM	0			19.5	6.6	152.2	152.9	-3.03	-3.0	1 Comments:,,,,,,	N					
	37	8/24/2022 11:44:07 AM	21			19.2	7.6	152.7	152.8	-15.16	-15.14	4 Open,,,,,,	N					
	37	9/1/2022 11:37:46 AM	8			20.8	7.6	155	154.7	-3.14		4 Comments:,,,,,,	N					
	37	9/1/2022 12:28:35 PM	0			18.9	7.9	152.7	152.7	-15.15	-15.13	3 Comments:,,,,,	N					
	37	10/12/2022 10:08:08 AM	41			20.5	7.6	152	151.5	-2.69	-2.64	4 Comments:,,,,,,	N					
	37	10/12/2022 2:36:59 PM	0			28.3	7.1	151	151	-2.74	-2.7	5 Comments:,,,,,	N					
	37	10/19/2022 10:59:40 AM	7			20	7.4	149	149.1	-2.94	-2.8	5 Comments:,,,,,	N					
	37	11/10/2022 10:40:07 AM	22			18.2	7.1	147.6	147.7	-13.82	-13.78	3 Comments:Fully Open,,,,,,	N					
	37	11/17/2022 10:50:44 AM	7			18.4	7.3	147.2	147.3	-8.91	-8.90	Comments:Fully Open,,,,,,	N	246	6			
BRTLG31R				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	31R	11/3/2022 1:35:36 PM	0			19.5	3.4	164.6	164.6	-16.56	-17.66	6 Comments:,,,,,	N		good reading on 11/04/2022	11/7/2022	11/17/2022	3/2/2023
	31R	11/4/2022 9:09:24 AM	1		_	18.5	7.3	131	131.3	-0.70	-0.73	Comments:,,,,,	N	2	2			
BRTLGW51				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	51	11/3/2022 12:36:50 PM	0			50.5	2.5	164.4	164.4	-16.52	-15.88	3 Comments:,,,,,	N		good reading on 11/10/2022	11/7/2022	11/17/2022	3/2/2023
	51	11/4/2022 9:17:47 AM	1			43.1	2	160.2		-15.49		9 Comments:,,,,,	N		good reading on 11/10/2022]		
	51	11/10/2022 10:53:02 AM	6	i		20.4	6.6	117.5				Comments:Fully Open,,,,,,	N	8	-			
							2.7											
BRTLGW52				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day

Exceedance Detail Report Date Range: 11/01/2022 to 11/30/2022

Report Date: 12/06/2022 Site Name: Bristol Virginia Landfill

						% by Volume Temperature (°F) Static Pressure												
Point ID	Point Name	Record Date	Days Between Readings	Point Status	Effective Date	CH4	O2	Initial Temp	Adjusted Temp	Initial Static Pressure (H2O)	Adjusted Static Pressure (H2O)	Operation Comments	CO Req	Total Days Open	Corrective Action Comments	Corre	ctive Action Due	Dates
	52	11/3/2022 12:24:59 PM	0			31.8	1.3	168	168.1	-14.84	-14.68	Comments:,,,,,,	N		good reading on 11/17/2022	11/7/2022	11/17/2022	3/2/2023
	52	11/4/2022 9:34:18 AM	1			26.8	0.7	164.3	164.6	-14.45	-14.48	Comments:,,,,,	N		good reading on 11/17/2022			1
	52	11/17/2022 10:55:47 AM	13		_	8.5	17	108.6	108.9	-17.47	-17.45	Comments:Fully Open,,,,,,	N	15				
BRTLGW53				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
•	53	11/3/2022 11:47:18 AM	0			54.5	0.2	151.4	151.3	-12.18	-12.33	Comments:,,,,,	N		good reading on 11/04/2022	11/7/2022	11/17/2022	3/2/2023
	53	11/4/2022 9:29:13 AM	1			52.2	3.5	134.6	140.6	-12.77	-12.78	Comments:,,,,,,	N	2				1
BRTLGW67				Active				>= 145	>= 145	>= 0	>= 0				NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	67	11/3/2022 12:00:51 PM	0			37.4	0	154.1	151.4	-18.32	-17.60	Comments:,,,,,	N			11/7/2022	11/17/2022	3/2/2023
	67	11/4/2022 9:20:55 AM	1			33.7	0.3	145.4	147.8	-18.58	-18.53	Comments:,,,,,,	N					l
	67	11/10/2022 10:55:52 AM	6			38.1	0	169.3	169.3	-16.62	-16.60	Open,,,,,,	N					l
	67	11/17/2022 10:59:01 AM	7			32.2	0.1	154.6	155	-19.00	-18.98	Comments:,,,,,,	N					l
	67	11/29/2022 11:14:00 AM	12			36.3	C	153.7	154.6	-19.40	-19.42	Comments:Fully Open,,,,,,	N	28]		J
	Points with Exceedances Closed Exceedances		8					Parameter o	xceeds rul	e (Exceedand	ce)							
	Open Exceedances		2					Parameter i	n complian	ce (Exceedai	nce cleared)							

Attachment 3

Enhanced Monitoring Record Forms and Analytical Results

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS
- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS
- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)
- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

		GE	M Read	ling			If Temp >145	F		If Temp ≥165F	If Temp ≥170F	
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected	Pickup Scheduled?	Visible Emissions (e.g. smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	
52	2022-11-04 09:30:00	26.8	0.7	164.3	yes	yes	yes	no	no	no	no	Visible steam from ground
46	2022-11-04 09:20:00	47.0	1.1	149.7	yes	yes	yes	no	no	no	no	Visible steam from ground
67	2022-11-04 09:24:00	33.7	0.3	145.4	yes	yes	yes	no	no	no	no	Visible steam from ground
51	2022-11-04 09:36:00	43.1	2.0	160.2	yes	yes	no	no	no	no	no	N/A

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS
- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS
- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)
- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

		GE	M Read	ing			If Temp >145	F		If Temp ≥165F	If Temp ≥170F	
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected	Pickup Scheduled?	Visible Emissions (e.g. smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	
37	2022-11-10 11:11:00	18.2	7.1	147.6	yes	yes	no	no	no	no	no	Just for a description this well is coming out of the side of the hill. Almost horizontal
67	2022-11-10 11:15:00	38.1	0	169	yes	yes	no	no	no	no	no	This well just got foam sprayed around the base
46	2022-11-10 11:25:00	57.6	0.9	150.2	yes	yes	no	no	no	no	no	This well is almost laying over as well. And it's right next HC01 they are practically on top of each other

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS
- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS
- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)
- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

	l Rume. Brist		M Read	ina			If Temp >145	F		If Temp ≥165F	If Temp ≥170F	
Well ID	Date & Time		O2 (%)	Well Temp (°F)	Gas Sample Collected	Pickup Scheduled?	Visible Emissions (e.g. smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	
52	2022-11-10 11:30:00	N/A	N/A	N/A	no	no	no	no	no	no	no	Could not get read or sample due to liquid in sample
									_			

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS
- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS
- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)
- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

	i Name. Brist		M Read	lina			If Temp >145	E		If Temp ≥165F	If Temp ≥170F	
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected Y/N	Pickup Scheduled?	Visible Emissions (e.g. smoke)?	Smoldering Ash Observed? Y/N	Damage to Well?	Downhole Temp Monitoring Performed? Y/N	Contacted Engineers for Notification?	Comments
67	2022-11-17 10:47:00	32.2	0.1	154.6	yes	yes	yes	no	no	no	no	Collected Sample
52	2022-11-17 10:55:00	8.5	12.4	108.6	no	no	no	no	no	no	no	Well is under 145 degrees no sample needed.
37	2022-11-17 10:50:00	18.4	7.3	147.2	yes	yes	no	no	no	no	no	Collected sample

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS
- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS
- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)
- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

	I Name. Brist		M Read	ina			If Temp ≥170F					
Well ID	Date & Time		O2 (%)	Well Temp (°F)	Gas Sample Collected Y/N	Pickup Scheduled?	If Temp >145 Visible Emissions (e.g. smoke)? Y/N	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed? Y/N	Contacted Engineers for Notification?	Comments
	2022 11 20				1711	1710	1,11	1,11	1,11	1/14	1/10	
67	2022-11-29 11:13:00	36.3	0	153.7	yes	yes	no	no	no	no	no	Collected Sample.

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

Client Name: SCS Field Services - Harrisburg, PA Date Received:

November 8, 2022 10:20

4330 Lewis Road, Suite 1

Date Issued: November 15, 2022 16:30

Harrisburg, PA 17111

Project Number: [none]

Submitted To: Tom Lock

150/0/415

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 11/08/2022 10:20. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

Client Name: SCS Field Services - Harrisburg, PA

Date Received: November 8, 2022 10:20

4330 Lewis Road, Suite 1

Date Issued: November 15, 2022 16:30

Harrisburg, PA 17111

Project Number: [none]

Submitted To: Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
51	22K0376-01	Air	11/04/2022 09:17	11/08/2022 10:20
67	22K0376-02	Air	11/04/2022 09:22	11/08/2022 10:20
46	22K0376-03	Air	11/04/2022 09:26	11/08/2022 10:20
52	22K0376-04	Air	11/04/2022 09:34	11/08/2022 10:20

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

Date Received: Date Issued:

November 8, 2022 10:20

November 15, 2022 16:30

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 51

Sample ID: 22K0376-01 Sample Matrix: Air

Sampled: 11/4/2022 09:17

Sample Type: LV

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00184::11073

Canister Size: 1.4L

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 7.0 Receipt Vacuum(in Hg): 7.0

Flow Controller Type: Passive

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

		ppmv	·	ALT-145			-
Analyte	Result	MDL	LOQ	Flag/Qual	Dilutio	on PF	Date/Time Analyzed Analyst
Carbon Monoxide, as received	539	90.0	90.0		9	1	11/10/22 11:33 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

Client Name: SCS Field Services - Harrisburg, PA

Date Received: 4330 Lewis Road, Suite 1

Date Issued:

November 8, 2022 10:20

November 15, 2022 16:30

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 67

Sample ID: 22K0376-02 Sample Matrix: Air

Sampled: 11/4/2022 09:22

Sample Type: LV

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00318::12384

Canister Size: 1.4L

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 5.4 Receipt Vacuum(in Hg): 5.4

Flow Controller Type: Passive

Flow Controller ID:

	Vola	atile Organ	ic Compour	nds by GC/TCD - Unadjusted, as receive	d basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	780	90.0	90.0		9	1	11/10/22 12:28	DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

November 8, 2022 10:20

November 15, 2022 16:30

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 46

Sample ID: 22K0376-03 Sample Matrix: Air

Sampled: 11/4/2022 09:26

Sample Type: LV

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00018::12410

Canister Size: 1.4L

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 5.4 Receipt Vacuum(in Hg): 5.4

Flow Controller Type: Passive

Flow Controller ID:

	Vola	atile Organ	ic Compour	nds by GC/TCD - Unadjusted, as	received basis			
		vmqq		ALT-145				
							Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	ND	90.0	90.0		9	1	11/10/22 13:22	DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

Date Received: Date Issued:

November 8, 2022 10:20

November 15, 2022 16:30

Harrisburg, PA 17111

Submitted To: Tom Lock **Project Number:**

[none]

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 52

Sample Type: LV

Sample ID: 22K0376-04 Sample Matrix: Air

Sampled: 11/4/2022 09:34

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00022::12413

Canister Size: 1.4L

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 5.2 Receipt Vacuum(in Hg): 5.2

Flow Controller Type: Passive

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145 ppmv Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 438 9 Carbon Monoxide, as received 90.0 90.0 1 11/10/22 14:15 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Date Issued:

November 8, 2022 10:20

4330 Lewis Road, Suite 1

November 15, 2022 16:30

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order: 07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GC/TCD - Unadjuste	ed, as received basis	Preparation Method:	No Prep VOC GC Air	
22K0376-01	1.00 mL / 1.00 mL	ALT-145	BFK0429	SFK0410	AG00026
22K0376-02	1.00 mL / 1.00 mL	ALT-145	BFK0429	SFK0410	AG00026
22K0376-03	1.00 mL / 1.00 mL	ALT-145	BFK0429	SFK0410	AG00026
22K0376-04	1.00 mL / 1.00 mL	ALT-145	BFK0429	SFK0410	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

Client Name: SCS Field Services - Harrisburg, PA Date Received:

November 8, 2022 10:20

4330 Lewis Road, Suite 1

Date Issued:

November 15, 2022 16:30

Harrisburg, PA 17111

Submitted To:

Tom Lock

Project Number:

[none]

Client Site I.D.: **Bristol**

Carbon Monoxide

07-SO04485 Purchase Order:

NA

25

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control **Enthalpy Analytical**

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFK0429 - No Prep VC	C GC Air									
Blank (BFK0429-BLK1)					Prep	pared &	Analyzed	I: 11/10/20	22	
Carbon Monoxide	<	10.0	ppmv							
LCS (BFK0429-BS1)					Prep	pared &	Analyzed	I: 11/10/20	22	
Methane	4180	500	ppmv	5000		83.6	0-200			
Carbon dioxide	4200	500	ppmv	5000		83.9	0-200			
Oxygen (O2)	5150	500	ppmv	5000		103	0-200			
Nitrogen (N2)	5530	2000	ppmv	5000		111	0-200			
Hydrogen (H2)	5780	200	ppmv	5100		113	0-200			
Carbon Monoxide	4890	10	ppmv	5000		97.7	0-200			
Duplicate (BFK0429-DUP1)		So	urce: 22K	0368-01	Prep	pared &	Analyzed	I: 11/10/20	22	
Methane	146000	4500	ppmv		1460	00		0.00197	25	
Carbon dioxide	107000	4500	ppmv		1060	00		0.960	25	
Oxygen (O2)	139000	4500	ppmv		1390	00		0.108	25	
Hydrogen (H2)	3420	1800	ppmv		325)		5.15	25	
Nitrogen (N2)	501000	18000	ppmv		5010	00		0.0638	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Duplicate (BFK0429-DUP2)		So	urce: 22K	0457-02	Prep	pared &	Analyzed	I: 11/10/20	22	
Methane	374000	4500	ppmv		3770	00		0.948	25	
Carbon dioxide	299000	4500	ppmv		3020	00		1.07	25	
Oxygen (O2)	44200	4500	ppmv		4470	0		1.09	25	
Nitrogen (N2)	194000	18000	ppmv		1960	00		1.07	25	
Hydrogen (H2)	21000	1800	ppmv		2110	0		0.375	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Duplicate (BFK0429-DUP3)		So	urce: 22K	0318-01	Prep	pared &	Analyzed	I: 11/10/20	22	
Methane	334000	4500	ppmv	·	3340	00		0.0518	25	
Carbon dioxide	336000	4500	ppmv		3360	00		0.0183	25	
Oxygen (O2)	31500	4500	ppmv		3150	0		0.0566	25	
Nitrogen (N2)	234000	18000	ppmv		2340	00		0.152	25	
Hydrogen (H2)	<	1800	ppmv		<180	0		NA	25	

<90.0

90.0

ppmv

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

November 8, 2022 10:20

November 15, 2022 16:30

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: Bristol Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFK0429 - No Prep VO	C GC Air									
Duplicate (BFK0429-DUP4)		Soi	urce: 22K	0376-01	Prep	ared & A	Analyzed:	11/10/20	22	
Methane	323000	4500	ppmv		32300	00		0.0737	25	
Carbon dioxide	421000	4500	ppmv		42100	00		0.00644	25	
Oxygen (O2)	24800	4500	ppmv		2480	0		0.157	25	
Hydrogen (H2)	85700	1800	ppmv		8500	0		0.826	25	
Nitrogen (N2)	88600	18000	ppmv		8860	0		0.0203	25	
Carbon Monoxide	539	90.0	ppmv		539			0.0668	25	
Duplicate (BFK0429-DUP5)		Soi	urce: 22K	0376-02	Prep	ared & A	Analyzed:	11/10/20	22	
Methane	200000	4500	ppmv		20000	00		0.118	25	
Carbon dioxide	585000	4500	ppmv		58400	00		0.190	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Hydrogen (H2)	180000	1800	ppmv		17900	00		0.678	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Carbon Monoxide	787	90.0	ppmv		780			0.873	25	
Duplicate (BFK0429-DUP6)		Soi	urce: 22K	0376-03	Prep	ared & A	Analyzed:	11/10/20	22	
Methane	385000	4500	ppmv		38500	00		0.151	25	
Carbon dioxide	385000	4500	ppmv		38500	00		0.0942	25	
Oxygen (O2)	9910	4500	ppmv		9970)		0.675	25	
Hydrogen (H2)	22700	1800	ppmv		2280	0		0.232	25	
Nitrogen (N2)	135000	18000	ppmv		13600	00		0.115	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Duplicate (BFK0429-DUP7)		Soi	urce: 22K	0376-04	Prep	ared & A	Analyzed:	11/10/20	22	
	142000	4500	ppmv		14300	00		0.214	25	
Carbon dioxide	575000	4500	ppmv		57400	00		0.226	25	
Oxygen (O2)	10800	4500	ppmv		1080	0		0.105	25	
Nitrogen (N2)	40300	18000	ppmv		4030	0		0.0737	25	
Hydrogen (H2)	223000	1800	ppmv		22300	00		0.0272	25	
Carbon Monoxide	447	90.0	ppmv		438			1.99	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

November 8, 2022 10:20

4330 Lewis Road, Suite 1

Date Issued:

November 15, 2022 16:30

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source	Ç	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BFK0429 - No Prep VOC GC Air

Duplicate (BFK0429-DUP8)		Sou	urce: 22K0452-01	Prepared & Ar	nalyzed: 11/10/202	22
Methane	325000	4500	ppmv	324000	0.381	25
Carbon dioxide	308000	4500	ppmv	306000	0.774	25
Oxygen (O2)	32300	4500	ppmv	32200	0.339	25
Hydrogen (H2)	<	1800	ppmv	<1800	NA	25
Nitrogen (N2)	277000	18000	ppmv	276000	0.405	25
Carbon Monoxide	<	90.0	ppmv	<90.0	NA	25

Certified Analytes included in this Report

Analyte Certifications Analyte Certifications

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2022
NC	North Carolina DENR	495	07/31/2023
NCDEQ	North Carolina DEQ	495	07/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2022

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

November 8, 2022 10:20

4330 Lewis Road, Suite 1

Date Issued:

November 15, 2022 16:30

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10%

of the absolute.

formerly Air, Water & Soil Laboratories

AIR ANALYSIS CHAIN OF CUSTODY

Equipment due 11/30/22

								CHAIN	OF C03	ועטו	E(<u> </u>	ent due	11/30/2					
CC	MPANY NAME:	SCS Field	d Servi	ces - Harri	sbu	rg IN\	OICE TO	Same				PROJ	ECT NAM	E/Quote #	: Bristo				
CC	NTACT: Mike	Byk				IN	OICE CO	NTACT:				SITE I	NAME:						
AD	DRESS:			-		IN	OICE AD	DRESS:				PROJ	ECT NUM	BER:					
PH	ONE #:					INV	OICE PH	ONE #:				P.O. #	:						
FA	X #:			EN	iAIL	:						Pretre	atment Pr	ogram:					
ls s	sample for comp	liance rep	orting?	YES NO		Regulate	ory State:	VH Is:	sample fro	m a chloriı	nated supp	oly?	YES _	DV PV	VS I.D. #:				
	MPLER NAME						MPLER S		E: Ryan	/ Duy	may	Turn /	Around T			5 Days	>	or _	_ Day
Mat	rix Codes: AA≃Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	lfill/	ent Gas OT	=Other						063	3-22J-0032	2		•		
		Regulator	Info	Canister In	forn	nation	r		Sampling 9	Start Inform	ation	-	· · · · · · · · · · · · · · · · · · ·	Stop Inform			ggs)	ANA	LYSI
	CLIENT				İ		LAB	LAB	Barometric	Pres. (in Ho			Barometric	Pres. (in H			ပ္ပိ	ဂ္ဂ	
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in Hg)	Starting Sample Temp *F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp *F	Matrix (See Codes)	Alt 145 C	
1)	51			11073	1.4	221018-04	30	30 (7.0)	11/22	9:10AM	30	160	11/4/22	9:17 AA	4	160	LG		
2)	67			12384	1.4	221013-02	30	305	11/4/22	7:20gg	30	145	"/4/22	9:22 AM	5	145	LG	x	
3)	46			12410	1.4	221014-01	30	30(5.4)	11/4/22	9:24 Am	30	149	1/4/22	926 Am	5	149	LG	x	
4)	52			12413	1.4	221018-04	30	5.2	1/4/22	9:30Am	%	164	11/4/22	9:34 AM	9	164	LG	x	
_												310		3'L, Y	70 la	no	ક્ષ	انق	
REI	LINQUISHED:	Luma	4		REC	EIVED:	cdex		E / TIME	QC Data P	1	AB USE	ONLY			•			
	INQUISHED:	Z gyllsb		re / Time	REC	EIVED:	caer	DAT	E / TIME	Level I									
Page	Fel	tox. F	- -)			nm	11/8/2			Level II				ervices	22K0	376			
9 12	INQUISHED:	······	DA	FE / TIME		EIVED:			E / TIME	Level III		Bristo	ol						
12 of 10					<u> </u>					Level IV		Recd:	11/08/20	022 Due	e: 11/15/2	022 -			

Certificate of Analysis

Final Report

Laboratory Order ID 22K0376

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

November 8, 2022 10:20

4330 Lewis Road, Suite 1

Date Issued:

November 15, 2022 16:30

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

Client Name: SCS Field Services - Harrisburg, PA Date Received:

4330 Lewis Road, Suite 1 Date Issued: November 18, 2022 13:53

November 14, 2022 10:00

Harrisburg, PA 17111 Project Number: [none]

Submitted To: Tom Lock Purchase Order: 07-S004485

Client Site I.D.: Bristol

100001415

Enclosed are the results of analyses for samples received by the laboratory on 11/14/2022 10:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

Client Name: SCS Field Services - Harrisburg, PA

Date Received: November 14, 2022 10:00

4330 Lewis Road, Suite 1

Date Issued: November 18, 2022 13:53

Harrisburg, PA 17111

Project Number: [none]

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	22K0707-01	Air	11/10/2022 11:32	11/14/2022 10:00
67	22K0707-02	Air	11/10/2022 11:12	11/14/2022 10:00
46	22K0707-03	Air	11/10/2022 11:17	11/14/2022 10:00

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

SCS Field Services - Harrisburg, PA Client Name:

4330 Lewis Road, Suite 1

Date Received: Date Issued:

November 14, 2022 10:00

November 18, 2022 13:53

Harrisburg, PA 17111

Submitted To: Tom Lock **Project Number:**

[none]

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 37

Sample ID: 22K0707-01 Sample Matrix: Air

Sampled: 11/10/2022 11:32

Sample Type: LG

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00069::00130

Canister Size: 1.4

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 6.8 Receipt Vacuum(in Hg): 6.8

Flow Controller Type: Passive

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis ALT-145

ppmv Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst ND 9 Carbon Monoxide, as received 90.0 90.0 1 11/17/22 14:14 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

SCS Field Services - Harrisburg, PA Client Name:

Harrisburg, PA 17111

Date Received: Date Issued:

November 14, 2022 10:00 November 18, 2022 13:53

4330 Lewis Road, Suite 1

Submitted To: Tom Lock **Project Number:** [none]

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location: Field Sample #: 67 Sub Description/Location:

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 6.8

Sample ID: 22K0707-02

Canister ID: 063-00105::262

Receipt Vacuum(in Hg): 6.8 Flow Controller Type: Passive

Sample Matrix: Air

Canister Size: 1.4

Flow Controller ID:

Sampled: 11/10/2022 11:12

Sample Type: LG

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145 ppmv Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 1020 9 Carbon Monoxide, as received 90.0 90.0 1 11/17/22 15:07 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

SCS Field Services - Harrisburg, PA Client Name:

Date Received: 4330 Lewis Road, Suite 1

Date Issued:

November 14, 2022 10:00

November 18, 2022 13:53

Harrisburg, PA 17111

Submitted To: Tom Lock **Project Number:**

[none]

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 46

Sample ID: 22K0707-03 Sample Matrix: Air

Sampled: 11/10/2022 11:17

Sample Type: LG

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00146::9203

Canister Size: 1.4

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 6.4

Receipt Vacuum(in Hg): 6.4

Flow Controller Type: Passive

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis ALT-145 ppmv Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 90.4 9 Carbon Monoxide, as received 90.0 90.0 1 11/17/22 16:00 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

SCS Field Services - Harrisburg, PA Client Name:

Date Received: Date Issued:

November 14, 2022 10:00

4330 Lewis Road, Suite 1

November 18, 2022 13:53

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GC/TCD - Unadjust	ed, as received basis	Preparation Method:	No Prep VOC GC Air	
22K0707-01	1.00 mL / 1.00 mL	ALT-145	BFK0717	SFK0664	AG00026
22K0707-02	1.00 mL / 1.00 mL	ALT-145	BFK0717	SFK0664	AG00026
22K0707-03	1.00 mL / 1.00 mL	ALT-145	BFK0717	SFK0664	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

Client Name: SCS Field Services - Harrisburg, PA Date Received:

November 14, 2022 10:00

4330 Lewis Road, Suite 1

Date Issued:

November 18, 2022 13:53

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol**

07-SO04485 Purchase Order:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control **Enthalpy Analytical**

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFK0717 - No Prep VO	C GC Air									
Blank (BFK0717-BLK1)	3 GO All				Pren	ared &	Analyzed	: 11/17/20	122	
Carbon Monoxide	<	10.0	ppmv		1166	area a	AllalyZeu	. 11/11/20)	
LCS (BFK0717-BS1)					Pren	ared &	Analyzed	: 11/17/20	122	
Methane	4270	500	ppmv	5000	1 100	85.4	0-200	. 11/11/20	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	
Carbon dioxide	4210	500	ppmv	5000		84.3	0-200			
Oxygen (O2)	5140	500	ppmv	5000		103	0-200			
Nitrogen (N2)	5510	2000	ppmv	5000		110	0-200			
Hydrogen (H2)	5950	200	ppmv	5100		117	0-200			
Carbon Monoxide	4940	10	ppmv	5000		98.7	0-200			
Salbon Monoxide	4940	10	ppiliv	3000		90.1	0-200			
Duplicate (BFK0717-DUP1)		Soi	urce: 22K	0628-01	Prep	ared &	Analyzed	: 11/17/20)22	
Methane	244000	4500	ppmv		24500	00		0.256	25	
Carbon dioxide	516000	4500	ppmv		51400	00		0.522	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Hydrogen (H2)	154000	1800	ppmv		15500	00		0.269	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Carbon Monoxide	808	90.0	ppmv		807			0.167	25	
Duplicate (BFK0717-DUP2)		Soi	urce: 22K	0628-02	Prep	ared &	Analyzed	: 11/17/20)22	
Methane	66700	4500	ppmv		6710	0		0.615	25	
Carbon dioxide	613000	4500	ppmv		61100	0		0.365	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	254000	1800	ppmv		25500	00		0.440	25	
Carbon Monoxide	994	90.0	ppmv		995			0.0633	25	
Duplicate (BFK0717-DUP3)		So	urce: 22K	0628-03	Prep	ared &	Analyzed	: 11/17/20)22	
Methane	68300	4500	ppmv		6900	0		1.01	25	
Carbon dioxide	630000	4500	ppmv		63200	00		0.365	25	
Oxygen (O2)	4550	4500	ppmv		4610)		1.32	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	212000	1800	ppmv		21200	00		0.244	25	
Carbon Monoxide	1630	90.0	ppmv		1640)		0.761	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

November 14, 2022 10:00

4330 Lewis Road, Suite 1

Date Issued:

November 18, 2022 13:53

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Qual
_

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

November 14, 2022 10:00

4330 Lewis Road, Suite 1

Date Issued:

November 18, 2022 13:53

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting			Spike	Source	%REC			RPD				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual			

Batch BFK0717 - No Prep VOC GC Air

Duplicate (BFK0717-DUP8)			urce: 22K0707-03	Prepared & Ar	Prepared & Analyzed: 11/17/2022					
Methane	359000	4500	ppmv	363000	1.02	25				
Carbon dioxide	363000	4500	ppmv	368000	1.26	25				
Oxygen (O2)	13400	4500	ppmv	13700	1.71	25				
Hydrogen (H2)	23000	1800	ppmv	23600	2.81	25				
Nitrogen (N2)	148000	18000	ppmv	150000	1.40	25				
Carbon Monoxide	<	90.0	ppmv	90.4	NA	25				

Certified Analytes included in this Report

Analyte Certifications Analyte Certifications

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2022
NC	North Carolina DENR	495	07/31/2023
NCDEQ	North Carolina DEQ	495	07/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2022

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

November 14, 2022 10:00

4330 Lewis Road, Suite 1

Date Issued:

November 18, 2022 13:53

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order: 0

07-SO04485

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

AIR ANALYSIS
CHAIN OF CUSTODY

Equipment due 12/9/2022

												J~.b	ionic auc						
O	MPANY NAME:	SCS Fiel	d Servi	ces - Harri	isbu	ırg IN	VOICE TO	: Same				PROJ	ECT NAM	/IE/Quote #	#: Bristo	ol			
100	NTACT: Mike	Byk				IN	VOICE CC	NTACT:			SITE NAME: Bristol								
DD.	PRESS:					IN	VOICE AD	DRESS:		PROJECT NUMBER: 07220028.00									
HC	ONE #:					IN	VOICE PH	ONE #:				P.O. #							
AX	. #:			EN	/AIL	:		, , , , , ,				Pretre	atment Pi	rogram:	-				
sa	ample for comp	liance rep	orting?	YES NO)	Regulate	ory State:	VA Is:	sample fro	m a chlori	nated sup	oly?	YES 4	PV PV	VS I.D. #:				
ΑN	IPLER NAME	(PRINT):	Ryan	Seym	ov	SA SA	MPLER S	IGNATUR	E: Ryan	Dey	moin	Turn	Around T	ime: Circ	cle: 10 (5 Days)	or _	
trix	Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill∧	ent Gas OT	=Other <u>と</u> ソ	<u>, </u>	V				063	3-22K-000	2				
		Regulator	Info	Canister In	nforn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		38)	ANA	ALY
	CLIENT						LAB	LAB	Barometric	Pres. (in Ho	g):		Barometri	c Pres. (in H	g):		Codes)	\overline{a}	
	SAMPLE I.D.	Flow Controller	Cal Flow		Size (L)	Cleaning	Outgoing Canister Vacuum (in	Receiving Canister Vacuum (in		Start Time	Initial Canister Vacuum (in			Stop Time	Final Canister Vacuum (in	Ending Sample	Matrix (See	Alt 145 CO	
Т		ID	(mL/min)	Canister ID	ίζ	Batch ID	Hg)	Hg)	Start Date	(24hr clock)	Hg)	Temp *F	Stop Date	(24hr clock)	Hg)	Temp *F	Ž	₹	\dashv
	37			130	1.4	221018-04	30	45	11/10/22	41:30	30	147	10/22	11:32	4	147	LG	x	
)	67			262	1.4	221018-04	30	45		N:10	30	169.3	1/10/22	1/:/2	4	169.3	LG	x	
)	46			9203	1.4	221018-04	30	4 4	11/19/22	11:15	30	150	11/6/12	(1:17	4	150	LG	x	
				10093	1.4	221026-01	30										LG	x	
		-										0.2		nole	al no	بعوده	<u> </u>		土
	QUISHED:	ner_	/	11/2.72	REC	EIVED: Le Ol X	. 1	DAT	E / TIME	QC Data P	ackage LA □	B USE	ONLY						
Ayou Date / Time Received ROUISHED: DATE / TIME RECEIVED ROUISHED: DATE / TIME RECEIVED							114/22		E / TIME	SCS Field Services 22K									
. 1	QUISHED:		DAT	E / TIME	_ `	EIVED:	111166		E / TIME	Level III	Bristol Recd: 11/14/2022 Due: 11/2								
11 of 1		_			l					Level IV				≥ Recd	I: 11/14/2	U22	Duc	: 1]	L/ZJ

formerly Air, Water & Soil Laboratories

AIR ANALYSIS CHAIN OF CUSTODY

Equipment due 12/9/2022

								-		J.JJ .	_	4a.b	ionit auc	, , _, _, _,	,					
C	OMPANY NAME	: SCS Fiel	d Servi	ices - Harr	isbu	ırg IN	VOICE TO	: San	ne			PROJ	ECT NAM	IE/Quote	#: Bristo	ol				_
C	ONTACT: Mike	Byk				IN	VOICE CC	NTACT	•		SITE NAME:									
ΑŒ	DDRESS:					IN	VOICE AD	DRESS	:		PROJECT NUMBER:									
Pł	HONE #:					IN	VOICE PH	ONE #:				P.O. #	# :							_
FA	X #:			EN	ΛAII	L:						Pretre	eatment Pr	rogram:		•			-	_
ls	sample for comp	oliance rep	orting?	YES NO)	Regulat	ory State:	-	ls sample fi	om a chlori	nated sup				VS I.D. #:					_
SÆ	MPLER NAME	(PRINT):				SA	MPLER S	IGNATU	JRE:			Turn	Around T	ime: Cir	cle: 10	5 Days	•	or		—)ay
Mat	trix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV≃Lan	dfill/\	Vent Gas OT	=Other		-			<u> </u>	063	3-22K-000	2					_
		Regulator	Info	Canister Ir	nforr	nation			Sampling	Start Inform	ation		Sampling	Stop Inform	nation		જ	AN.	ALY	SI:
ĺ	CLIENT						LAB	LAB	Barometr	ic Pres. (in H	3):			c Pres. (in H			င္တိမ			٦
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mt/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receivir Caniste Vacuum Hg)	er	Start Time (24hr clock)	Initial Canister Vacuum (ir Hg)	Starting Sample Temp *F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Endina	atrix (se	ပြပ		
1)				10224	1.4	221026-03	30										LG			
2)				12408	1.4	221026-03	30										LG	x		
3)																				
4)											-									
REL	INQUISHED:				REC	EIVED:		D	ATE / TIME	QC Data P	.	AB USE	ONLY							
R IQUISHED: DATE / TIME RECEIVED						Level II						SCS Field Services 22K076 Bristol Recd: 11/14/2022 Due: 11/21/202								
RO QUISHED: DATE / TIME RECEIVED:																				EIVED:

Certificate of Analysis

Final Report

Laboratory Order ID 22K0707

SCS Field Services - Harrisburg, PA Client Name:

Date Received: Date Issued:

November 14, 2022 10:00

4330 Lewis Road, Suite 1

November 18, 2022 13:53

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

[none]

Bristol

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	20.20°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received: November 18, 2022 11:20

4330 Lewis Road, Suite 1

Date Issued: November 29, 2022 16:03

Harrisburg, PA 17111

Project Number: 7220028.00

Submitted To: Mlke Byk

100001415

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 11/18/2022 11:20. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received: November 18, 2022 11:20

4330 Lewis Road, Suite 1

Date Issued: November 29, 2022 16:03

Harrisburg, PA 17111

Project Number: 7220028.00

Mlke Byk

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	22K1038-01	Air	11/17/2022 10:55	11/18/2022 11:20
67	22K1038-02	Air	11/17/2022 11:02	11/18/2022 11:20

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

November 18, 2022 11:20

November 29, 2022 16:03

Harrisburg, PA 17111

Submitted To: MIke Byk Project Number:

7220028.00

Bristol

07-SO04485 Purchase Order:

ANALYTICAL RESULTS

Project Location:

Field Sample #: 37

Sample ID: 22K1038-01 Sample Matrix: Air

Sampled: 11/17/2022 10:55

Client Site I.D.:

Sample Type: LV

Sample Description/Location:

Sub Description/Location: Canister ID: 063-00185::00278

Canister Size: 1.4L

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 5.0

Receipt Vacuum(in Hg): 5.0

Flow Controller Type: Passive

Flow Controller ID:

	Vol	atile Organ	ic Compour	nds by GC/TCD - Unadjusted	as received basis			
		ppmv		ALT-145			Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monovide, as received	103	90.0	90.0		0	1	11/20/22 10:07	DEH

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

SCS Field Services - Harrisburg, PA Client Name:

Date Received: 4330 Lewis Road, Suite 1

Date Issued:

November 18, 2022 11:20

November 29, 2022 16:03

Harrisburg, PA 17111

Submitted To: MIke Byk Project Number:

7220028.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Sample Description/Location:

Sub Description/Location:

Canister ID: 063-00207::00300

Canister Size: 1.4L

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 6.2

Receipt Vacuum(in Hg): 6.2

Flow Controller Type: Passive

Flow Controller ID:

Sample ID: 22K1038-02 Sample Matrix: Air

Field Sample #: 67

Sampled: 11/17/2022 11:02

Sample Type: LV

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145

ppmv Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 825 9 Carbon Monoxide, as received 90.0 90.0 1 11/29/22 11:00 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

November 18, 2022 11:20

4330 Lewis Road, Suite 1

Date Issued:

November 29, 2022 16:03

Harrisburg, PA 17111

Submitted To: Mlke Byk

Project Number:

7220028.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	ounds by GC/TCD - Unadjusted, as r	eceived basis	Preparation Method:	No Prep VOC GC Air	
22K1038-01	1.00 mL / 1.00 mL	ALT-145	BFK1004	SFK0990	AG00026
22K1038-02	1.00 mL / 1.00 mL	ALT-145	BFK1004	SFK0990	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

Client Name: SCS Field Services - Harrisburg, PA Date Received:

November 18, 2022 11:20

4330 Lewis Road, Suite 1

Date Issued:

November 29, 2022 16:03

Harrisburg, PA 17111

Submitted To: Mlke Byk Project Number:

7220028.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical Snike

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFK1004 - No Prep VC	C GC Air									
Blank (BFK1004-BLK1)					Prep	ared &	Analyzed	l: 11/28/20	22	
Carbon Monoxide	<	10.0	ppmv							
LCS (BFK1004-BS1)					Prep	ared &	Analyzed	l: 11/28/20	22	
Methane	4240	500	ppmv	5000		84.7	0-200			
Carbon dioxide	4030	500	ppmv	5000		80.5	0-200			
Oxygen (O2)	5080	500	ppmv	5000		102	0-200			
Nitrogen (N2)	5470	2000	ppmv	5000		109	0-200			
Hydrogen (H2)	5990	200	ppmv	5100		117	0-200			
Carbon Monoxide	4890	10	ppmv	5000		97.8	0-200			
Duplicate (BFK1004-DUP1)		So	urce: 22K	0962-01	Prep	ared &	Analyzed	I: 11/28/20	22	
Methane	132000	4500	ppmv		13300	00		0.551	25	
Carbon dioxide	361000	4500	ppmv		36000	00		0.212	25	
Oxygen (O2)	37300	4500	ppmv		3740	0		0.408	25	
Nitrogen (N2)	132000	18000	ppmv		13200	00		0.000450	25	
Hydrogen (H2)	333000	1800	ppmv		33400	00		0.0112	25	
Carbon Monoxide	463	90.0	ppmv		464			0.117	25	
Duplicate (BFK1004-DUP2)		So	urce: 22K	0962-02	Prep	Prepared & Analyzed: 11/28/2022				
Methane	305000	4500	ppmv		30300	00		0.413	25	
Carbon dioxide	307000	4500	ppmv		30400	00		0.925	25	
Oxygen (O2)	34200	4500	ppmv		3400	0		0.542	25	
Hydrogen (H2)	83000	1800	ppmv		8260	0		0.407	25	
Nitrogen (N2)	233000	18000	ppmv		23200	00		0.423	25	
Carbon Monoxide	98.4	90.0	ppmv		98.9)		0.547	25	
Duplicate (BFK1004-DUP3)	Source: 22K09			0962-03	Prep	ared &	Analyzed	I: 11/28/20	22	
Methane	271000	4500	ppmv		27300	00		1.09	25	
Carbon dioxide	211000	4500	ppmv		21200	00		0.372	25	
Oxygen (O2)	82700	4500	ppmv		8360	0		1.02	25	
Nitrogen (N2)	345000	18000	ppmv		34900	00		1.04	25	
Hydrogen (H2)	9670	1800	ppmv		9950)		2.88	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

SCS Field Services - Harrisburg, PA Client Name:

Date Received:

November 18, 2022 11:20

4330 Lewis Road, Suite 1

Date Issued:

November 29, 2022 16:03

Harrisburg, PA 17111

Submitted To: Mlke Byk Project Number:

7220028.00

Client Site I.D.: Bristol Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFK1004 - No Prep VO	C GC Air									
Duplicate (BFK1004-DUP4)		Sou	urce: 22K	0962-04	Prep	ared & /	Analyzed	: 11/28/20)22	
Methane	455000	4500	ppmv		45600	00		0.312	25	
Carbon dioxide	375000	4500	ppmv		37500	00		0.175	25	
Oxygen (O2)	16100	4500	ppmv		1610	0		0.555	25	
Hydrogen (H2)	7530	1800	ppmv		7460)		1.02	25	
Nitrogen (N2)	61800	18000	ppmv		6180	0		0.0100	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	
Duplicate (BFK1004-DUP5)		Sou	urce: 22K	0962-05	Prep	ared & /	Analyzed	: 11/28/20)22	
Methane	342000	4500	ppmv		34500	00		0.724	25	
Carbon dioxide	397000	4500	ppmv		39700	00		0.0481	25	
Oxygen (O2)	5200	4500	ppmv		5280)		1.63	25	
Nitrogen (N2)	19800	18000	ppmv		2010	0		1.75	25	
Hydrogen (H2)	191000	1800	ppmv		19100	00		0.251	25	
Carbon Monoxide	158	90.0	ppmv		162			2.14	25	
Duplicate (BFK1004-DUP6)		Sou	urce: 22K	0962-06	Prep	ared & /	Analyzed	: 11/28/20)22	
Methane	305000	4500	ppmv		30700	00		0.640	25	
Carbon dioxide	328000	4500	ppmv		33000	00		0.661	25	
Oxygen (O2)	20500	4500	ppmv		2070	0		1.02	25	
Hydrogen (H2)	132000	1800	ppmv		13100	00		0.0206	25	
Nitrogen (N2)	153000	18000	ppmv		15400	00		0.869	25	
Carbon Monoxide	161	90.0	ppmv		162			0.612	25	
Duplicate (BFK1004-DUP7)		Prep	ared & /	Analyzed	: 11/28/20)22				
Methane	364000	4500	ppmv		36400	00		0.0571	25	
Carbon dioxide	207000	4500	ppmv		20700	00		0.252	25	
Oxygen (O2)	5440	4500	ppmv		5610)		3.13	25	
Hydrogen (H2)	90300	1800	ppmv		9010	0		0.204	25	
Nitrogen (N2)	263000	18000	ppmv		26400	00		0.279	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

November 18, 2022 11:20

4330 Lewis Road, Suite 1

Date Issued: No

November 29, 2022 16:03

Harrisburg, PA 17111

Submitted To: Mlke Byk

Project Number:

7220028.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFK1004 - No Prep VOC	C GC Air									
Duplicate (BFK1004-DUP8)		Sou	ırce: 22K	0962-09	Prep	ared & /	Analyzed	: 11/28/20)22	
Methane	394000	4500	ppmv		39400	00		0.0102	25	
Carbon dioxide	378000	4500	ppmv		37700	00		0.222	25	
Oxygen (O2)	4810	4500	ppmv		4830)		0.521	25	
Hydrogen (H2)	111000	1800	ppmv		11100	0		0.295	25	
Nitrogen (N2)	58700	18000	ppmv		5860	0		0.169	25	
Carbon Monoxide	227	90.0	ppmv		224			1.16	25	
Duplicate (BFK1004-DUP9)		Sou	ırce: 22K	0962-10	Prep	ared & /	Analyzed	: 11/28/20)22	
Methane	380000	4500	ppmv		38100	00		0.276	25	
Carbon dioxide	350000	4500	ppmv		34700	00		0.821	25	
Oxygen (O2)	8840	4500	ppmv		8890)		0.496	25	
Nitrogen (N2)	140000	18000	ppmv		14100	00		0.392	25	
Hydrogen (H2)	57200	1800	ppmv		5750	0		0.570	25	
Carbon Monoxide	93.6	90.0	ppmv		95.9			2.47	25	
Duplicate (BFK1004-DUPA)		Sou	urce: 22K	1054-02RE	1 Prep	ared & /	Analyzed	: 11/29/20)22	
Methane	292000	4500	ppmv		28900	00		0.883	25	
Carbon dioxide	447000	4500	ppmv		44300	00		0.920	25	
Oxygen (O2)	34100	4500	ppmv		3400	0		0.417	25	
Nitrogen (N2)	118000	18000	ppmv		11800	0		0.275	25	
Hydrogen (H2)	72500	1800	ppmv		7190	0		0.919	25	
Carbon Monoxide	<	90.0	ppmv		<90.)		NA	25	
Duplicate (BFK1004-DUPB)	Source: 22K1038-01					ared & /	Analyzed	: 11/29/20)22	
Methane	147000	4500	ppmv		14800	00		0.725	25	
Carbon dioxide	231000	4500	ppmv		23300	00		0.725	25	
Oxygen (O2)	73600	4500	ppmv		7420	0		0.703	25	
Hydrogen (H2)	13100	1800	ppmv		1300	0		0.698	25	
Nitrogen (N2)	482000	18000	ppmv		48500	00		0.671	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

SCS Field Services - Harrisburg, PA Client Name:

Date Received: Date Issued:

November 18, 2022 11:20

4330 Lewis Road, Suite 1

November 29, 2022 16:03

Harrisburg, PA 17111

Submitted To: Mlke Byk Project Number:

7220028.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BFK1004 - No Prep VOC GC Air

Duplicate (BFK1004-DUPC)		Sou	urce: 22K1038-02	Prepared & A	ared & Analyzed: 11/29/2022				
Methane	207000	4500	ppmv	207000	0.281	25			
Carbon dioxide	573000	4500	ppmv	570000	0.527	25			
Oxygen (O2)	5040	4500	ppmv	5000	0.779	25			
Hydrogen (H2)	168000	1800	ppmv	168000	0.0888	25			
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25			
Carbon Monoxide	831	90.0	ppmv	825	0.717	25			

Certified Analytes included in this Report

Analyte Certifications Certifications **Analyte**

Code	Description	Laboratory ID	Expires	
MdDOE	Maryland DE Drinking Water	341	12/31/2022	
NC	North Carolina DENR	495	07/31/2023	
NCDEQ	North Carolina DEQ	495	07/31/2023	
NCDOH	North Carolina Department of Health	51714	07/31/2023	
NYDOH	New York DOH Drinking Water	12096	04/01/2023	
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023	
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023	
WVDEP	West Virginia DEP	350	11/30/2022	

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

SCS Field Services - Harrisburg, PA Client Name:

Date Received: Date Issued:

November 18, 2022 11:20

4330 Lewis Road, Suite 1

November 29, 2022 16:03

Harrisburg, PA 17111

Submitted To: MIke Byk

Project Number:

7220028.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

-RE Denotes sample was re-analyzed

PF Preparation Factor MDL Method Detection Limit LOQ Limit of Quantitation parts per billion by volume ppbv

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

AIR ANALYSIS

-10	rmerly <i>All</i>, 1	(Sici a s	VII-LU	voruturi	#3-	-		CHAIN	OF CUS	TODY		Equipm	ent due	12/15/2	022				
co	MPANY NAME:	SCS Field	Servi	ces - Harris	sbu	rg IN\	OICE TO:	Same				PROJ	ECT NAM	IE/Quote#	#: Bristo	1			
co	NTACT: Mike	Byk				IN\	OICE CO	NTACT:				SITE	NAME: 🖁	ristol					
AD	DRESS:					IN	OICE AD	DRESS:				PROJ	ECT NUM	IBER: 72	20028.	00			
PH	ONE #:					IN	OICE PH	ONE #:				P.O. #	:						
FA	X #:			EM	AlL	•		_				Pretre	atment Pr	ogram:					
ls s	sample for comp	liance repo	orting?	YES NO		Regulate	ory State:	V/	sample fro	m a chlorir	nated su	ipply?	YES 6	PV PV	VS I.D. #:				
SA	MPLER NAME ((PRINT):	Ryan	Seyma			MPLER S		E: Nyan	1 Dey	mov	Turn	Around T		`	5 Days	<u> </u>	or .	_ Day
Matr	ix Codes: AA⊐Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	IfiliA	ent Gas OT	=Other	<u></u> _					063	3-22K-000	8		т т		
\Box		Regulator	nfo	Canister In	forn	nation			Sampling S	Start Inform	ation			Stop Inforn	_		Codes)	ANA	ALYSI
	CLIENT						LAB	LAB	Barometric	Pres. (in Hg			Barometri	c Pres. (in H			See Co	8	
	SAMPLE I.D.	Flow Controller ID	Cal Flow	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (In Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time	Initial Caniste Vacuum Hg)	Starting	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp *F	atrix	Alt 145 (į
1)	37			278		221109-02	30	\$5.0	11/22	10:50 PA	30	147	11/22	10:554	6	147	LG		
2)	67			300	1.4	221109-02	30	76.2	1/17/22	10:59 · Am	30	154	11/17/20	11:02 Am.	7	155	LG	x	
3)				324	1.4	221109-02	30										LG	x	
4)				11076	1.4	221109-02	30										LG	x	
				<u></u>									20	7.2°C, 3	i an, o	ce, no	Se	니	
1	INQUISHED:			1/17/22 522pm			coex E	•	TE / TIME	QC Data P	ackage	LAB USE	ONIY S Field	l Servic	es 221	K103	8		
Page	NQUISHED:	dexE		E / TIME		CEIVED: CSB CEIVED:	u)	8/22	TE / TIME 1120 TE / TIME	Level II	0	□ Recd: 11/18/2022 Due: 11/29/2022							
<u>-</u>										Level IV						v1303250	102		

formerly Air, Water & Soil Laboratories

AIR ANALYSIS

	minerry An, g	antel & 1	· CHI LC	10010101	162			CHAIN	OF CUS	TODY		Equipm	ent du	e 12/15/2	2022					
CO	MPANY NAME	: SCS Fiel	d Servi	ces - Harr	isbu	ırg İN	VOICE TO	: Same	!			PROJ	ECT NAM	/IE/Quote	#: Bristo	ol				
CO	NTACT: Mike	Byk				IN	VOICE CC	NTACT:				SITE	NAME:		· · · · · · · · · · · · · · · · · · ·					
ΑD	DRESS:					IN	VOICE AD	DRESS:				PROJ	ECT NUM	MBER:						
РН	ONE #:					IN	VOICE PH	ONE #:				P.O. #	P.O. #:							
FA	X#:			ΕN	/AII	<u>:</u>						Pretre	atment P	rogram:						
ls s	ample for comp	oliance rep	orting?	YES NO)	Regulat	ory State:	ls	sample fro	m a chlori	nated su	ipply?	YES 1	NO PV	VS I.D. #:					
SAI	MPLER NAME	(PRINT):				SA	MPLER S	IGNATUR	E:			Turn	Around T	ime: Cir	cle: 10	5 Days	;	or _	_ Day	
Matr	ix Codes: AA≃Indoo	r/Amblent Air	SG¤Soil	Gas LV=Lan	dfill/\	ent Gas OT	=Other						063	3-22K-000	8					
	-	Regulator	nfo	Canister Ir	ıforr	nation			Sampling	Start Inform	ation		Sampling	Stop Inform	nation		<u>@</u>	AN/	ALYSI	
	CLIENT	İ					LAB	LAB	Barometric	Pres. (in H	g):			c Pres. (in H			Codess)	\Box		
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mt/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Caniste Vacuum Hg)	Starting (in Sample	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp °F	Matrix (Sea	Alt 145 CO		
1)	·			12403	1.4	221109-02	30						<u>.</u> .				LG	x		
2)				12415	1.4	221109-02	30										LG	x		
3)																				
4)																				
₹ELI	NQUISHED:				REC	EIVED:		DAT	E / TIME	QC Data P	_	AB USE	ONLY		<u> </u>	l _:				
Page 1	QUISHED:			E / TIME		EIVED:			E / TIME	Level II		SCS F Bristol	ield Se	rvices	22K1 0	38				
12 of 13			DATI	E / TIME	REC	EIVED:		DAT	E / TIME	Level IV		Recd: 1	1/18/202	22 Due:	11/29/20 v13032	_				

Certificate of Analysis

Final Report

Laboratory Order ID 22K1038

Client Name: SCS Field Services - Harrisburg, PA Date Received:

Date Issued: November 29, 2022 16:03

November 18, 2022 11:20

Harrisburg, PA 17111

4330 Lewis Road, Suite 1

Submitted To: MIke Byk Project Number: 7220028.00

Client Site I.D.: Bristol Purchase Order: 07-S004485

Sample Conditions Checklist

Samples Received at:	20.20°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 22K1363

Client Name: SCS Field Services - Harrisburg, PA Date Received: No

November 30, 2022 10:15

4330 Lewis Road, Suite 1

Date Issued:

December 2, 2022 16:43

Harrisburg, PA 17111

Project Number:

07220028.00

Submitted To: Mlke Byk

100001415

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 11/30/2022 10:15. If

you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 22K1363

Client Name: SCS Field Services - Harrisburg, PA

Date Received: November 30, 2022 10:15

4330 Lewis Road, Suite 1

Date Issued: December 2, 2022 16:43

Harrisburg, PA 17111

Project Number: 07220028.00

Mlke Byk

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
67	22K1363-01	Air	11/29/2022 11:16	11/30/2022 10:15

Certificate of Analysis

Final Report

Laboratory Order ID 22K1363

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Issued:

Date Received:

November 30, 2022 10:15

December 2, 2022 16:43

Harrisburg, PA 17111

664

Submitted To: MIke Byk Project Number:

07220028.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

Initial Vacuum(in Hg): 30

ANALYTICAL RESULTS

Project Location:

Field Sample #: 67

Sample Description/Location: Sub Description/Location:

Canister Size: 1.4L

90.0

Canister ID: 063-00471::15034

90.0

Final Vacuum(in Hg): 11.4

Receipt Vacuum(in Hg): 11.4

9

Flow Controller Type: PASSIVE

11/30/22 13:36 DFH

Flow Controller ID:

Sample Matrix: Air

Sample ID: 22K1363-01

Sampled: 11/29/2022 11:16

Carbon Monoxide, as received

Analyte

Sample Type: LG

Volat	tile Organic	Compoun	•	Unadjusted, as received basis			_	
	ppmv		ALT-145				Date/Time	
Result	MDL	LOQ	Flag/Qual		Dilution	PF	Analyzed	Analyst

Certificate of Analysis

Final Report

Laboratory Order ID 22K1363

SCS Field Services - Harrisburg, PA Client Name:

Date Received: Date Issued:

November 30, 2022 10:15

4330 Lewis Road, Suite 1

December 2, 2022 16:43

Harrisburg, PA 17111

Submitted To: Mlke Byk Project Number:

07220028.00

Client Site I.D.: Bristol Purchase Order:

07-SO04485

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic C	ompounds by GC/TCD - Unadjus	ted, as received basis	Preparation Method:	No Prep VOC GC Air	
22K1363-01	1.00 mL / 1.00 mL	ALT-145	BFK1120	SFK1048	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 22K1363

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Date Issued: November 30, 2022 10:15

4330 Lewis Road, Suite 1

ued: Decembe

December 2, 2022 16:43

Harrisburg, PA 17111

Submitted To: Mlke Byk

Bristol

Client Site I.D.:

Project Number:

07220028.00

Purchase Order: 07-

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

Donortina		Cnika	Source	%REC		RPD		
Reporting		Spike	Source	70KEC		KPD		
December 1 See 14	1.124	1	D 14	0/ DEO 1 : :	DDD	1.5	01	

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFK1120 - No Prep VC	C GC Air									
Blank (BFK1120-BLK1)					Prep	ared & /	Analyzed	: 11/30/20)22	
Carbon Monoxide	<	10.0	ppmv							
LCS (BFK1120-BS1)					Prep	ared & /	Analyzed	: 11/30/20)22	
Methane	4440	500	ppmv	5000		88.8	0-200			
Carbon dioxide	4170	500	ppmv	5000		83.4	0-200			
Oxygen (O2)	5130	500	ppmv	5000		103	0-200			
Nitrogen (N2)	5500	2000	ppmv	5000		110	0-200			
Hydrogen (H2)	5930	200	ppmv	5100		116	0-200			
Carbon Monoxide	4950	10	ppmv	5000		98.9	0-200			
Duplicate (BFK1120-DUP1)		So	urce: 22K	1199-01	Prep	ared & /	Analyzed	: 11/30/20)22	
	153000	4500	ppmv		15500	00		1.03	25	
Carbon dioxide	545000	4500	ppmv		55100	00		1.09	25	
Oxygen (O2)	25800	4500	ppmv		2610	0		1.20	25	
Nitrogen (N2)	99000	18000	ppmv		10000	00		0.990	25	
Hydrogen (H2)	150000	1800	ppmv		15100	00		0.756	25	
Carbon Monoxide	1280	90.0	ppmv		1290)		0.867	25	
Duplicate (BFK1120-DUP2)		So	urce: 22K	1202-01	Prep	ared & /	Analyzed	: 11/30/20)22	
Methane	262000	4500	ppmv		26400	00		0.900	25	
Carbon dioxide	531000	4500	ppmv		53800	00		1.28	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Hydrogen (H2)	163000	1800	ppmv		16300	00		0.320	25	
Carbon Monoxide	875	90.0	ppmv		885			1.09	25	
Duplicate (BFK1120-DUP3)		So	urce: 22K	1223-01	Prep	ared & /	Analyzed	: 11/30/20)22	
Methane	484000	4500	ppmv		48400	00		0.0882	25	
Carbon dioxide	462000	4500	ppmv		46100	00		0.300	25	
Oxygen (O2)	5040	4500	ppmv		5100)		1.22	25	
Hydrogen (H2)	11600	1800	ppmv		1160	0		0.0310	25	
Nitrogen (N2)	<	18000	ppmv		<1800	00		NA	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22K1363

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

November 30, 2022 10:15

4330 Lewis Road, Suite 1

Date Issued:

December 2, 2022 16:43

Harrisburg, PA 17111

Submitted To: Mlke Byk

Client Site I.D.:

Project Number:

07220028.00

Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	I	Reporting		Spike	Source	%RI	EC	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC Lim	nits RPD	Limit	Qual

Batch BFK1120 - No Prep VOC GC Air

Duplicate (BFK1120-DUP4)		Sou	urce: 22K1363-01	Prepared & Analyzed: 11/30/2022				
Methane	196000	4500	ppmv	196000	0.220	25		
Carbon dioxide	577000	4500	ppmv	576000	0.123	25		
Oxygen (O2)	5790	4500	ppmv	5830	0.638	25		
Hydrogen (H2)	159000	1800	ppmv	158000	0.411	25		
Nitrogen (N2)	<	18000	ppmv	<18000	NA	25		
Carbon Monoxide	663	90.0	ppmv	664	0.190	25		

Certified Analytes included in this Report

Analyte Certifications Analyte Certifications

Code	Description	Laboratory ID	Expires	
MdDOE	Maryland DE Drinking Water	341	12/31/2022	
NC	North Carolina DENR	495	07/31/2023	
NCDEQ	North Carolina DEQ	495	07/31/2023	
NCDOH	North Carolina Department of Health	51714	07/31/2023	
NYDOH	New York DOH Drinking Water	12096	04/01/2023	
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023	
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023	

Certificate of Analysis

Final Report

Laboratory Order ID 22K1363

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Date Issued:

November 30, 2022 10:15

4330 Lewis Road, Suite 1

December 2, 2022 16:43

Harrisburg, PA 17111

Bristol

Submitted To: Mlke Byk

Project Number:

07220028.00

Purchase Order:

07-SO04485

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

Client Site I.D.:

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

AIR ANALYSIS CHAIN OF CUSTODY

Equipment due 12/22/2022

									OHAII !	01 003	1001		<u> 1uipii</u>	eiit uue							
CO	MPANY NA	ME: S	CS Field	Servi	ces - Harri	sbu	rg IN	OICE TO	: Same				<u> </u>		IE/Quote#		1				
CO	NTACT:	like By	yk				יאו	VOICE CO	NTACT:				SITE	NAME: 2	215/6						
ΑD	DRESS:						IN	VOICE AD	DRESS:				PROJ	ECT NUM	BER: م	722.002	£00	5			
PH	ONE #:						IN	VOICE PH	ONE #:				P.O. #								
FΑ	X #:				EN	1AIL	:						Pretre	atment Pr	ogram:						
ls s	sample for o	omplia	nce repo	orting?	YES NO		Regulat	ory State:	ls s	sample fro	m a chlorii	nated supp	oly? (YES EN	PV PV	VS I.D. #:		•			_
SA	MPLER NA	ME (PF	RINT):	yan	Seyme	3 U /	/ SA	MPLER S	IGNATUR	E: Pyen	Legn	ron	Turn	Around T	ime: Circ	de: 10	5 Days)	or .	_ D:	ay
Matı	ix Codes: AA≔	indoor/Ar	nbient Air	SG=Soil	Gas LV=Land	dfill/	ent Gas OT	=Other	(0				063	3-22K-001	8					
		Re	egulator I	nfo	Canister In	forn	nation			Sampling :	Start Inform	ation		Sampling	Stop Inform	nation		es)	ANA	ALYS	<u> </u>
	CLIENT							LAB	LAB	Barometric	Pres. (in Ho	g):		Barometri	c Pres. (in H	g):		e Codes)			
	SAMPLE I	D.	Flow Controller	Cal Flow		(3)	0	Outgoing Canister Vacuum (in	Receiving Canister Vacuum (in:	i	Start Time	Initial Canister Vacuum (in	Starting		Stop Time	Final Canister Vacuum (in	Ending	Matrix (See	Alt 145 CO		
			ID		Canister ID	Size	Cleaning Batch ID	Hg)	Hg)	Start Date		Hg)	Sample Temp *F	Stop Date	(24hr clock)	Hg)	Sample Temp °F	Σ	₹	\perp	
1)	67				15034	1.4	221110-02	30	5E 11.4	11/29	11;14A	30	153	1/29	11:16 A	6	154	LG	x		
2)					15038	1.4	221110-02	30										LG	x		
3)					15039	1.4	221110-02	30										LG	x		
4)					15042	1.4	221110-03	30										LG	x		
	;			ī	L	L	1	<u> </u>	'	<u>. </u>	<u>. </u>	· ;		20.4	2,310	no iœ	100	ب ہمک	7	十	7
	INQUISHED:	λ	/		1/29/22	REC	EIVED:	0	DAT	E / TIME	QC Data P	ackage LA	B USE	ONLY	1		,				_
	NOUSHED:	m week		DAT	E / TIME		Fed EIVED:	Dex C	DAT	E / TIME	Level I		1								
Page	Felex E			ν	1:00bm.		<u>C</u> Si	<u>3 (1</u>	130/22	1015	Level II Level III		SCS Bristo	Field S	ervices	22K13	363				
e 8	NQUISHED:			DAT	E / TIME	KEC	EIVED:		DAT	E / TIME				-	000 -						
8 of 9						L					Level IV	<u> </u>	Meca:	11/30/20	922 Due	e: 12/07/2	022				_

Certificate of Analysis

Final Report

Laboratory Order ID 22K1363

Client Name: SCS Field Services - Harrisburg, PA

Date Received: Date Issued:

November 30, 2022 10:15

4330 Lewis Road, Suite 1

d: Dece

December 2, 2022 16:43

Harrisburg, PA 17111

Submitted To: Mlke Byk

Project Number:

07220028.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Sample Conditions Checklist

Samples Received at:	20.40°C
How were samples received?	FedEx Express
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Attachment 4

Daily Logs

JOB NO.	07220028.00	TASK NO) . 000	01	DATE	11.3	3.22	PROJ	E BRIS	ΓOL	
TEMP	53	WEATHE	ER Par	tly cloudy	B.P.			WIND 12NE			
SCS	S-FS LABOR	HOURS	ОТ						HOURS	ОТ	
Rya	an Seymour	14									
							DAILY TOTA	AL /	14		
EQUII	EQUIP, SVCS, , MLG QTY		UNITS	5					QTY	UNITS	
G	GEM 5000		Day		MX4					Day	
	Truck	1	Day		G	enerat	or			Day	
INSTF	RUMENT CALIBR	ATION (CAL. GAS	S)	CH4		4	02 LOW CALE	_	CO2		
	MODEL	S/N		(%-VOL)	(%-L		%-VOL)		(%-VOL)	H2S (PPM)	
	5000	500399		50			20.9		35.1		
SUMMA	SUMMARY Scs was on site for month Blower reading: CH4- 32. I used the gam file that et		% C02-3	31.9 %	02-4.4 %	BAL	-31.3%	20.21	and 22 Those	wolls are not book	od
	up .	uis IIas UI	iiiie anu it ap	ppears triey	uun (N	3VC ID S IOI 19,	,∠∪,∠ I ,	and ZZ. THESE	wells are not nook	z u	

DAILY LOG

	eve the valve is broken, when you turn the	head it starts lifting off the well.)	
GW13- open if not fully open.			
	off blowing pressure at me. I made an adj	justment open the vacuum went down.	
GW15- the valve needs replaced	I the plate just turns. It wont adjust		
GW3- fully open			
GW2- fully open			
GW1-fully open			
GW12-fully open			
GW11- needs to plate. It didn't s	eem to adjust when turned.		
GW10- slightly open	•		
GW9- fully open			
GW14- fully open			
GW8-the head is broke, cant ma	ke adjustment		
GW7- increased vacuum -1			
GW6- lowered vacuum. I think th	ne head needs replaced though it wasn't fo	unctioning properly	
GW23- no gas. Turned up vacuu	m		
NORTH LEACHATE:			
Nc1- adjustment open			
Nc2- adjustment open			
Nc3- adjustment open			
Nc4- adjustment open			
Nc5- adjustment open			
Nc6- adjustment open			
Nc8- adjustment open			
Nc9- adjustment open			
Nc10- adjustment open			
I didn't adjust the south cleanout	S.		
STROBE COUNTERS ARE ALL	ON WILL FABRE'S WORD DOCUMENT	Γ THAT WILL BE ATTACHED.	
PREPARED BY:	ACCEPTED BY:		
	/\CCLI ILD DI.		

PREPARED BY:	ACCEPTED BY:
RYAN	
SEYMOUR	

DAILY LOG

JOB NO.	07220028.00	TASK N	O . 00001		DATE	11.4		PROJI NAME		OL	
TEMP	62	WEATH	ER Partly	cloudy	B.P.	28.2	4	WIND	3mph	NE	
SCS	-FS LABOR	HOURS	OT						HOURS	OT	
Rya	n Seymour	13									
							DAILY TOTAL	L 1	3		
EQUIF	P, SVCS, , MLG	QTY	UNITS						QTY	UNITS	
G	EM 5000	1	Day			MX4				Day	
	Truck	1	Day		G	enerato	r			Day	
INSTR	NUMENT CALIBRA MODEL	ATION (CAL. GAS	- 	:H4 -VOL)	CH (%-LI		02 LOW CALE %-VOL)		CO2 (%-VOL)	H2S (PPM)	
	5000	500399		50			20.9		34.9		
SUMMARY Scs was on site for rechecks and to grab CO samples of any exceedances. Blower reading: CH4- 31.9% C02-30.4 % 02- 5.2 % BAL-32.4% My exceedances were GW 3 for pressure. I got it back under vacuum but it needs a new bonnet valve inside. GW 37 Was at 147 degrees so I took a sample. GW 51 Was below 145 so I didn't take sample. GW 67 Was at 169.3 degrees so I took a sample. GW 46 Was at 150.2 degrees so I took a sample. GW 53 Was below 145 degrees so I didn't take a sample. GW 52 I could not get a reading on because of liquid in the test ports./ flex hose could be shortened to help water flow through better. (I recorded video) I grabbed a reading for 32. The city hydroseeded last week and a bunch of wells got covered in stuff so you cant see the numbers anymore after I marked them all clearly.											
Leaving	Blower reading: ı	methane: 32%	Co2: 30.19	6	O2: 5%	B	AL: 32.8%	,	VAC: -24.25		
PREP RYAN SEYM			ACCE	PTED BY	Y :						

DAILY LOG

JOB NO.	07220028.00	TASK N	O(00001		DATE	11.1	0.22	PRO NAM	JECT IE	BRIST	OL	
TEMP	62	WEATH	ER	Partly cl	oudy	B.P.	28.2	4	WIN	D	3mph	NE	
SCS-F	S LABOR	HOURS	(TC						HOU	RS	ОТ	
Ryan	Seymour	13											
	•												
								DAILY TOTA	AL	13			
EQUIP,	SVCS, , MLG	QTY	UN	NITS						QT	Υ	UNITS	
GE	M 5000	1	D)ay			MX4					Day	
	Truck	1	D)ay		G	Senerat	or				Day	
	IMENT CALIBRA	ATION (CAL. GAS	S)	CH4 CH4 (%-VOL) (%-LEL)			02 LOW CALE %-VOL)	_	CO (%-V		H2S (PPM)		
	5000	500399		50 20.9			34.						
SUMMAF		on site for reched				oles of any 2- 5.2 %		dances. 32.4%					
Blower reading: CH4- 31.9% C02-30.4 % 02- 5.2 % BAL-32.4% My exceedances were GW 3 for pressure. I got it back under vacuum but it needs a new bonnet valve inside. GW 37 Was at 147 degrees so I took a sample. GW 51 Was below 145 so I didn't take sample. GW 67 Was at 169.3 degrees so I took a sample. GW 46 Was at 150.2 degrees so I took a sample. GW 53 Was below 145 degrees so I didn't take a sample. GW 52 I could not get a reading on because liquid in test port. Flex hose could be shortened to help water flow through better. (I recorded video) I grabbed a reading for 32. The city hydroseeded last week and a bunch of wells got covered in stuff so you cant see the numbers anymore after I marked them all clearly.													
Leaving E	Blower reading: r	methane: 32%	Co2	2: 30.1%	(O2: 5%	E	BAL: 32.8%		VAC: -2	24.25		
PREPA RYAN	RED BY:		Α	ACCEP"	TED BY	/ :							

DAILY LOG

JOB NO.	07220028	.00	TASK N	Ο.	00001		DATE	11.1	7.22	PRO NAM	JECT ME	BRIST	OL	
TEMP	33		WEATH	ER	Partly cl	oudy	B.P.	28.2	1	WIN	ID	7mph	SE	
SCS	-FS LABOR		HOURS		OT						HOU	JRS	ОТ	
Rya	ın Seymour	1	3											
•														
									DAILY TOTA	AL	13			
EQUIF	P, SVCS, , MLG		QTY	Į	JNITS						QT	ΓΥ	UNITS	
G	EM 5000		1		Day			MX4					Day	
	Truck		1		Day		G	enerato	or				Day	
INSTR	RUMENT CAL	IBRAT	ION (CAL. GA	S)	CH	14	CH	4	02 LOW CAL	.E	CC)2		
	MODEL		S/N		(%-V	OL)	(%-LE	EL)	%-VOL	.)	(%-√	OL)	H2S (PPM)	
	5000		500399		50	.0			20.9		35	.0		
SUMMA			n site for reched							vac: -2	24.06			
Blower reading: CH4- 33.2% C02-32 % 02- 5.0 % BAL-29.8% vac: -24.06 My exceedances were GW 3 for pressure. I got it back under vacuum but it needs a new bonnet valve inside. GW 37 Was at 147 degrees so I took a sample. GW 67 Was at 169.3 degrees so I took a sample. GW 52 Was at 108 so I did not have to get a sample. The city hydroseeded last week and a bunch of wells got covered in stuff so you cant see the numbers anymore after I marked them all clearly.														
Leaving	Blower read	ing: me	ethane: 35.4%		Co2: 32.7	%	O2: 5.2	%	BAL: 26.	.7%	\	/AC: -24	.18	
PREP RYAN SEYM					ACCEP [*]	TED BY	' :							

SEYMOUR

DAILY LOG

JOB NO.	07220028.0	0	TASK N	Ο.	00001		DATE	11.2	9.22	PRO NAM	JECT ME	BRIST	OL	
TEMP	50		WEATH	ER	Partly cl	oudy	B.P.	28.1	3	WIN	ID	4mph	SE	
SCS	-FS LABOR		HOURS		OT						HOU	JRS	OT	
Rya	ın Seymour	1:	3											
<u>-</u>														
									DAILY TOTA	AL	13			
EQUIF	P, SVCS, , MLG		QTY	ι	JNITS						Q ⁻	TY	UNITS	
G	EM 5000		1		Day			MX4					Day	
	Truck		1		Day		G	enerato	or				Day	
INSTR	UMENT CALIE	RAT	ION (CAL. GAS	S)	CH	14	CH ₄	4	02 LOW CAL	.E	C	02		
	MODEL		S/N		(%-V		(%-LE		%-VOL		(%-\	_	H2S (PPM)	
	5000		500399		50	.0			20.9		35	5.0		
SUMMARY Scs was on site for rechecks and to grab CO samples of any exceedances. Blower reading: CH4- 33.2% C02-32 % 02- 5.0 % BAL-29.8% vac: -24.06 Bump tested mx4. Turned on minirae 3000 Blower / flare was running upon arrival. The plant was running also. My exceedances were GW 67 for temp. I got a reading at GW 19 they just got it hooked back up. The valve is set to 10% open. Southside lechete cleanouts number 8 is missing an orifice plate. All the other heads have a 1.25" orifice plate in them. I need assistance in order to put a plate in. Brandon said he will fix that.														
Leaving	Blower readin	g: me	thane: 35.4%		Co2: 32.2	%	O2: 4.6	%	BAL: 28.	1%	V	/AC: -24.	19	
PREP. RYAN	ARED BY:				ACCEP ⁻	TED BY	/ :							

JOB NO. 07220028.00 TASK NO.	08 DAT	E 11-14-22 PROJECT NAME B	ristol Landfill
TEMP: °F		WEATHER	
	HOURS 3 1.5	SCS-FS LABOR	HOURS
EQUIPMENT		EQUIPMENT	
WORK PERFORMED - DESCRIPTION OF ITEM (Example, Routine, SEM, etc)		WORK PERFORMED DESCRIPTION OF ITEM	
Notes	Travel to Site.		
	Trenched 520 foot	of slope at 2% Fall to toward tie in point.	

JOB NO. 07220028.00 TASK NO.	08	DAT	E 11-16-22 PROJECT NAME Bristo	l Landfill
TEMP: °F		_	WEATHER	
(List employee completing form first.) Carl Dixon 9	HOURS .5		SCS-FS LABOR	HOURS
EQUIPMENT			EQUIPMENT	
WORK PERFORMED - DESCRIPTION OF ITEM (Example, Routine, SEM, etc)			WORK PERFORMED DESCRIPTION OF ITEM	
Trenching	Non- Routine	19		
N	T 1 10	200 (1		
Notes			at a 2% fall towards tie in point. ith jack hammer attachment for excavator.	

JOB NO. 07220028.00 TASK NO.	08 DATE	11-17-22 PROJECT NAME B	ristol Landfill
TEMP: °F		WEATHER	
SCS-FS LABOR (List employee completing form first.) Carl Dixon 1 Will Brown 1		SCS-FS LABOR	HOURS
EQUIPMENT		EQUIPMENT	
WORK PERFORMED - DESCRIPTION		WORK PERFORMED	
OF ITEM (Example, Routine, SEM, etc)		DESCRIPTION OF ITEM	
Notes		at a 2% fall towards tie in point. th jack hammer attachment for excavator.	

JOB NO. 07220028.00 TASK NO.	08 DAT	E 11-18-22 PROJECT NAME Brist	tol Landfill
TEMP: °F		WEATHER	
SCS-FS LABOR (List employee completing form first.)	HOURS	SCS-FS LABOR	HOURS
	0.5		
VVIII DIOWII	7.5		
EQUIPMENT		EQUIPMENT	
WORK PERFORMED - DESCRIPTION OF ITEM (Example, Routine, SEM, etc)		WORK PERFORMED DESCRIPTION OF ITEM	
N		00/7.114	
Notes	Trenching 100 feet	at a 2% fall towards tie in point.	
	Busting up rocks w	ith jack hammer attachment for excavator	
	Placed two 320' sti	ngers of 8" pipe from staging area in trench.	

JOB NO. 07220028.00 TASK NO.	7 DAT I	E 11/7/22	PROJECT NAME	Bristol Landfill	
TEMP: °F		WEATHE	R		
SCS-FS LABOR (List employee completing form first.) Chris Boggs 3	HOURS	So	CS-FS LABOR	HOURS	
EQUIPMENT			EQUIPMENT		
WORK PERFORMED - DESCRIPTION OF ITEM (Example, Routine, SEM, etc)		WORK PERFORME DESCRIPTION OF I			
Notes	Installing temperatu	ire probes.			

JOB NO. 07220028.00 TASK NO.	8 DATE	11/7/22 PROJECT NAME B	ristol Landfill
TEMP: °F		WEATHER	
SCS-FS LABOR (List employee completing form first.) Chris Boggs 8.	HOURS 5	SCS-FS LABOR	HOURS
EQUIPMENT		EQUIPMENT	
WORK PERFORMED - DESCRIPTION OF ITEM (Example, Routine, SEM, etc)		WORK PERFORMED DESCRIPTION OF ITEM	
Notes	Travel to Bristol. Me	eting with site engineer, going over scope of	of work.

JOB NO. 07220028.00 TASK NO.	8 DATI	11/8/22 PROJECT NAME	Bristol Landfill
TEMP: °F		WEATHER	
SCS-FS LABOR (List employee completing form first.) Chris Boggs 5	HOURS	SCS-FS LABOR	HOURS
EQUIPMENT		EQUIPMENT	
WORK PERFORMED - DESCRIPTION OF ITEM (Example, Routine, SEM, etc)		WORK PERFORMED DESCRIPTION OF ITEM	
Notes	Fusing 8 inch pipe.		

JOB NO. 07220028.00 TASK NO.	7 DAT I	E 11/8/22	PROJECT NAME	Bristol Landfill	
TEMP: °F		WEATHE	R		
SCS-FS LABOR (List employee completing form first.) Chris Boggs 5	HOURS	S	CS-FS LABOR	HOURS	
EQUIPMENT			EQUIPMENT		
WORK PERFORMED - DESCRIPTION OF ITEM (Example, Routine, SEM, etc)		WORK PERFORME DESCRIPTION OF			
Notes	Installing temperatu	ire probes.			

JOB NO. 07220028.00 TASK NO.	8 DAT	E 11/9/22 PROJECT NAME Brist	tol Landfill				
TEMP: °F		WEATHER					
	HOURS 0 0	SCS-FS LABOR	HOURS				
EQUIPMENT		EQUIPMENT					
WORK PERFORMED - DESCRIPTION OF ITEM (Example, Routine, SEM, etc)		WORK PERFORMED DESCRIPTION OF ITEM					
Notes	Fusing 8 and 12 inc	ch pipe.					

JOB NO.	07220028.00	TASK NO.	8	DATE	11/10/22	PROJECT NA	ME Bristo	ol Landfill	
TEMP:		°F			WEATH	ER			
		_						1	
	SCS-FS LABOR yee completing form		HOURS	-		SCS-FS LABOR		HOURS	
Will Brown	,	6.							
	EQUIP	MENT				EQUIPI	MENT		
	FORMED - DESCRI xample, Routine, SE				WORK PERFORM DESCRIPTION O				
Notes			Fusing 12 i	م داد داد د					

JOB NO.	07220028.00	TASK NO.	8	DATE		PROJECT NAME	Bristol Land	Jfill	
TEMP:		°F		<u> </u>	WEATH	ER			
	SCS-FS LABOR yee completing form		HOURS	- - -		SCS-FS LABOR		HOURS	
	EQUIPI	MENT				EQUIPMENT			
	FORMED - DESCRI xample, Routine, SE				WORK PERFORM DESCRIPTION O				
Notes			Installed 1	2 inch hea	nder.				

JOB NO.	07220028.00	TASK NO.	8	DATI	≡ 11/20/22	PROJECT NAM	E Bristo	ol Landfill	
TEMP:		°F		_	WEATH	ER			
r	POC FOLADOD		HOURE			CCC FC LADOD		HOURE	
	SCS-FS LABOR yee completing form f		HOURS 1			SCS-FS LABOR		HOURS	
Carl Dixon		1	1						
Will Brown		1	1						
	EQUIPM	MENT				EQUIPME	ENT		
	FORMED - DESCRIF xample, Routine, SEM				WORK PERFORM DESCRIPTION O				
Notes				III. Heade	er, lorde main and	air line. Back filling			

JOB NO.	07220028.00	TASK NO.	8	DATE	11/21/22	PROJECT NAME	Bristol Land	dfill	
TEMP:		°F			WEATH	R			
(List employ	CS-FS LABOR yee completing form f	irst.)	HOURS	-		SCS-FS LABOR	ŀ	HOURS	
Chris Boggs		1		_					
Carl Dixon		1		_					
Will Brown		1	1						
	EQUIPN	MENT				EQUIPMENT			
	FORMED - DESCRIF xample, Routine, SEN				WORK PERFORM DESCRIPTION OF				
•									
Notes					er, force main and line, both passed.	air line. Back filling. Pe	rformed air	test on va	IC.

JOB NO.	07220028.00	TASK NO.	8	DATE		PROJECT NAME	Bristol La	ındfill	
TEMP:		°F			WEATHE	R			
'		_							
(List employ	CS-FS LABOR ree completing form f	irst.)	HOURS			SCS-FS LABOR		HOURS	
Chris Boggs			0.5						
Carl Dixon			0						
Will Brown		1	0.5						
	EQUIPN	MENT				EQUIPMENT			
	FORMED - DESCRIF xample, Routine, SEN				WORK PERFORM DESCRIPTION OF				
,	<u> </u>	· ,							
Notes				, it passed	I. Finished back fi	with a 12 in. valve.perf lling and dressing up w			

JOB NO. 0722	0028.00 TA		DATE	11/23/22	PROJECT NAME	Bristol	Landfill	
TEMP:	°F			WEATH	ER			
		1					1	
	LABOR mpleting form first.)	HOURS 9	_		SCS-FS LABOR		HOURS	
Will Brown		9	_					
	EQUIPMEN1				EQUIPMEN	NT		
WORK PERFORM OF ITEM (Example				WORK PERFORM DESCRIPTION O				
Notes		i led lea	cnate cleand	out well neads int	to vac. Installed pipe	ѕирропѕ и	nder öln. nea	der.

Appendix C

Solid Waste Permit 588 Daily Wellhead Temperature Averages - November 30, 2022

Solid Waste Permit 588 Daily Wellhead Temperature Averages

The data provided in this report represent initial readings provided by field instrumentation without Validation, analysis, quality assurance review, or context based on operating conditions. This report is subject to revision following quality assurance review and an analysis of operating conditions. SCS will continue to provide a supplemental report with additional information and further analysis on a bi-monthly basis at a minimum.

As of the date of this report, the system is still undergoing commissioning and SCS staff is still conducting verification testing and making minor field modifications to this system. Some values reported may differ from recordings made by other field instrumentation. SCS may elect to report values gathered from other data sources (GEM, field thermometer) for regulatory purposes until commissioning is complete.

SCS ENGINEERS

07222143.00 | November 30, 2022

Solid Waste Permit 588 Daily Wellhead Temperature Averages for Nov 30, 2022

Bristol, Virginia

Well ID	Average Temperature (°F)
Well 32R	118.4
Well 35	51.5
Well 39	87.9
Well 40	109.7
Well 46	130.3
Well 47	75.3
Well 49	124.3
Well 50	104.9
Well 51	59.4
Well 52	109.9
Well 53	123.8
Well 54	109.0
Well 55	0.0
Well 56	109.8
Well 57	109.0
Well 58	110.9
Well 59	109.6
Well 60	102.2
Well 62	109.2
Well 63	110.2
Well 64	98.1
Well 65	85.0
Well 66	100.3
Well 67	105.9
Well 68	0.0

Appendix D

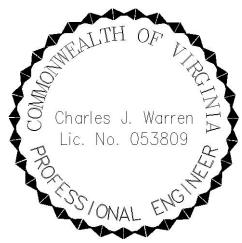
Settlement Monitoring and Management Plan

Settlement Monitoring and Management Plan Bristol Integrated Solid Waste Management Facility Solid Waste Permit #588

2655 Valley Drive Bristol, VA 24201

SCS ENGINEERS

02218208.05 | November 15, 2022


15521 Midlothian Turnpike, Suite 305 Midlothian, VA 23113 804-378-7440

Signature/Certification Sheet

We certify that we have prepared this Plan, that it has been prepared in accordance with industry standards and practices, and that the information contained herein is truthful and accurate to the best of our knowledge.

Name:	H. James Law, P.E., Vice President/Project Director
Signature:	of foures Vas
Date:	November 15, 2022
Name:	Charles Warren, PE, Project Manager
Signature:	Glade Varian
Date:	November 15, 2022

Virginia Professional Engineer's Certification:

Table of Contents

Sec ⁻	tion	Page
1.0	Introduction	1
	1.1 Site Background	1
	1.2 Physical Setting	1
	1.3 Landfill Temporary Cover and Final Cover System	
2.0	Settlement Monitoring and Management Plan	2
	2.1 Settlement Plates	2
	2.2 Topographic Surveys and Frequency	3
3.0	Settlement Analysis	5
4.0	Reporting	5
5.0	References	6

List of Figures

Figure 1.	Topographic Quadrangle Map
Figure 2.	Details of Temporary and Final Cover Systems
Figure 3.	Settlement Plate and Section Locations
Figure 4.	Settlement Plate Details

1.0 INTRODUCTION

This Monitoring Plan and Management Plan documents procedures and instructions necessary to implement a settlement monitoring and management program for a temporary and permanent final cover system to be installed within the City of Bristol Integrated Solid Waste Management Facility Solid Waste Permit #588 Landfill. This plan was prepared in response to the Expert Panel Report (Virginia Tech, 2022) prepared by the Expert Panel convened by the Virginia Department of Environmental Quality (VDEQ) to address settlement of the landfill surface after closure concerns at the Facility.

1.1 SITE BACKGROUND

The City of Bristol Integrated Solid Waste Management Facility, which includes Solid Waste Permit Landfills #221, 498, and 588, is owned and operated by the City of Bristol. Solid Waste Permit #588 was issued by VDEQ on February 13, 1996.

The Permit #588 Landfill is constructed within a former limestone quarry. Prior to July 2007, the waste was baled prior to its placement in the landfill. In July 2007, the City of Bristol initiated placement of loose waste in the former quarry as the primary method of waste disposal. The Permit #588 Landfill is lined with a primary high-density polyethylene geomembrane and compacted clay liner placed above a secondary compacted clay liner, with a 12-inch witness zone between the two liner systems. An additional linear low-density polyethylene geomembrane liner system is in place on the quarry walls. A gradient control underdrain system is in place beneath the secondary liner for the purpose of controlling the water level to a maximum elevation of 1,557 feet above mean sea level. This gradient control water currently discharges to the Bristol Virginia Utilities (BVU) Authority Sewer.

1.2 PHYSICAL SETTING

The City of Bristol Integrated Solid Waste Management Facility is located on Valley Road in the southeastern section of the City of Bristol. The location of the Facility is illustrated on a portion of the Bristol, Virginia, United States Geologic Society 7.5-minute topographic quadrangle map presented as **Figure 1**. The land surrounding the Facility is primarily wooded and residential. Residents in the area are served by public water supply.

The Facility encompasses approximately 138 acres. The limits of waste occupied by the Permit #588 Landfill encompasses approximately 20 acres. The base of the limestone quarry covers approximately 5.6 acres. The Permit #588 Landfill is bordered to the east by the Permit #498 Landfill and to the north by intermittent streams which drain into Sinking Creek.

Based on a review of the Bristol, Virginia USGS 7.5-minute topographic quadrangle map, several unnamed tributaries of Sinking Creek are intermittent streams located east of the adjacent Permit No. 498 landfill. Sinking Creek is the nearest permanent water body and is located east/southeast of the adjacent Permit No. 498 facility.

1.3 LANDFILL TEMPORARY COVER AND FINAL COVER SYSTEM

As required by the Expert Panel convened by the Virginia Department of Environmental Quality (VDEQ) to address settlement of the landfill surface after closure concerns at the Facility, Permit No. 588 is required to have a settlement monitoring and management plan. This plan addresses the landfill surface elevation settlement prior to or after the installation of the temporary ethylene vinyl

alcohol (EVOH) geomembrane cover as well as after the installation of the permanent final cover system. **Figure 2** show details of the temporary cover and the final cover systems.

The temporary cover system above the intermediate soil cover consist of (from top to bottom):

- Geotextile wind screen (wind defender or approved equal) layer
- EVOH geomembrane overlying the intermediate soil cover

The permanent final cover system consists of (from top to bottom):

- 6" vegetative support soil cover
- 18" protective soil cover
- Geocomposite drainage net (GDN) with 5 x 10⁻³ m²/sec transmissivity
- 40 mil textured LLDPE geomembrane
- 12" of intermediate cover

2.0 SETTLEMENT MONITORING AND MANAGEMENT PLAN

As required by the Plan, the City of Bristol has prepared a settlement monitoring and management plan for DEQ for review by November 15, 2022. This settlement monitoring and management plan will be prepared in accordance with generally accepted surveying practices and minimum standards within the Commonwealth of Virginia and shall be certified and stamped/sealed by a VA-PE and a surveyor licensed in the Commonwealth of Virginia. The plan provides means and methods for monitoring surface elevations across the surface of the landfill using settlement plates embedded in the intermediate soil cover at proposed locations. The intermediate soil cover is to be installed in accordance with 9 VAC 20-8 I-I 40(B)(I)(d) of the Virginia Solid Waste Management Regulations. The proposed locations and details of the settlement plates are shown in **Figures 3 and 4**, respectively.

2.1 SETTLEMENT PLATES

Settlement plates are fixed points installed in the final cover used to measure changes in elevation and identify areas the magnitude of on-going settlement. The City will complete monthly topographic surveys (refer to **section 2.2**) on these settlement plates and maintain/implement settlement plates throughout the Landfill surface.

Settlement plates are comprised of a steel base plate and a stand pipe or rod that extends above ground and serves as an elevation reference point. The rod indicates the center of the base plate, and the initial location and elevations is surveyed by a professional surveyor (refer to the settlement plate detail in **Figure 4**). Subsequent surveys of the settlement plate will measure the movement in the vertical direction. Additionally, there is an option to choose to equip settlement plates with a GPS system attached and monitoring of the plate can be completed remotely. Alternatively the City may choose to attach targets to the tops of the settlement plates, so that the locations can be recorded using photogrammetric methods. Concurrent measurements will be performed in the event of a change in surveying methodology to quantify differences in the methods. **Figure 3** depicts proposed 12 locations for settlements plates within the Permit 588 boundary and also 3 section locations (AA', BB', and CC'). The actual number of settlement plates may be adjusted depending on active construction within the landfill footprint. The plates may be moved within a limited area based on field conditions and necessity. More settlement plates can be added or removed as deemed appropriate or it can be replaced with settlement monuments if damaged during or after the EVOH geomembrane cover is installed.

Settlement plates are used regularly to monitor settlement on landfills. However, they are susceptible to damage and destruction from on-going landfill activities as well as natural forces including weather and animals. The riser section extending above the surface should be visible and protected from damage by equipment using tires placed over (but not touching) the rod, bollards, or other physical objects. The Permit 588 landfill is approximately 17.3 acres so the number of the proposed settlement plates represents 1.4 acres per plate, which is sufficient to provide a general trend of settlement of the existing landfill surface elevations due to waste decomposition or new physical loading from the final cover system. Therefore, the locations of the proposed settlement plates are strategically located in relation to the waste thickness and grade breaks of the base grading of the landfill.

The frequency of this monitoring plan will initially begin with monthly topographic surveys to collect settlement data necessary in estimating the rate of settlement at each settlement plate location and the net volume change due to settlement. This information will be used to design or modify the final grading and the stormwater management features of the final cover system. Details of the topographic surveys are described in **Section 2.2**. The initial placement and surveying of the settlement plates will be done in close coordination with the City's staff surveyor who is licensed in the Commonwealth of Virginia.

The following events are included in the management plan:

- An initial set of measurements will be taken to establish the initial baseline landfill surface elevation at each settlement plate location prior to the placement of the EVOH cover system.
- o An initial set of measurements will be taken right after the installation of the EVOH.
- Monthly measurements of all settlement plates and other relevant locations for features such as the locations for leachate collection infrastructure and the southeast corner stormwater pond (future). This frequency will change depending on the result of the average settlement stated in **Section 3.0**.
- A fixed elevation bench mark will be set nearby, but off of the landfill surface to provide a baseline reference for the subsequent surveys

2.2 TOPOGRAPHIC SURVEYS AND FREQUENCY

This plan includes the following actions to monitor and timely address settlement of the landfill surface:

- Conduct monthly topographic surveys of the waste mass to document the magnitude and rates of settlement throughout the waste mass, beginning November 9, 2022 (i.e., thirty days after the installation of intermediate cover). Topographic survey data will be submitted to VDEQ and the EPA by the tenth day of the month following data collection. Topographic survey data may be submitted as a section of monthly progress reports submitted on the same day. The City may request, and at the discretion of DEQ, survey frequency to be reduced after the first year.
- Settlement plates will be installed prior to November 15, 2022. The as-built locations of the settlement plates will be recorded prior to November 30, 2022. The as-built information will be submitted to VDEQ and EPA with the November report. The settlement

- plates will be surveyed and the results reported (by the tenth day of the month following data collection) on a monthly basis.
- Prior to installation of the EVOH cover, shape the existing Landfill surface to direct storm water runoff to a storm water management (SWM) basin located at an appropriate point of the Landfill.

2.2.1 Topographic Data Collection Procedures

In the Executive Summary of the Expert Panel Report, the Panel recommended that the site undertake monthly topographic surveys to document the locations and rates of settlement. Under the Summary of Recommendations, the report recommends the use of drones for the monthly topographic survey of the landfill surface.

SCS proposes the use of a DJI Phantom 4 Pro v2 or similar equipment as the primary UAS for topographic surveys. The flight will be performed under fair weather conditions at approximately ± 200 feet above ground level at a speed of ± 13 miles per hour. The UAS flight will encompass the entirety of the quarry landfill perimeter along with an outer boundary of approximately 150 feet outside of the perimeter allowing for image overlap.

SCS will use Propeller AeroPoints for ground control points (GCP) during each survey event. The AeroPoints are moveable targets with built-in GPS receivers. SCS will coordinate with the City's surveyor to establish benchmarks and/or permanent control points within the UAS flight path. The benchmarks and AeroPoints will be combined in the post-processing to establish ground control at the site and to have established surveyed points in which to compare the variable landfill surface. Other ground control methods may be used, but will be submitted to VDEQ prior to implementation.

SCS is working with the City's staff surveyor, who is licensed in the Commonwealth of Virginia to set up permanent control points to maintain consistency. The surveyed benchmarks will be outside of the waste boundary to reduce risk of settlement, obstruction, or damage. The AeroPoints would be placed on top of waste or existing cover during each visit to assist with accurate readings within the waste boundary. The flight boundary will take place outside of controlled airspace, therefore no air traffic control authorization is required. Each flight will be conducted by an FAA Part 107 licensed pilot.

Post-processing will be completed by photogrammetric software utilizing the UAS images, GCPs, and benchmarks. The output from processing will include an orthomosaic (combination of all images), point cloud files, and contours files. These contour files and point cloud files will be brought into AutoCAD 2020 for analysis. Analysis will consist primarily of surface comparison to calculate the settlement from previous topographic surveys. SCS will provide the City with the volume of settlement each month. Additionally, the topographic surveys will help address necessary changes to stormwater management features.

Topographic data collection by photogrammetric methods or similar remote sensing technology is exempt from licensure requirements under Subsection C of § 54.1-402 of the Virginia Code.

If consecutive surveys demonstrate that the total settlement over the course of 12 months is less than 2 feet, then the City may request survey frequency will be reduced to quarterly. If consecutive quarterly surveys demonstrate that the average settlement over 1 year is less than 0.5 feet, then the City will request survey frequency will be reduced to once per year.

3.0 SETTLEMENT ANALYSIS

Two sets of initial measurements will be taken to establish the initial baseline landfill surface elevation at each settlement plate location after completion of the intermediate soil cover and right after the installation of the EVOH cover system. If the time difference is more than 3 months, then the later measurements will be used as the baseline or the time zero, T_0 , of the monitoring plan. Subsequent monthly measurements of all settlement plates will be taken at a frequency of once per month. The City will generally monitor the locations on about the same dates each month following the completion of the EVOH cover system. Other relevant locations for features such as the proposed future leachate storage tank and the southeast corner stormwater pond may also be computed from the landfill surface topographic survey database.

Upon completion of the topographic survey data analysis and generation of the surface contour lines, section profiles at the selected locations (AA', BB', CC') will be generated and settlement measurements will be tabulated to generate graphs in time increments at each location. The following settlement analysis will be performed at each monitoring event:

- Settlement per month at each location measured
- Change of landfill surface slopes monthly at Sections AA', BB' and CC'
- Rate of settlement at each location every 3 months
- Average settlement across the landfill surface every 3 months
- Waste volume change with time due to settlement
- Identify any change of flow path toward the stormwater pond (if applicable).

The information obtained from the above may be used to predict future settlement of the landfill surface at any timeframe after the monitoring period, or after post-closure care period of 30 years. This prediction of settlement can be done by plotting the data on semi-log graph to see the trends that change over time and then be included in designing of the final grading plan for the final cover system.

Regarding the location of leachate storage infrastructure or the stormwater pond on the landfill surface, it is recommended to preload this area (with known weight of a soil stockpile greater than the weight of the proposed structure or water) to induce load-related settlement prior to the installation of the proposed structure. The area or the test pad with known loading information can be equipped with settlement plates so settlement can be measured at regular frequency such that the coefficient of consolidation can be estimated and used for future settlement prediction.

4.0 REPORTING

Monthly settlement monitoring reports will be submitted to VDEQ by the 10th day of the following month. This report may be submitted as a stand-alone report in in combination with other reports submitted for the facility on the same day. The report will also include any modifications or replacement settlement plate(s), if damage occurred during the monitoring period. The monthly report will document the following:

- o Topographic survey drone record
- Site topographic contour lines generation
- Tabulation of the monthly accumulative settlement measurement and graph presentation at each location
- Settlement analysis
 - Settlement per month at each location measured

- Change of landfill surface slopes monthly at Sections AA', BB' and CC'
- Rate of settlement at each location every 3 months
- Average settlement across the landfill surface every 3 months
- Waste volume change with time due to settlement
- Identify any change of flow path toward the stormwater pond

Reporting may be submitted in spreadsheet and graphical format as well as in section profiles at the selected locations. The information collected will be used for determining frequency of monitoring and for designing the final grading plan of the proposed final cover system.

5.0 REFERENCES

Virginia Tech College of Engineering. Expert Panel Report: Bristol Integrated Solid Waste Management Facility, Bristol, Virginia. April 25, 2022.

FIGURE 1 - TOPOGRAPHIC QUADRANGLE MAP

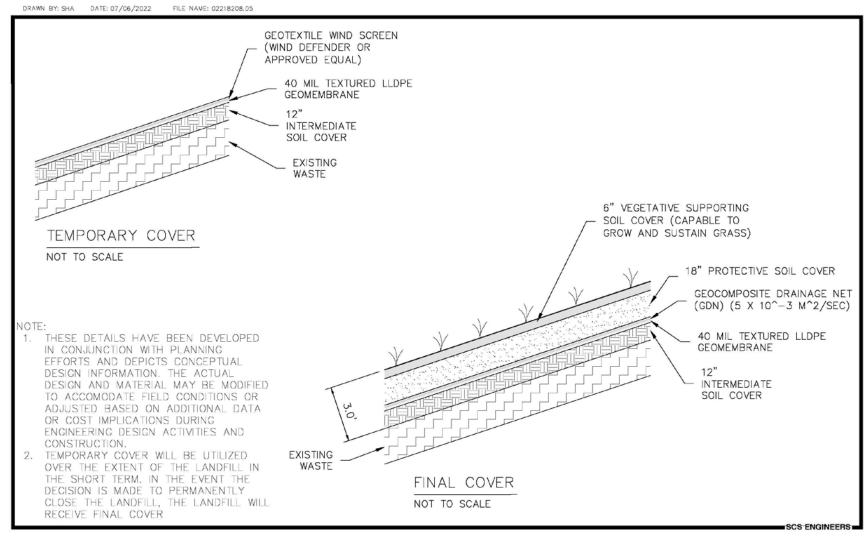


FIGURE 2 - TEMPORARY & FINAL COVER DETAILS

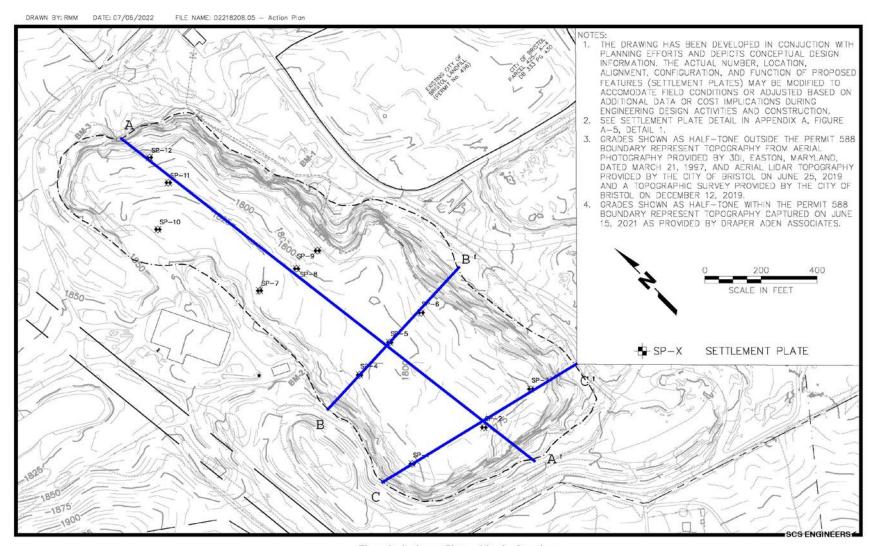


Figure 3 - Settlement Plate and Section Locations

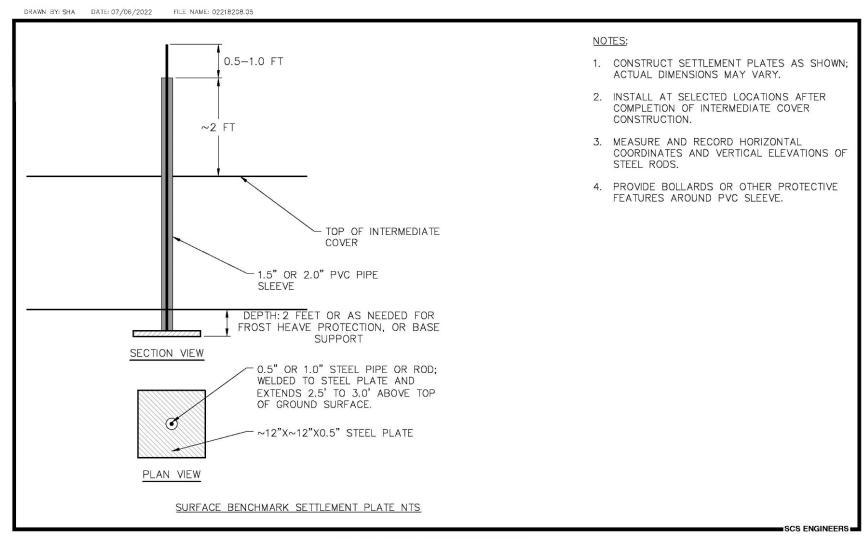
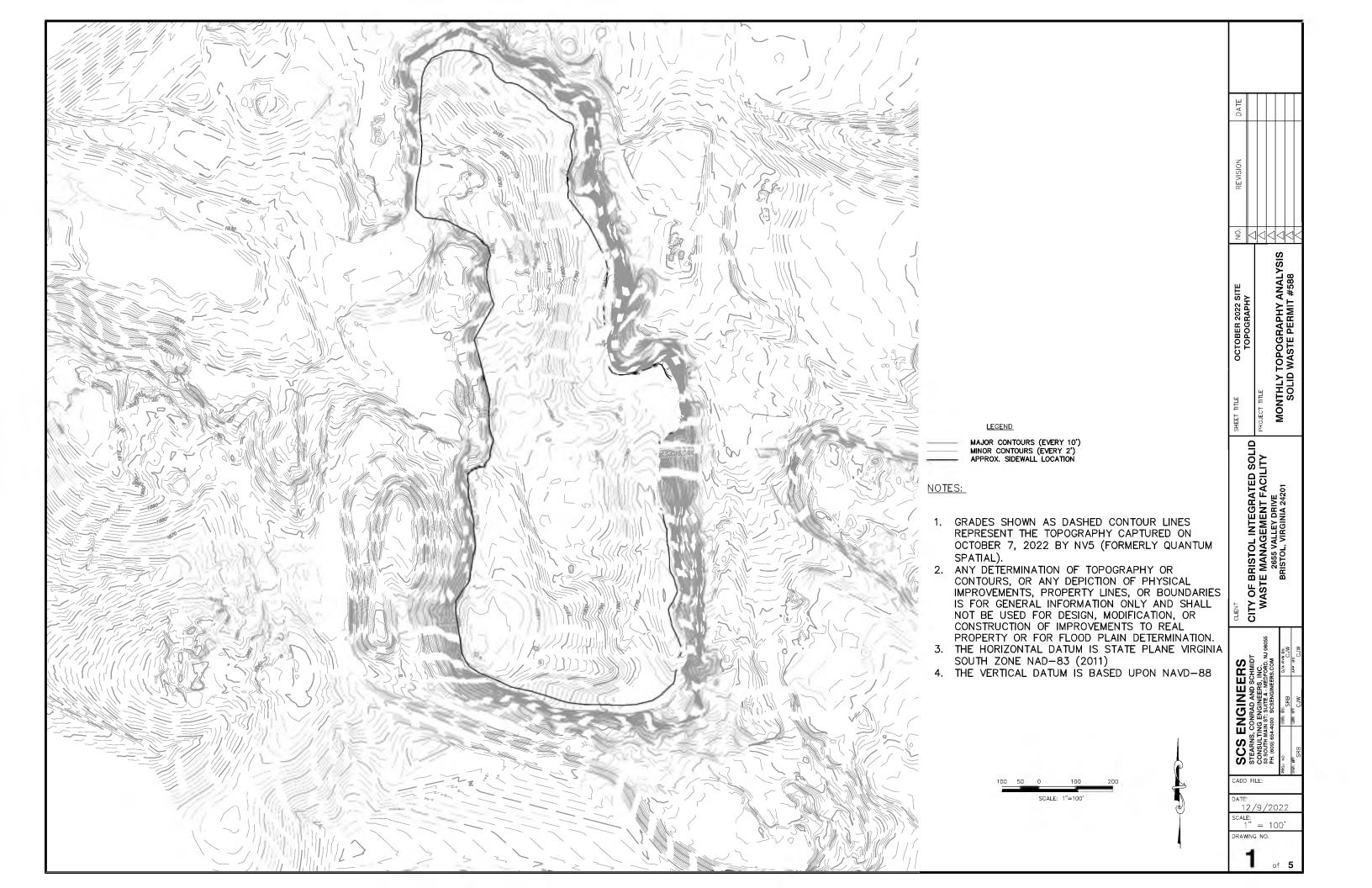
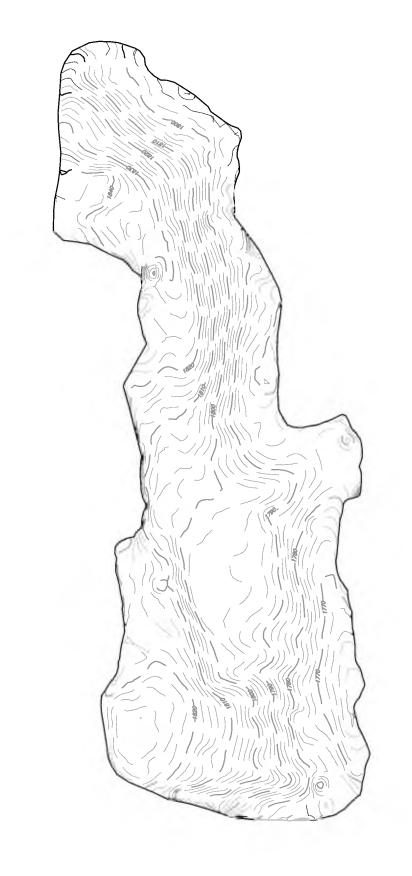
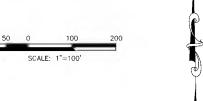




FIGURE 4 - SETTLEMENT PLATE DETAILS

Appendix E Monthly Topography Analysis

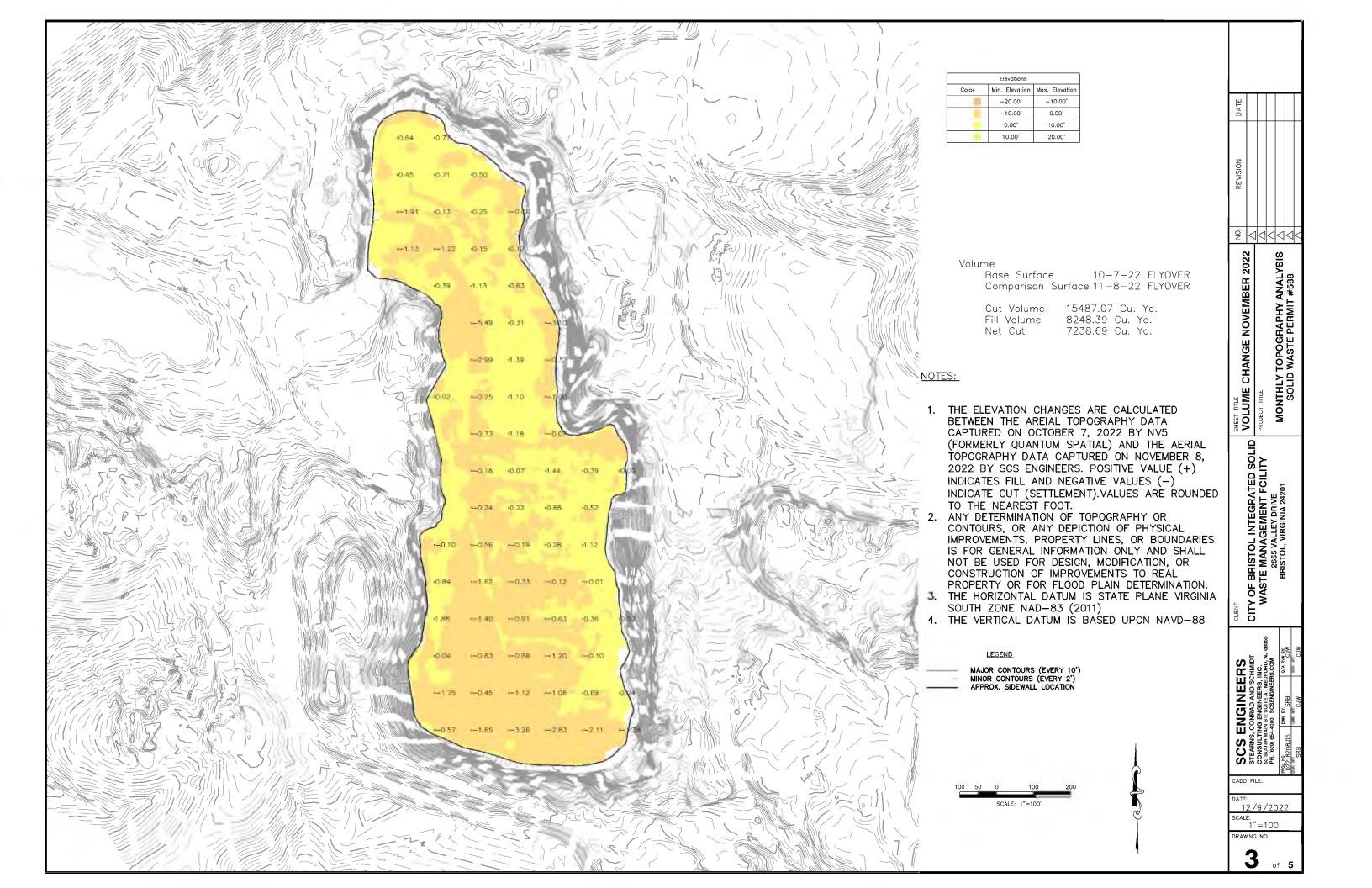


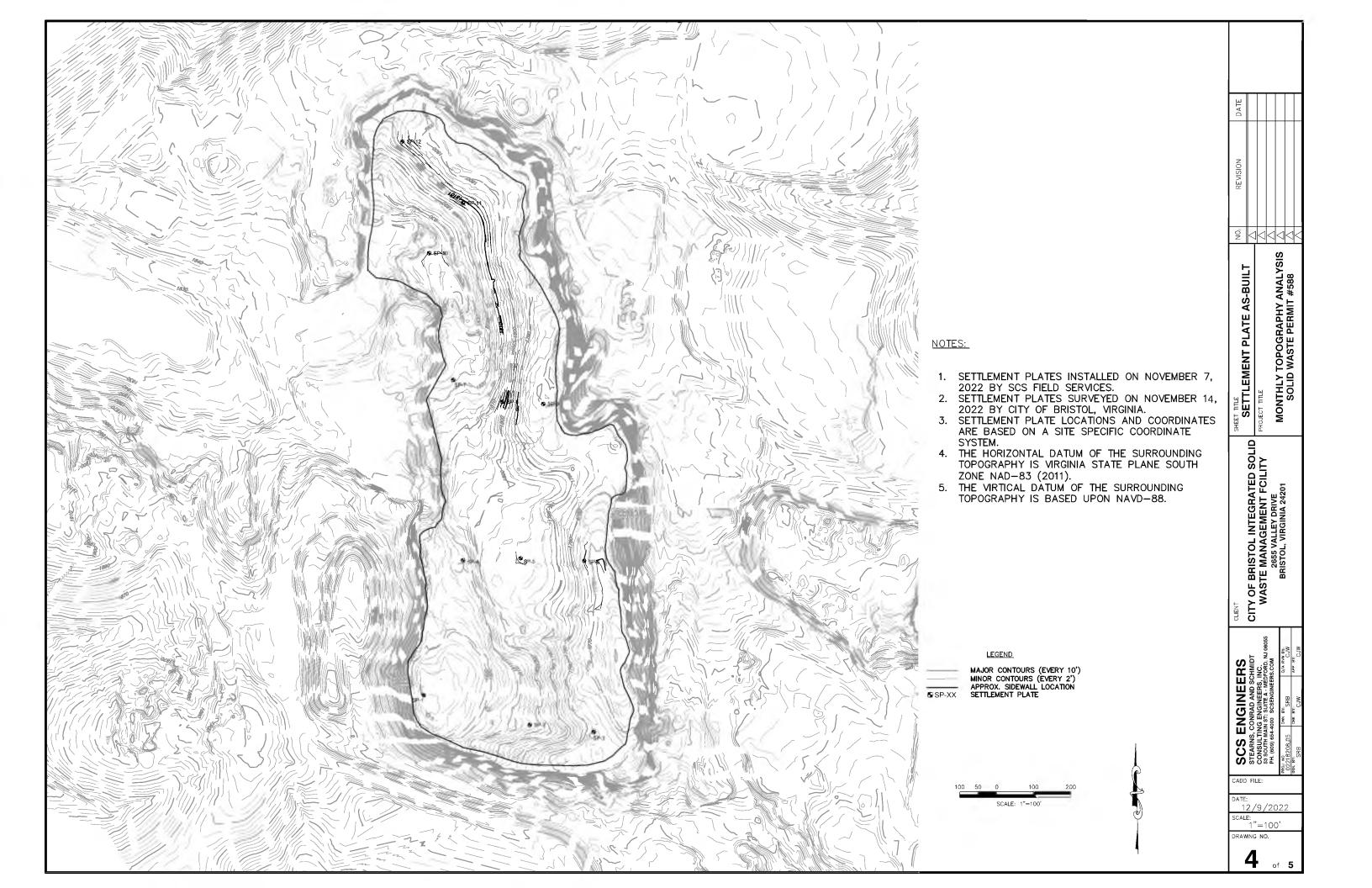
<u>LEGEND</u>

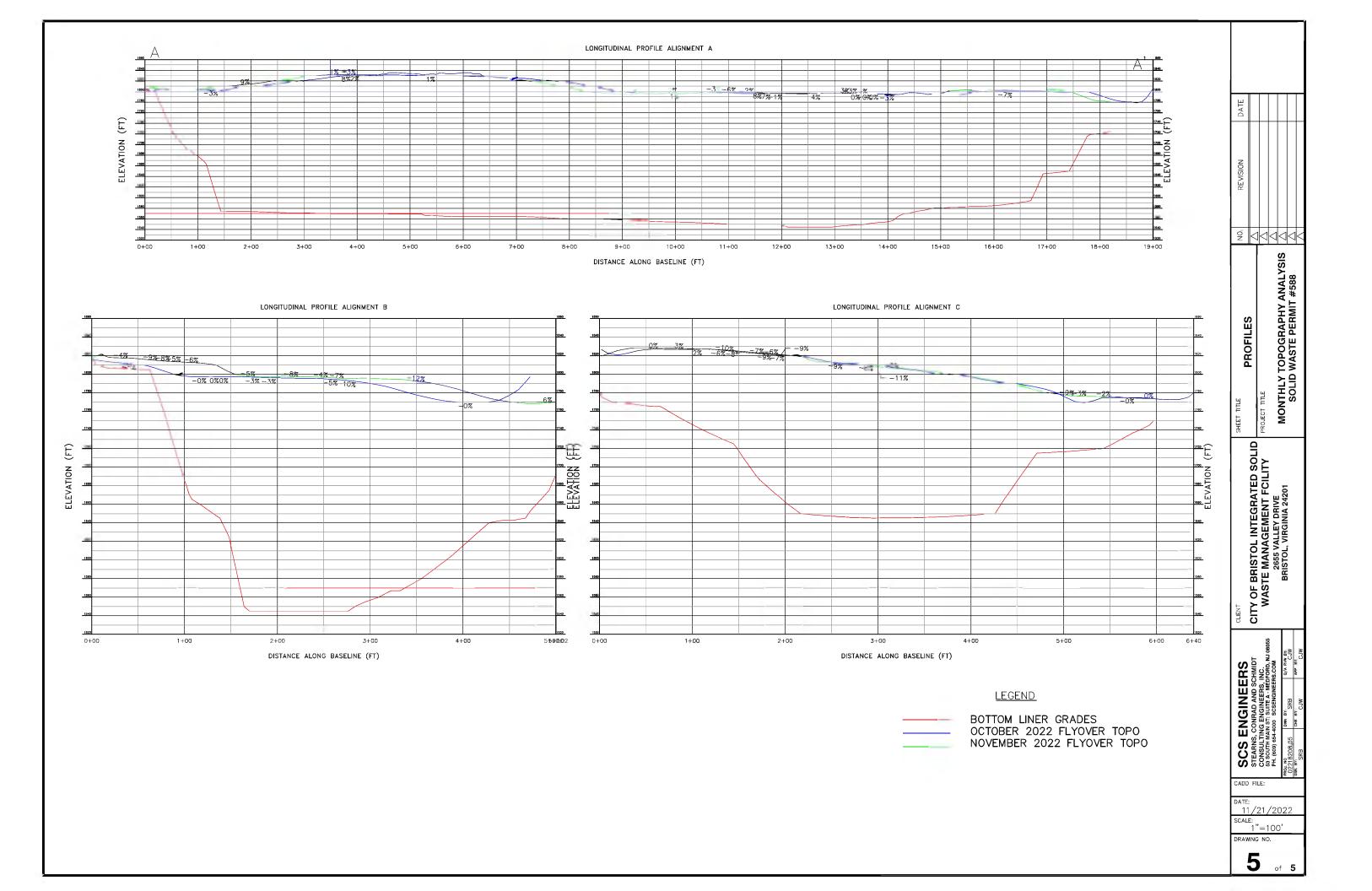
MAJOR CONTOURS (EVERY 10') MINOR CONTOURS (EVERY 2') APPROX. SIDEWALL LOCATION

NOTES:

- 1. GRADES SHOWN AS CONTOUR LINES ONLY WITHIN THE PERMIT 588 BOUNDARY REPRESENT THE TOPOGRAPHY CAPTURED ON NOVEMBER 8, 2022 BY SCS ENGINEERS.
- 2. ANY DETERMINATION OF TOPOGRAPHY OR CONTOURS, OR ANY DEPICTION OF PHYSICAL IMPROVEMENTS, PROPERTY LINES, OR BOUNDARIES IS FOR GENERAL INFORMATION ONLY AND SHALL NOT BE USED FOR DESIGN, MODIFICATION, OR CONSTRUCTION OF IMPROVEMENTS TO REAL PROPERTY OR FOR FLOOD PLAIN DETERMINATION.
- 3. THE HORIZONTAL DATUM IS STATE PLANE VIRGINIA SOUTH ZONE NAD-83 (2011)
- 4. THE VERTICAL DATUM IS BASED UPON NAVD-88






CLENT	SHEET TILE NOVEMBED 8 2022 I ANDEIL I TOPO	ON	
CITY OF BRISTOL INTEGRATED SOLID	NOVEMBER 8, 2022 CANDI ILE I OF O		
WASTE MANAGEMENT FACILITY	PROJECT TILE	\leq	
2655 VALLEY DRIVE		\triangleleft	
BRISTOL, VIRGINIA 24201	MONTHLY TOPOGRAPHY ANALYSIS	\triangleleft	
	SOLID WASTE PERMIT #588	\triangleleft	
		<	

J	ਠ			
RS	HMIDT	INC. FORD, NJ 08055 IS.COM	Q/A RVW BY CJW	APP BY
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS, INC. 53 SOUTH MAIN ST: SUITE A - MEDFORD, NJ 08055 PH. (609) 654-4000 SCSENGINEERS.COM	DWN BY SRB	CHK BY
SCS E	STEARNS, C	CONSULTIN 53 SOUTH MAIN PH. (609) 654-4	PROJ NO	DSN BY
CADD	FIL	.E:		
DATE 1		a /20	22	

SCALE: 1<u>"=100'</u> DRAWING NO.

Appendix F Sample Collection Log and Lab Report

Appendix F Sample Collection Log and Lab Report

City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location	Sample Date	Sample	Temperature	рН	Specific Conductance	Dissolved Oxygen	ORP	Turbidity	Observations	
ID		Time	(°C)	(s.u.)	(m\$/cm)	(mg/L)	(mV)	(NTU)		
EW-49	not pumping									
EW-50	not pumping									
EW-51	no pump insta	lled								
EW-52	not pumping									
EW-53	not pumping									
EW-54	not pumping									
EW-55	not pumping									
EW-56	no pump installed									
EW-57	not pumping									
EW-58	not pumping									
EW-59	11/16/2022	17:45	38.0	8.18	24.61	1.85	45.8	>1100	Black	
EW-60	not pumping									
EW-61	11/16/2022	13:45	41.8	7.49	15.94	0.27	-142.9	>1100	Black	
EW-62	not pumping									
EW-63	not pumping									
EW-64	not pumping									
EW-65	11/16/2022	11:25	30.5	8.37	20.31	0.27	-143.6	>1100	Black	
EW-67	not pumping									
EW-68	not pumping									
Sampler:		L. How	ard (SCS)			Sample	s Shipped By:	: Courier		

Sampler: L. Howard (SCS)
Log Checked By: J. Robb (SCS)

Laboratory: Enthalpy Analytical

1941 Reymet Road • Richmond, Virginia 23237 • Tel: (804)-358-8295 Fax: (804)-358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 22K1011

Client Name: SCS Engineers-Winchester

296 Victory Road

Winchester, VA 22602

Submitted To: Jennifer Robb

Client Site I.D.: Bristol landfill

Date Received:

November 18, 2022 8:00

Date Issued:

December 6, 2022 12:51

Project Number:

02218206.15

Purchase Order:

Enclosed are the results of analyses for samples received by the laboratory on 11/18/2022 08:00. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical.

Analysis Detects Report

Client Name: SCS Engineers-Winchester

Date Issued: 12/6/2022 12:51:59PM

Client Site ID: Bristol landfill Submitted To: Jennifer Robb

Laboratory Sample ID: 22K1011-01	Client Sa	ample ID: EW-65						
							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Arsenic	01	SW6010D	1.30		0.0200	0.0400	1	mg/L
Barium	01	SW6010D	0.360		0.0100	0.0200	1	mg/L
Chromium	01	SW6010D	0.354		0.0160	0.0200	1	mg/L
Lead	01	SW6010D	0.0170	J	0.0120	0.0200	1	mg/L
Mercury	01	SW7470A	0.00053		0.00040	0.00040	1	mg/L
Nickel	01	SW6010D	0.1730		0.0140	0.0200	1	mg/L
Zinc	01	SW6010D	0.694		0.0200	0.0200	1	mg/L
2-Butanone (MEK)	01	SW8260D	1140		30.0	100	10	ug/L
Acetone	01	SW8260D	4420		70.0	100	10	ug/L
Benzene	01	SW8260D	50.4		4.00	10.0	10	ug/L
Ethylbenzene	01	SW8260D	16.2		4.00	10.0	10	ug/L
Tetrahydrofuran	01	SW8260D	176		100	100	10	ug/L
Toluene	01	SW8260D	32.8		5.00	10.0	10	ug/L
Xylenes, Total	01	SW8260D	37.8		10.0	30.0	10	ug/L
Ammonia as N	01RE1	EPA350.1 R2.0	1380		50.0	50.0	500	mg/L
BOD	01	SM22 5210B-2011	5140		0.2	2.0	1	mg/L
COD	01	SM22 5220D-2011	10800		1000	1000	100	mg/L
Nitrate+Nitrite as N	01	SM22 4500-NO3F-2011	0.33		0.10	0.10	1	mg/L
TKN as N	01RE1	EPA351.2 R2.0	1470		20.0	50.0	100	mg/L
Total Recoverable Phenolics	01	SW9065	3.00		0.300	0.500	1	mg/L

Analysis Detects Report

Client Name: SCS Engineers-Winchester

Date Issued: 12/6/2022 12:51:59PM

Client Site ID: Bristol landfill
Submitted To: Jennifer Robb

Laboratory Sample ID: Client Sample ID: EW-61 22K1011-02 Dil. Parameter LOQ Units LOD Factor Samp ID Reference Method Sample Results Qual SW6010D Arsenic 02 0.464 0.0200 0.0400 1 mg/L Barium 02 SW6010D 0.485 0.0100 0.0200 1 mg/L Chromium 02 SW6010D 0.112 0.0160 0.0200 1 mg/L 02 SW7470A 0.00169 0.00040 0.00040 1 Mercury mg/L Nickel 02 SW6010D 0.1344 0.0140 0.0200 1 mg/L 02 SW6010D 0.0320 0.0200 0.0200 1 Zinc mg/L 2-Butanone (MEK) 02RE1 SW8260D 15600 300 1000 100 ug/L 02RE1 SW8260D 38300 Acetone 700 1000 100 ug/L Benzene 02 SW8260D 2860 4.00 10 10.0 ug/L 02 SW8260D Ethylbenzene 194 4.00 10.0 10 ug/L 02RE1 SW8260D 8530 1000 1000 Tetrahydrofuran 100 ug/L Toluene 02 SW8260D 214 5.00 10.0 10 ug/L 02 SW8260D 185 10.0 30.0 10 Xylenes, Total ug/L 02RE1 Ammonia as N EPA350.1 R2.0 1400 50.0 50.0 500 mg/L BOD 02 SM22 5210B-2011 5860 0.2 2.0 1 mg/L COD 02 SM22 5220D-2011 9790 1000 1000 100 mg/L Nitrate+Nitrite as N 02 SM22 4500-NO3F-2011 0.16 0.10 0.10 1 mg/L TKN as N 02RF1 EPA351.2 R2.0 1290 20.0 50.0 100 mg/L Total Recoverable Phenolics 02 5.68 SW9065 0.300 0.500 1 mg/L

Analysis Detects Report

Client Name: SCS Engineers-Winchester

Date Issued: 12/6/2022 12:51:59PM

Client Site ID: Bristol landfill Submitted To: Jennifer Robb

Laboratory Sample ID: 22K1011-03 Client Sample ID: EW-59

						Dil.	
Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
03	SW6010D	0.863		0.0200	0.0400	1	mg/L
03	SW6010D	0.871		0.0100	0.0200	1	mg/L
03	SW6010D	0.208		0.0160	0.0200	1	mg/L
03	SW6010D	0.0866		0.0140	0.0200	1	mg/L
03	SW8260D	3510		30.0	100	10	ug/L
03RE1	SW8260D	16100		700	1000	100	ug/L
03	SW8260D	7.40	J	4.00	10.0	10	ug/L
03	SW8260D	309		100	100	10	ug/L
03	EPA350.1 R2.0	1560		50.0	50.0	500	mg/L
03	SM22 5210B-2011	15700		0.2	2.0	1	mg/L
03	SM22 5220D-2011	23500		2000	2000	200	mg/L
03	SM22 4500-NO3F-2011	2.91		0.10	0.10	1	mg/L
03RE1	EPA351.2 R2.0	2110		50.0	125	250	mg/L
03	SW9065	28.8		0.750	1.25	1	mg/L
	03 03 03 03 03 03 03 03 03 03 03 03 03RE1	03 SW6010D 03 SW6010D 03 SW6010D 03 SW6010D 03 SW8260D 03 SW8260D 03 SW8260D 03 SW8260D 03 SW8260D 03 SW8260D 03 SW8260D 03 SW8260D 03 SW8260D 03 SM22 5210B-2011 03 SM22 5220D-2011 03 SM22 4500-NO3F-2011 03RE1 EPA351.2 R2.0	03 SW6010D 0.863 03 SW6010D 0.871 03 SW6010D 0.208 03 SW6010D 0.0866 03 SW8260D 3510 03RE1 SW8260D 16100 03 SW8260D 7.40 03 SW8260D 309 03 SW8260D 309 03 SM2501 R2.0 1560 03 SM22 5210B-2011 15700 03 SM22 5220D-2011 23500 03 SM22 4500-NO3F-2011 2.91 03RE1 EPA351.2 R2.0 2110	03 SW6010D 0.863 03 SW6010D 0.871 03 SW6010D 0.208 03 SW6010D 0.0866 03 SW8260D 3510 03RE1 SW8260D 16100 03 SW8260D 7.40 J 03 SW8260D 309 03 SW8260D 1560 03 SM22 5210B-2011 15700 03 SM22 5210B-2011 23500 03 SM22 4500-NO3F-2011 2.91 03RE1 EPA351.2 R2.0 2110	03 SW6010D 0.863 0.0200 03 SW6010D 0.871 0.0100 03 SW6010D 0.208 0.0160 03 SW6010D 0.0866 0.0140 03 SW8260D 3510 30.0 03RE1 SW8260D 16100 700 03 SW8260D 7.40 J 4.00 03 SW8260D 309 100 03 SW8260D 309 100 03 SW82501 R2.0 1560 50.0 03 SM22 5210B-2011 15700 0.2 03 SM22 5220D-2011 23500 2000 03 SM22 4500-NO3F-2011 2.91 0.10 03RE1 EPA351.2 R2.0 2110 50.0	03 SW6010D 0.863 0.0200 0.0400 03 SW6010D 0.871 0.0100 0.0200 03 SW6010D 0.208 0.0160 0.0200 03 SW6010D 0.0866 0.0140 0.0200 03 SW8260D 3510 30.0 100 03RE1 SW8260D 16100 700 1000 03 SW8260D 7.40 J 4.00 10.0 03 SW8260D 309 100 100 03 SM22501 R2.0 1560 50.0 50.0 03 SM22 5210B-2011 15700 0.2 2.0 03 SM22 5220D-2011 23500 2000 2000 03 SM22 4500-NO3F-2011 2.91 0.10 0.10 03RE1	Samp ID Reference Method Sample Results Qual LOD LOQ Factor 03 SW6010D 0.863 0.0200 0.0400 1 03 SW6010D 0.871 0.0100 0.0200 1 03 SW6010D 0.208 0.0160 0.0200 1 03 SW6010D 0.0866 0.0140 0.0200 1 03 SW8260D 3510 30.0 100 10 03RE1 SW8260D 16100 700 1000 100 03 SW8260D 7.40 J 4.00 10.0 10 03 SW8260D 309 100 10.0 10 03 SW8260D 309 100 10.0 10 03 SW8260D 309 100 10.0 10 03 SM22501 R2.0 1560 50.0 50.0 50.0 03 SM22 5210B-2011 15700 0.2 2.0 1

Laboratory Sample ID: 22K1011-04 Client Sample ID: Trip Blank

							Dil.	
Parameter	Samp ID	Reference Method	Sample Results	Qual	LOD	LOQ	Factor	Units
Acetone	04	SW8260D	9.36	J	7.00	10.0	1	ug/L

Note that this report is not the "Certificate of Analysis". This report only lists the target analytes that displayed concentrations that exceeded the detection limit specified for that analyte. For a complete listing of all analytes requested and the results of the analysis see the "Certificate of Analysis".

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Date Issued:

12/6/2022 12:51:59PM

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EW-65	22K1011-01	Ground Water	11/16/2022 11:25	11/18/2022 08:00
EW-61	22K1011-02	Ground Water	11/16/2022 13:45	11/18/2022 08:00
EW-59	22K1011-03	Ground Water	11/16/2022 17:45	11/18/2022 08:00
Trip Blank	22K1011-04	Waste Water	11/14/2022 16:10	11/18/2022 08:00
Trip Blank	22K1011-05	Waste Water	11/14/2022 16:10	11/18/2022 08:00

Final COA reissued on 12/6/2022 to attach subcontract results to final COA as it was not properly generating.

Certificate of Analysis

Client Name: SCS Engineers-Winchester Date Issued: 12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Client Sample ID: EW-65 Laboratory Sample ID: 22K1011-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA 6000/7000 Serie	s Methods											
Silver	01	7440-22-4	SW6010D	11/22/2022 14:15	11/23/2022 01:42	BLOD		0.0100	0.0200	1	mg/L	AB
Arsenic	01	7440-38-2	SW6010D	11/22/2022 14:15	11/23/2022 01:42	1.30		0.0200	0.0400	1	mg/L	AB
Barium	01	7440-39-3	SW6010D	11/22/2022 14:15	11/23/2022 01:42	0.360		0.0100	0.0200	1	mg/L	AB
Cadmium	01	7440-43-9	SW6010D	11/22/2022 14:15	11/23/2022 01:42	BLOD		0.0040	0.0080	1	mg/L	AB
Chromium	01	7440-47-3	SW6010D	11/22/2022 14:15	11/23/2022 01:42	0.354		0.0160	0.0200	1	mg/L	AB
Copper	01	7440-50-8	SW6010D	11/22/2022 14:15	11/23/2022 01:42	BLOD		0.0160	0.0200	1	mg/L	AB
Mercury	01	7439-97-6	SW7470A	12/05/2022 08:55	12/05/2022 14:08	0.00053		0.00040	0.00040	1	mg/L	ACM
Nickel	01	7440-02-0	SW6010D	11/22/2022 14:15	11/23/2022 01:42	0.1730		0.0140	0.0200	1	mg/L	AB
Lead	01	7439-92-1	SW6010D	11/22/2022 14:15	11/23/2022 01:42	0.0170	J	0.0120	0.0200	1	mg/L	AB
Selenium	01	7782-49-2	SW6010D	11/22/2022 14:15	11/23/2022 01:42	BLOD		0.0800	0.100	1	mg/L	AB
Zinc	01	7440-66-6	SW6010D	11/22/2022 14:15	11/23/2022 01:42	0.694		0.0200	0.0200	1	mg/L	AB
Volatile Organic Compounds by GCM	s											
2-Butanone (MEK)	01	78-93-3	SW8260D	11/21/2022 00:00	11/21/2022 18:02	1140		30.0	100	10	ug/L	RJB
Acetone	01	67-64-1	SW8260D	11/21/2022 00:00	11/21/2022 18:02	4420		70.0	100	10	ug/L	RJB
Benzene	01	71-43-2	SW8260D	11/21/2022 00:00	11/21/2022 18:02	50.4		4.00	10.0	10	ug/L	RJB
Ethylbenzene	01	100-41-4	SW8260D	11/21/2022 00:00	11/21/2022 18:02	16.2		4.00	10.0	10	ug/L	RJB
Toluene	01	108-88-3	SW8260D	11/21/2022 00:00	11/21/2022 18:02	32.8		5.00	10.0	10	ug/L	RJB
Xylenes, Total	01	1330-20-7	SW8260D	11/21/2022 00:00	11/21/2022 18:02	37.8		10.0	30.0	10	ug/L	RJB
Tetrahydrofuran	01	109-99-9	SW8260D	11/21/2022 00:00	11/21/2022 18:02	176		100	100	10	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	01	104	% 70-120	11/21/2022 00	0:00 11/21/2022 18	3:02						
Surr: 4-Bromofluorobenzene (Surr)	01	98.8	% 75-120	11/21/2022 00	0:00 11/21/2022 18	3:02						
Surr: Dibromofluoromethane (Surr)	01	106	% 70-130	11/21/2022 00):00 11/21/2022 18	3:02						
Surr: Toluene-d8 (Surr)	01	101	% 70-130	11/21/2022 00):00 11/21/2022 18	3:02						
Surr: 1,2-Dichloroethane-d4 (Surr)	01RE1	97.0	% 70-120	11/21/2022 00	0:00 11/21/2022 18	3:27						
Surr: 4-Bromofluorobenzene (Surr)	01RE1	102	% 75-120	11/21/2022 00	0:00 11/21/2022 18	3:27						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Client Sample ID: EW-65 Laboratory Sample ID: 22K1011-01

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCMS	3											
Surr: Dibromofluoromethane (Surr)	01RE1	101	% 70-130	11/21/2022 00:	00 11/21/2022 18:2	?7						
Surr: Toluene-d8 (Surr)	01RE1	101	% 70-130	11/21/2022 00:	00 11/21/2022 18:2	27						
Semivolatile Organic Compounds by G	SCMS											
Anthracene	01	120-12-7	SW8270E	11/21/2022 09:00	11/21/2022 22:09	BLOD		46.7	93.5	10	ug/L	MGG
Surr: 2,4,6-Tribromophenol (Surr)	01	121	% 5-136	11/21/2022 09:	00 11/21/2022 22:0	9						
Surr: 2-Fluorobiphenyl (Surr)	01	<i>55.4</i>	9-117	11/21/2022 09:	00 11/21/2022 22:0	9						
Surr: 2-Fluorophenol (Surr)	01	47.0	5-60	11/21/2022 09:	00 11/21/2022 22:0	9						
Surr: Nitrobenzene-d5 (Surr)	01	91.0	9% 5-151	11/21/2022 09:	00 11/21/2022 22:0	9						
Surr: Phenol-d5 (Surr)	01	37.3	5-60	11/21/2022 09:	00 11/21/2022 22:0	9						
Surr: p-Terphenyl-d14 (Surr)	01	40.8	3 % 5-141	11/21/2022 09:	00 11/21/2022 22:0	9						
Wet Chemistry Analysis												
Ammonia as N	01RE1	7664-41-7	EPA350.1 R2.0	11/21/2022 15:52	11/21/2022 15:52	1380		50.0	50.0	500	mg/L	MKS
BOD	01	E1640606	SM22 5210B-2011	11/18/2022 11:24	11/18/2022 11:24	5140		0.2	2.0	1	mg/L	LAM
COD	01	NA	SM22 5220D-2011	11/28/2022 10:00	11/28/2022 10:00	10800		1000	1000	100	mg/L	MGC
Nitrate+Nitrite as N	01	E701177	SM22 4500-NO3F- 2011	11/28/2022 14:36	11/28/2022 14:36	0.33		0.10	0.10	1	mg/L	FIR
Total Recoverable Phenolics	01	NA	SW9065	11/28/2022 10:30	11/28/2022 17:15	3.00		0.300	0.500	1	mg/L	MAH
TKN as N	01RE1	E17148461	EPA351.2 R2.0	12/01/2022 16:39	12/01/2022 16:39	1470		20.0	50.0	100	mg/L	FIR

Certificate of Analysis

Client Name: SCS Engineers-Winchester Date Issued: 12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Client Sample ID: EW-61 Laboratory Sample ID: 22K1011-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA 6000/7000 Series	Methods											
Silver	02	7440-22-4	SW6010D	11/22/2022 14:15	11/23/2022 01:46	BLOD		0.0100	0.0200	1	mg/L	AB
Arsenic	02	7440-38-2	SW6010D	11/22/2022 14:15	11/23/2022 01:46	0.464		0.0200	0.0400	1	mg/L	AB
Barium	02	7440-39-3	SW6010D	11/22/2022 14:15	11/23/2022 01:46	0.485		0.0100	0.0200	1	mg/L	AB
Cadmium	02	7440-43-9	SW6010D	11/22/2022 14:15	11/23/2022 01:46	BLOD		0.0040	0.0080	1	mg/L	AB
Chromium	02	7440-47-3	SW6010D	11/22/2022 14:15	11/23/2022 01:46	0.112		0.0160	0.0200	1	mg/L	AB
Copper	02	7440-50-8	SW6010D	11/22/2022 14:15	11/23/2022 01:46	BLOD		0.0160	0.0200	1	mg/L	AB
Mercury	02	7439-97-6	SW7470A	12/05/2022 08:55	12/05/2022 14:11	0.00169		0.00040	0.00040	1	mg/L	ACM
Nickel	02	7440-02-0	SW6010D	11/22/2022 14:15	11/23/2022 01:46	0.1344		0.0140	0.0200	1	mg/L	AB
Lead	02	7439-92-1	SW6010D	11/22/2022 14:15	11/23/2022 01:46	BLOD		0.0120	0.0200	1	mg/L	AB
Selenium	02	7782-49-2	SW6010D	11/22/2022 14:15	11/23/2022 01:46	BLOD		0.0800	0.100	1	mg/L	AB
Zinc	02	7440-66-6	SW6010D	11/22/2022 14:15	11/23/2022 01:46	0.0320		0.0200	0.0200	1	mg/L	AB
Volatile Organic Compounds by GCMS												
2-Butanone (MEK)	02RE1	78-93-3	SW8260D	11/21/2022 00:00	11/21/2022 19:19	15600		300	1000	100	ug/L	RJB
Acetone	02RE1	67-64-1	SW8260D	11/21/2022 00:00	11/21/2022 19:19	38300		700	1000	100	ug/L	RJB
Benzene	02	71-43-2	SW8260D	11/21/2022 00:00	11/21/2022 18:53	2860		4.00	10.0	10	ug/L	RJB
Ethylbenzene	02	100-41-4	SW8260D	11/21/2022 00:00	11/21/2022 18:53	194		4.00	10.0	10	ug/L	RJB
Toluene	02	108-88-3	SW8260D	11/21/2022 00:00	11/21/2022 18:53	214		5.00	10.0	10	ug/L	RJB
Xylenes, Total	02	1330-20-7	SW8260D	11/21/2022 00:00	11/21/2022 18:53	185		10.0	30.0	10	ug/L	RJB
Tetrahydrofuran	02RE1	109-99-9	SW8260D	11/21/2022 00:00	11/21/2022 19:19	8530		1000	1000	100	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	02	104	% 70-120	11/21/2022 00	0:00 11/21/2022 18	:53						
Surr: 4-Bromofluorobenzene (Surr)	02	96.9	% 75-120	11/21/2022 00	0:00 11/21/2022 18	:53						
Surr: Dibromofluoromethane (Surr)	02	104	% 70-130	11/21/2022 00	0:00 11/21/2022 18	:53						
Surr: Toluene-d8 (Surr)	02	98.0	% 70-130	11/21/2022 00	0:00 11/21/2022 18	:53						
Surr: 1,2-Dichloroethane-d4 (Surr)	02RE1	104		11/21/2022 00								
Surr: 4-Bromofluorobenzene (Surr)	02RE1	95.7	% 75-120	11/21/2022 00	0:00 11/21/2022 19	:19						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Client Sample ID: EW-61 Laboratory Sample ID: 22K1011-02

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCM	S											
Surr: Dibromofluoromethane (Surr)	02RE1	105	5% 70-130	11/21/2022 00:0	00 11/21/2022 19:1	9						
Surr: Toluene-d8 (Surr)	02RE1	104	1% 70-130	11/21/2022 00:0	00 11/21/2022 19:1	9						
Semivolatile Organic Compounds by	GCMS											
Anthracene	02	120-12-7	SW8270E	11/21/2022 09:00	11/21/2022 22:44	BLOD		46.7	93.5	10	ug/L	MGG
Surr: 2,4,6-Tribromophenol (Surr)	02	89.9	5-136	11/21/2022 09:0	00 11/21/2022 22:4	4						
Surr: 2-Fluorobiphenyl (Surr)	02	39. <i>4</i>	9-117	11/21/2022 09:0	00 11/21/2022 22:4	4						
Surr: 2-Fluorophenol (Surr)	02	20.0	5-60	11/21/2022 09:0	00 11/21/2022 22:4	4						
Surr: Nitrobenzene-d5 (Surr)	02	53.0	5-151	11/21/2022 09:0	00 11/21/2022 22:4	4						
Surr: Phenol-d5 (Surr)	02	39.1	% 5-60	11/21/2022 09:0	00 11/21/2022 22:4	4						
Surr: p-Terphenyl-d14 (Surr)	02	10.4	5-141	11/21/2022 09:0	00 11/21/2022 22:4	4						
Wet Chemistry Analysis												
Ammonia as N	02RE1	7664-41-7	EPA350.1 R2.0	11/21/2022 15:52	11/21/2022 15:52	1400		50.0	50.0	500	mg/L	MKS
BOD	02	E1640606	SM22 5210B-2011	11/18/2022 13:19	11/18/2022 13:19	5860		0.2	2.0	1	mg/L	LAM
COD	02	NA	SM22 5220D-2011	11/28/2022 10:00	11/28/2022 10:00	9790		1000	1000	100	mg/L	MGC
Nitrate+Nitrite as N	02	E701177	SM22 4500-NO3F- 2011	11/28/2022 14:36	11/28/2022 14:36	0.16		0.10	0.10	1	mg/L	FIR
Total Recoverable Phenolics	02	NA	SW9065	11/28/2022 10:30	11/28/2022 17:15	5.68		0.300	0.500	1	mg/L	MAH
TKN as N	02RE1	E17148461	EPA351.2 R2.0	12/01/2022 16:39	12/01/2022 16:39	1290		20.0	50.0	100	mg/L	FIR

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Client Sample ID: EW-59 Laboratory Sample ID: 22K1011-03

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Metals (Total) by EPA 6000/7	7000 Series Methods											
Silver	03	7440-22-4	SW6010D	11/22/2022 14:15	11/23/2022 01:52	BLOD		0.0100	0.0200	1	mg/L	AB
Arsenic	03	7440-38-2	SW6010D	11/22/2022 14:15	11/23/2022 01:52	0.863		0.0200	0.0400	1	mg/L	AB
Barium	03	7440-39-3	SW6010D	11/22/2022 14:15	11/23/2022 01:52	0.871		0.0100	0.0200	1	mg/L	AB
Cadmium	03	7440-43-9	SW6010D	11/22/2022 14:15	11/23/2022 01:52	BLOD		0.0040	0.0080	1	mg/L	AB
Chromium	03	7440-47-3	SW6010D	11/22/2022 14:15	11/23/2022 01:52	0.208		0.0160	0.0200	1	mg/L	AB
Copper	03	7440-50-8	SW6010D	11/22/2022 14:15	11/23/2022 01:52	BLOD		0.0160	0.0200	1	mg/L	AB
Mercury	03	7439-97-6	SW7470A	12/05/2022 08:55	12/05/2022 14:13	BLOD		0.00080	0.00080	1	mg/L	ACM
Nickel	03	7440-02-0	SW6010D	11/22/2022 14:15	11/23/2022 01:52	0.0866		0.0140	0.0200	1	mg/L	AB
Lead	03	7439-92-1	SW6010D	11/22/2022 14:15	11/23/2022 01:52	BLOD		0.0120	0.0200	1	mg/L	AB
Selenium	03	7782-49-2	SW6010D	11/22/2022 14:15	11/23/2022 01:52	BLOD		0.0800	0.100	1	mg/L	AB
Zinc	03	7440-66-6	SW6010D	11/22/2022 14:15	11/23/2022 01:52	BLOD		0.0200	0.0200	1	mg/L	AB

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Client Sample ID: EW-59 Laboratory Sample ID: 22K1011-03

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCMS												
2-Butanone (MEK)	03	78-93-3	SW8260D	11/21/2022 00:00	11/21/2022 19:44	3510		30.0	100	10	ug/L	RJB
Acetone	03RE1	67-64-1	SW8260D	11/21/2022 00:00	11/21/2022 20:11	16100		700	1000	100	ug/L	RJB
Benzene	03	71-43-2	SW8260D	11/21/2022 00:00	11/21/2022 19:44	7.40	J	4.00	10.0	10	ug/L	RJB
Ethylbenzene	03	100-41-4	SW8260D	11/21/2022 00:00	11/21/2022 19:44	BLOD		4.00	10.0	10	ug/L	RJB
Toluene	03	108-88-3	SW8260D	11/21/2022 00:00	11/21/2022 19:44	BLOD		5.00	10.0	10	ug/L	RJB
Xylenes, Total	03	1330-20-7	SW8260D	11/21/2022 00:00	11/21/2022 19:44	BLOD		10.0	30.0	10	ug/L	RJB
Tetrahydrofuran	03	109-99-9	SW8260D	11/21/2022 00:00	11/21/2022 19:44	309		100	100	10	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	03	108	% 70-120	11/21/2022 00	:00 11/21/2022 19:4	14						
Surr: 4-Bromofluorobenzene (Surr)	03	101	% 75-120	11/21/2022 00	:00 11/21/2022 19:4	14						
Surr: Dibromofluoromethane (Surr)	03	108	% 70-130	11/21/2022 00	:00 11/21/2022 19:4	14						
Surr: Toluene-d8 (Surr)	03	102	% 70-130	11/21/2022 00	:00 11/21/2022 19:4	14						
Surr: 1,2-Dichloroethane-d4 (Surr)	03RE1	114	% 70-120	11/21/2022 00	:00 11/21/2022 20:1	11						
Surr: 4-Bromofluorobenzene (Surr)	03RE1	98.7	% 75-120	11/21/2022 00	:00 11/21/2022 20:1	11						
Surr: Dibromofluoromethane (Surr)	03RE1	106	% 70-130	11/21/2022 00	:00 11/21/2022 20:1	11						
Surr: Toluene-d8 (Surr)	03RE1	107	% 70-130	11/21/2022 00	:00 11/21/2022 20:1	11						
Semivolatile Organic Compounds by Go	CMS											
Anthracene	03	120-12-7	SW8270E	11/22/2022 09:30	11/23/2022 01:39	BLOD		93.5	187	20	ug/L	MGG
Surr: 2,4,6-Tribromophenol (Surr)	03		% 5-136	11/22/2022 09	:30 11/23/2022 01:3	39						DS
Surr: 2-Fluorobiphenyl (Surr)	03	6.00	% 9-117	11/22/2022 09	:30 11/23/2022 01:3	39						DS
Surr: 2-Fluorophenol (Surr)	03	5.60	% 5-60	11/22/2022 09	:30 11/23/2022 01:3	39						
Surr: Nitrobenzene-d5 (Surr)	03	4.80	% 5-151	11/22/2022 09	:30 11/23/2022 01:3	39						DS
Surr: Phenol-d5 (Surr)	03	18.0	% 5-60	11/22/2022 09	:30 11/23/2022 01:3	39						
Surr: p-Terphenyl-d14 (Surr)	03	2.80	% 5-141	11/22/2022 09	:30 11/23/2022 01:3	39						DS

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Client Sample ID: EW-59 Laboratory Sample ID: 22K1011-03

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Wet Chemistry Analysis												
Ammonia as N	03	7664-41-7	EPA350.1 R2.0	11/23/2022 13:13	11/23/2022 13:13	1560		50.0	50.0	500	mg/L	MKS
BOD	03	E1640606	SM22 5210B-2011	11/18/2022 13:24	11/18/2022 13:24	15700		0.2	2.0	1	mg/L	LAM
COD	03	NA	SM22 5220D-2011	11/28/2022 10:00	11/28/2022 10:00	23500		2000	2000	200	mg/L	MGC
Nitrate+Nitrite as N	03	E701177	SM22 4500-NO3F- 2011	11/28/2022 14:36	11/28/2022 14:36	2.91		0.10	0.10	1	mg/L	FIR
Total Recoverable Phenolics	03	NA	SW9065	11/28/2022 10:30	11/28/2022 17:15	28.8		0.750	1.25	1	mg/L	MAH
TKN as N	03RE1	E17148461	EPA351.2 R2.0	12/01/2022 16:39	12/01/2022 16:39	2110		50.0	125	250	mg/L	FIR

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Client Sample ID: Trip Blank Laboratory Sample ID: 22K1011-04

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCMS	S											
2-Butanone (MEK)	04	78-93-3	SW8260D	11/21/2022 00:00	11/21/2022 13:21	BLOD		3.00	10.0	1	ug/L	RJB
Acetone	04	67-64-1	SW8260D	11/21/2022 00:00	11/21/2022 13:21	9.36	J	7.00	10.0	1	ug/L	RJB
Benzene	04	71-43-2	SW8260D	11/21/2022 00:00	11/21/2022 13:21	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene	04	100-41-4	SW8260D	11/21/2022 00:00	11/21/2022 13:21	BLOD		0.40	1.00	1	ug/L	RJB
Toluene	04	108-88-3	SW8260D	11/21/2022 00:00	11/21/2022 13:21	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total	04	1330-20-7	SW8260D	11/21/2022 00:00	11/21/2022 13:21	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran	04	109-99-9	SW8260D	11/21/2022 00:00	11/21/2022 13:21	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	04	96.3	% 70-120	11/21/2022 00	0:00 11/21/2022 13:	21						
Surr: 4-Bromofluorobenzene (Surr)	04	98.6	% 75-120	11/21/2022 00	0:00 11/21/2022 13:	21						
Surr: Dibromofluoromethane (Surr)	04	100	% 70-130	11/21/2022 00):00 11/21/2022 13:	21						
Surr: Toluene-d8 (Surr)	04	105	% 70-130	11/21/2022 00):00 11/21/2022 13:	21						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Client Sample ID: Trip Blank Laboratory Sample ID: 22K1011-05

Parameter	Samp ID	CAS	Reference Method	Sample Prep Date/Time	Analyzed Date/Time	Sample Results	Qual	LOD	LOQ	DF	Units	Analyst
Volatile Organic Compounds by GCMS	}											
2-Butanone (MEK)	05	78-93-3	SW8260D	11/21/2022 00:00	11/21/2022 13:47	BLOD		3.00	10.0	1	ug/L	RJB
Acetone	05	67-64-1	SW8260D	11/21/2022 00:00	11/21/2022 13:47	BLOD		7.00	10.0	1	ug/L	RJB
Benzene	05	71-43-2	SW8260D	11/21/2022 00:00	11/21/2022 13:47	BLOD		0.40	1.00	1	ug/L	RJB
Ethylbenzene	05	100-41-4	SW8260D	11/21/2022 00:00	11/21/2022 13:47	BLOD		0.40	1.00	1	ug/L	RJB
Toluene	05	108-88-3	SW8260D	11/21/2022 00:00	11/21/2022 13:47	BLOD		0.50	1.00	1	ug/L	RJB
Xylenes, Total	05	1330-20-7	SW8260D	11/21/2022 00:00	11/21/2022 13:47	BLOD		1.00	3.00	1	ug/L	RJB
Tetrahydrofuran	05	109-99-9	SW8260D	11/21/2022 00:00	11/21/2022 13:47	BLOD		10.0	10.0	1	ug/L	RJB
Surr: 1,2-Dichloroethane-d4 (Surr)	05	86.8	% 70-120	11/21/2022 00	0:00 11/21/2022 13:	:47						
Surr: 4-Bromofluorobenzene (Surr)	05	97.4	% 75-120	11/21/2022 00	0:00 11/21/2022 13:	:47						
Surr: Dibromofluoromethane (Surr)	05	91.6	% 70-130	11/21/2022 00	0:00 11/21/2022 13:	:47						
Surr: Toluene-d8 (Surr)	05	103	% 70-130	11/21/2022 00	0:00 11/21/2022 13:	:47						

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	ch BFK0920 - EPA20	0.2/R2.8								
Blank (BFK0920-BLK1)				Prepared & Anal	yzed: 11/22/2022					
Arsenic	ND	0.0400	mg/L							
Barium	ND	0.0200	mg/L							
Cadmium	ND	0.0080	mg/L							
Chromium	ND	0.0200	mg/L							
Copper	ND	0.0200	mg/L							
Lead	ND	0.0200	mg/L							
Nickel	ND	0.0200	mg/L							
Selenium	ND	0.100	mg/L							
Silver	ND	0.0200	mg/L							
Zinc	ND	0.0200	mg/L							
_CS (BFK0920-BS1)				Prepared & Anal	yzed: 11/22/2022	1				
Arsenic	1.00	0.0400	mg/L	1.00		100	80-120			
Barium	1.04	0.0200	mg/L	1.00		104	80-120			
Cadmium	1.06	0.0080	mg/L	1.00		106	80-120			
Chromium	1.08	0.0200	mg/L	1.00		108	80-120			
Copper	1.07	0.0200	mg/L	1.00		107	80-120			
Lead	1.07	0.0200	mg/L	1.00		107	80-120			
Nickel	1.055	0.0200	mg/L	1.00		106	80-120			
Selenium	1.04	0.100	mg/L	1.00		104	80-120			
Silver	0.199	0.0200	mg/L	0.200		99.4	80-120			
Zinc	1.06	0.0200	mg/L	1.00		106	80-120			
Matrix Spike (BFK0920-MS1)	Sour	ce: 22K1068-0	6	Prepared: 11/22/	2022 Analyzed: 1	11/23/2022				
Arsenic	1.24	0.0400	mg/L	1.00	0.155	109	75-125			
Barium	1.80	0.0200	mg/L	1.00	0.785	102	75-125			

12/6/2022 12:51:59PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Bristol landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	BFK0920 - EPA2	00.2/R2.8								
Matrix Spike (BFK0920-MS1)	Sour	rce: 22K1068-0	6	Prepared: 11/22/	2022 Analyzed: 1	1/23/2022				
Cadmium	1.06	0.0080	mg/L	1.00	BLOD	106	75-125			
Chromium	1.14	0.0200	mg/L	1.00	0.0875	105	75-125			
Copper	1.04	0.0200	mg/L	1.00	BLOD	104	75-125			
Lead	1.03	0.0200	mg/L	1.00	BLOD	103	75-125			
Nickel	1.066	0.0200	mg/L	1.00	0.0180	105	75-125			
Selenium	1.04	0.100	mg/L	1.00	BLOD	104	75-125			
Silver	0.200	0.0200	mg/L	0.200	BLOD	99.9	75-125			
Zinc	1.04	0.0200	mg/L	1.00	BLOD	104	75-125			
Matrix Spike (BFK0920-MS2)	Sour	rce: 22K1094-0	1	Prepared: 11/22/	/2022 Analyzed: 1	1/23/2022				
Arsenic	1.04	0.0400	mg/L	1.00	BLOD	104	75-125			
Barium	1.08	0.0200	mg/L	1.00	0.0757	101	75-125			
Cadmium	1.05	0.0080	mg/L	1.00	BLOD	105	75-125			
Chromium	1.06	0.0200	mg/L	1.00	BLOD	106	75-125			
Copper	1.11	0.0200	mg/L	1.00	0.0740	104	75-125			
Lead	1.05	0.0200	mg/L	1.00	0.0197	103	75-125			
Nickel	1.075	0.0200	mg/L	1.00	0.0202	105	75-125			
Selenium	1.01	0.100	mg/L	1.00	BLOD	101	75-125			
Silver	0.201	0.0200	mg/L	0.200	BLOD	101	75-125			E
Zinc	1.38	0.0200	mg/L	1.00	0.367	101	75-125			
Matrix Spike Dup (BFK0920-MSD1)	Sour	rce: 22K1068-0	6	Prepared: 11/22/	/2022 Analyzed: 1	1/23/2022				
Arsenic	1.23	0.0400	mg/L	1.00	0.155	108	75-125	0.706	20	
Barium	1.80	0.0200	mg/L	1.00	0.785	101	75-125	0.174	20	
Cadmium	1.07	0.0080	mg/L	1.00	BLOD	107	75-125	0.756	20	
Chromium	1.13	0.0200	mg/L	1.00	0.0875	105	75-125	0.225	20	

12/6/2022 12:51:59PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Bristol landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control Enthalpy Analytical

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BFK0920 - EPA2	00.2/R2.8								
Matrix Spike Dup (BFK0920-MSD1)	Sou	rce: 22K1068-0	6	Prepared: 11/22/	/2022 Analyzed: 1	1/23/2022				
Copper	1.05	0.0200	mg/L	1.00	BLOD	105	75-125	0.864	20	
Lead	1.05	0.0200	mg/L	1.00	BLOD	105	75-125	1.31	20	
Nickel	1.078	0.0200	mg/L	1.00	0.0180	106	75-125	1.11	20	
Selenium	1.02	0.100	mg/L	1.00	BLOD	102	75-125	1.77	20	
Silver	0.201	0.0200	mg/L	0.200	BLOD	101	75-125	0.720	20	E
Zinc	1.04	0.0200	mg/L	1.00	BLOD	104	75-125	0.187	20	
Matrix Spike Dup (BFK0920-MSD2)	Sou	rce: 22K1094-0	1	Prepared: 11/22	/2022 Analyzed: 1	1/23/2022				
Arsenic	1.03	0.0400	mg/L	1.00	BLOD	103	75-125	1.51	20	
Barium	1.07	0.0200	mg/L	1.00	0.0757	99.2	75-125	1.60	20	
Cadmium	1.03	0.0080	mg/L	1.00	BLOD	103	75-125	1.35	20	
Chromium	1.05	0.0200	mg/L	1.00	BLOD	105	75-125	0.330	20	
Copper	1.09	0.0200	mg/L	1.00	0.0740	102	75-125	1.66	20	
Lead	1.03	0.0200	mg/L	1.00	0.0197	101	75-125	2.08	20	
Nickel	1.060	0.0200	mg/L	1.00	0.0202	104	75-125	1.40	20	
Selenium	1.02	0.100	mg/L	1.00	BLOD	102	75-125	1.23	20	
Silver	0.196	0.0200	mg/L	0.200	BLOD	98.1	75-125	2.68	20	
Zinc	1.36	0.0200	mg/L	1.00	0.367	99.7	75-125	1.20	20	
Batch	BFL0136 - SW74	70A								
Blank (BFL0136-BLK1)				Prepared & Anal	yzed: 12/05/2022	!				
Mercury	ND	0.00020	mg/L		-					
Matrix Spike (BFL0136-MS1)	Sou	rce: 22K1067-0	2	Prepared & Anal	yzed: 12/05/2022	<u>.</u>				
Mercury	0.00288	0.00020	mg/L	0.00250	0.00033	102	80-120			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Metals (Total) by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
	3FL0136 - SW74	-								
Matrix Spike Dup (BFL0136-MSD1)	Soui	ce: 22K1067-02	2	Prepared & Analy	zed: 12/05/2022					
Mercury	0.00284	0.00020	mg/L	0.00250	0.00033	100	80-120	1.40	20	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BF	K0850 - SW503	0B-MS								
Blank (BFK0850-BLK1)			ſ	Prepared & Anal	yzed: 11/21/2022					
2-Butanone (MEK)	ND	10.0	ug/L							
Acetone	ND	10.0	ug/L							
Benzene	ND	1.00	ug/L							
Ethylbenzene	ND	1.00	ug/L							
Toluene	ND	1.00	ug/L							
Xylenes, Total	ND	3.00	ug/L							
Tetrahydrofuran	ND	10.0	ug/L							
Surr: 1,2-Dichloroethane-d4 (Surr)	46.8		ug/L	50.0		93.6	70-120			
Surr: 4-Bromofluorobenzene (Surr)	47.8		ug/L	50.0		95.5	75-120			
Surr: Dibromofluoromethane (Surr)	48.5		ug/L	50.0		97.0	70-130			
Surr: Toluene-d8 (Surr)	49.2		ug/L	50.0		98.5	70-130			
_CS (BFK0850-BS1)			F	Prepared & Anal	yzed: 11/21/2022					
1,1,1,2-Tetrachloroethane	40.8	0.4	ug/L	50.0		81.6	80-130			
1,1,1-Trichloroethane	46.2	1	ug/L	50.0		92.4	65-130			
1,1,2,2-Tetrachloroethane	40.0	0.4	ug/L	50.0		80.0	65-130			
1,1,2-Trichloroethane	44.3	1	ug/L	50.0		88.6	75-125			
1,1-Dichloroethane	45.2	1	ug/L	50.0		90.3	70-135			
1,1-Dichloroethylene	40.7	1	ug/L	50.0		81.4	70-130			
1,1-Dichloropropene	46.3	1	ug/L	50.0		92.6	75-135			
1,2,3-Trichlorobenzene	46.7	1	ug/L	50.0		93.4	55-140			
1,2,3-Trichloropropane	43.2	1	ug/L	50.0		86.4	75-125			
1,2,4-Trichlorobenzene	48.0	1	ug/L	50.0		96.0	65-135			
1,2,4-Trimethylbenzene	49.8	1	ug/L	50.0		99.6	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	45.4	1	ug/L	50.0		90.8	50-130			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BFK0850 - SW503	0B-MS								
LCS (BFK0850-BS1)			F	Prepared & Anal	yzed: 11/21/2022					
1,2-Dibromoethane (EDB)	45.9	1	ug/L	50.0		91.8	80-120			
1,2-Dichlorobenzene	43.7	0.5	ug/L	50.0		87.4	70-120			
1,2-Dichloroethane	45.0	1	ug/L	50.0		90.0	70-130			
1,2-Dichloropropane	44.6	0.5	ug/L	50.0		89.2	75-125			
1,3,5-Trimethylbenzene	46.8	1	ug/L	50.0		93.5	75-125			
1,3-Dichlorobenzene	45.9	1	ug/L	50.0		91.9	75-125			
1,3-Dichloropropane	43.7	1	ug/L	50.0		87.3	75-125			
1,4-Dichlorobenzene	44.6	1	ug/L	50.0		89.1	75-125			
2,2-Dichloropropane	49.3	1	ug/L	50.0		98.5	70-135			
2-Butanone (MEK)	44.6	10	ug/L	50.0		89.1	30-150			
2-Chlorotoluene	48.1	1	ug/L	50.0		96.2	75-125			
2-Hexanone (MBK)	42.3	5	ug/L	50.0		84.5	55-130			
4-Chlorotoluene	49.0	1	ug/L	50.0		98.0	75-130			
4-Isopropyltoluene	46.5	1	ug/L	50.0		93.0	75-130			
4-Methyl-2-pentanone (MIBK)	48.0	5	ug/L	50.0		96.1	60-135			
Acetone	41.2	10	ug/L	50.0		82.5	40-140			
Benzene	46.7	1	ug/L	50.0		93.4	80-120			
Bromobenzene	44.4	1	ug/L	50.0		88.7	75-125			
Bromochloromethane	44.2	1	ug/L	50.0		88.5	65-130			
Bromodichloromethane	47.2	0.5	ug/L	50.0		94.3	75-120			
Bromoform	41.6	1	ug/L	50.0		83.3	70-130			
Bromomethane	48.1	1	ug/L	50.0		96.1	30-145			
Carbon disulfide	41.6	10	ug/L	50.0		83.3	35-160			
Carbon tetrachloride	45.9	1	ug/L	50.0		91.7	65-140			
Chlorobenzene	45.2	1	ug/L	50.0		90.4	80-120			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Bato	ch BFK0850 - SW503	0B-MS								
.CS (BFK0850-BS1)			F	Prepared & Anal	yzed: 11/21/2022					
Chloroethane	44.4	1	ug/L	50.0		88.8	60-135			
Chloroform	44.1	0.5	ug/L	50.0		88.1	65-135			
Chloromethane	43.9	1	ug/L	50.0		87.8	40-125			
cis-1,2-Dichloroethylene	45.8	1	ug/L	50.0		91.5	70-125			
cis-1,3-Dichloropropene	33.9	1	ug/L	50.0		67.7	70-130			L
Dibromochloromethane	44.7	0.5	ug/L	50.0		89.3	60-135			
Dibromomethane	40.8	1	ug/L	50.0		81.7	75-125			
Dichlorodifluoromethane	43.2	1	ug/L	50.0		86.5	30-155			
Ethylbenzene	46.5	1	ug/L	50.0		93.0	75-125			
Hexachlorobutadiene	45.5	0.8	ug/L	50.0		91.0	50-140			
Isopropylbenzene	44.2	1	ug/L	50.0		88.4	75-125			
m+p-Xylenes	87.3	2	ug/L	100		87.3	75-130			
Methylene chloride	44.4	4	ug/L	50.0		88.7	55-140			
Methyl-t-butyl ether (MTBE)	42.7	1	ug/L	50.0		85.4	65-125			
Naphthalene	46.9	1	ug/L	50.0		93.8	55-140			
n-Butylbenzene	49.9	1	ug/L	50.0		99.7	70-135			
n-Propylbenzene	48.1	1	ug/L	50.0		96.2	70-130			
o-Xylene	45.1	1	ug/L	50.0		90.1	80-120			
sec-Butylbenzene	49.6	1	ug/L	50.0		99.2	70-125			
Styrene	46.6	1	ug/L	50.0		93.1	65-135			
tert-Butylbenzene	45.8	1	ug/L	50.0		91.7	70-130			
Tetrachloroethylene (PCE)	73.2	1	ug/L	50.0		146	45-150			
Toluene	43.8	1	ug/L	50.0		87.7	75-120			
trans-1,2-Dichloroethylene	45.5	1	ug/L	50.0		91.1	60-140			
trans-1,3-Dichloropropene	42.5	1	ug/L	50.0		85.0	55-140			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BF	K0850 - SW503	0B-MS								
LCS (BFK0850-BS1)				Prepared & Anal	yzed: 11/21/2022					
Trichloroethylene	47.6	1	ug/L	50.0		95.1	70-125			
Trichlorofluoromethane	43.4	1	ug/L	50.0		86.8	60-145			
Vinyl chloride	48.0	0.5	ug/L	50.0		96.0	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	48.0		ug/L	50.0		96.0	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.5		ug/L	50.0		99.0	75-120			
Surr: Dibromofluoromethane (Surr)	50.5		ug/L	50.0		101	70-130			
Surr: Toluene-d8 (Surr)	48.7		ug/L	50.0		97.4	70-130			
Matrix Spike (BFK0850-MS1)	Source	e: 22K1068-03	3	Prepared & Anal	yzed: 11/21/2022					
1,1,1,2-Tetrachloroethane	44.3	0.4	ug/L	50.0	BLOD	88.6	80-130			
1,1,1-Trichloroethane	47.4	1	ug/L	50.0	BLOD	94.8	65-130			
1,1,2,2-Tetrachloroethane	42.8	0.4	ug/L	50.0	BLOD	85.5	65-130			
1,1,2-Trichloroethane	50.7	1	ug/L	50.0	BLOD	101	75-125			
1,1-Dichloroethane	46.3	1	ug/L	50.0	BLOD	92.6	70-135			
1,1-Dichloroethylene	37.5	1	ug/L	50.0	BLOD	75.0	50-145			
1,1-Dichloropropene	45.3	1	ug/L	50.0	BLOD	90.6	75-135			
1,2,3-Trichlorobenzene	49.3	1	ug/L	50.0	BLOD	98.6	55-140			
1,2,3-Trichloropropane	44.6	1	ug/L	50.0	BLOD	89.2	75-125			
1,2,4-Trichlorobenzene	50.0	1	ug/L	50.0	BLOD	100	65-135			
1,2,4-Trimethylbenzene	53.4	1	ug/L	50.0	0.84	105	75-130			
1,2-Dibromo-3-chloropropane (DBCP)	47.0	1	ug/L	50.0	BLOD	94.1	50-130			
1,2-Dibromoethane (EDB)	48.9	1	ug/L	50.0	BLOD	97.8	80-120			
1,2-Dichlorobenzene	47.4	0.5	ug/L	50.0	BLOD	94.8	70-120			
1,2-Dichloroethane	46.2	1	ug/L	50.0	BLOD	92.4	70-130			
1,2-Dichloropropane	46.5	0.5	ug/L	50.0	BLOD	93.0	75-125			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BFK0850 - SW503	0B-MS								
Matrix Spike (BFK0850-MS1)	Sourc	e: 22K1068-03		Prepared & Anal	yzed: 11/21/2022					
1,3,5-Trimethylbenzene	48.5	1	ug/L	50.0	BLOD	97.0	75-124			
1,3-Dichlorobenzene	48.7	1	ug/L	50.0	BLOD	97.4	75-125			
1,3-Dichloropropane	48.2	1	ug/L	50.0	BLOD	96.5	75-125			
1,4-Dichlorobenzene	47.0	1	ug/L	50.0	0.65	92.6	75-125			
2,2-Dichloropropane	50.7	1	ug/L	50.0	BLOD	101	70-135			
2-Butanone (MEK)	62.7	10	ug/L	50.0	21.5	82.3	30-150			
2-Chlorotoluene	51.5	1	ug/L	50.0	BLOD	103	75-125			
2-Hexanone (MBK)	45.1	5	ug/L	50.0	BLOD	90.2	55-130			
4-Chlorotoluene	51.9	1	ug/L	50.0	BLOD	104	75-130			
4-Isopropyltoluene	50.4	1	ug/L	50.0	0.72	99.4	75-130			
4-Methyl-2-pentanone (MIBK)	57.2	5	ug/L	50.0	BLOD	114	60-135			
Acetone	112	10	ug/L	50.0	71.9	80.7	40-140			
Benzene	64.9	1	ug/L	50.0	18.2	93.6	80-120			
Bromobenzene	46.3	1	ug/L	50.0	BLOD	92.6	75-125			
Bromochloromethane	45.5	1	ug/L	50.0	BLOD	91.0	65-130			
Bromodichloromethane	49.3	0.5	ug/L	50.0	BLOD	98.6	75-136			
Bromoform	44.3	1	ug/L	50.0	BLOD	88.6	70-130			
Bromomethane	46.6	1	ug/L	50.0	BLOD	93.3	30-145			
Carbon disulfide	53.4	10	ug/L	50.0	BLOD	107	35-160			
Carbon tetrachloride	48.0	1	ug/L	50.0	BLOD	95.9	65-140			
Chlorobenzene	47.6	1	ug/L	50.0	BLOD	95.1	80-120			
Chloroethane	45.0	1	ug/L	50.0	BLOD	90.0	60-135			
Chloroform	49.0	0.5	ug/L	50.0	4.30	89.4	65-135			
Chloromethane	45.1	1	ug/L	50.0	BLOD	90.2	40-125			
cis-1,2-Dichloroethylene	44.6	1	ug/L	50.0	BLOD	89.2	70-125			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	3FK0850 - SW503	0B-MS								
Matrix Spike (BFK0850-MS1)	Sourc	e: 22K1068-0	3	Prepared & Anal	yzed: 11/21/2022					
cis-1,3-Dichloropropene	36.2	1	ug/L	50.0	BLOD	72.4	47-136			
Dibromochloromethane	47.4	0.5	ug/L	50.0	BLOD	94.9	60-135			
Dibromomethane	42.2	1	ug/L	50.0	BLOD	84.4	75-125			
Dichlorodifluoromethane	45.4	1	ug/L	50.0	BLOD	90.7	30-155			
Ethylbenzene	51.1	1	ug/L	50.0	2.70	96.7	75-125			
Hexachlorobutadiene	46.7	0.8	ug/L	50.0	BLOD	93.3	50-140			
Isopropylbenzene	45.7	1	ug/L	50.0	BLOD	91.5	75-125			
m+p-Xylenes	90.2	2	ug/L	100	1.24	88.9	75-130			
Methylene chloride	45.3	4	ug/L	50.0	BLOD	90.6	55-140			
Methyl-t-butyl ether (MTBE)	45.6	1	ug/L	50.0	BLOD	91.1	65-125			
Naphthalene	52.0	1	ug/L	50.0	0.99	102	55-140			
n-Butylbenzene	52.7	1	ug/L	50.0	BLOD	105	70-135			
n-Propylbenzene	50.6	1	ug/L	50.0	BLOD	101	70-130			
o-Xylene	45.8	1	ug/L	50.0	0.77	90.0	80-120			
sec-Butylbenzene	52.4	1	ug/L	50.0	BLOD	105	70-125			
Styrene	47.8	1	ug/L	50.0	BLOD	95.5	65-135			
tert-Butylbenzene	50.1	1	ug/L	50.0	BLOD	100	70-130			
Tetrachloroethylene (PCE)	75.3	1	ug/L	50.0	BLOD	151	51-231			
Toluene	46.2	1	ug/L	50.0	1.52	89.4	75-120			
trans-1,2-Dichloroethylene	45.2	1	ug/L	50.0	BLOD	90.3	60-140			
trans-1,3-Dichloropropene	46.4	1	ug/L	50.0	BLOD	92.9	55-140			
Trichloroethylene	51.7	1	ug/L	50.0	BLOD	103	70-125			
Trichlorofluoromethane	43.0	1	ug/L	50.0	BLOD	86.1	60-145			
Vinyl chloride	47.7	0.5	ug/L	50.0	BLOD	95.4	50-145			
Surr: 1,2-Dichloroethane-d4 (Surr)	49.6		ug/L	50.0		99.2	70-120			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch BF	K0850 - SW503	0B-MS								
Matrix Spike (BFK0850-MS1)	Sourc	e: 22K1068-03		Prepared & Anal	yzed: 11/21/2022					
Surr: 4-Bromofluorobenzene (Surr)	48.8		ug/L	50.0		97.5	75-120			
Surr: Dibromofluoromethane (Surr)	50.6		ug/L	50.0		101	70-130			
Surr: Toluene-d8 (Surr)	50.4		ug/L	50.0		101	70-130			
Matrix Spike Dup (BFK0850-MSD1)	Sourc	e: 22K1068-03		Prepared & Anal	yzed: 11/21/2022					
1,1,1,2-Tetrachloroethane	42.8	0.4	ug/L	50.0	BLOD	85.6	80-130	3.44	30	
1,1,1-Trichloroethane	44.3	1	ug/L	50.0	BLOD	88.6	65-130	6.74	30	
1,1,2,2-Tetrachloroethane	43.0	0.4	ug/L	50.0	BLOD	86.0	65-130	0.537	30	
1,1,2-Trichloroethane	49.6	1	ug/L	50.0	BLOD	99.3	75-125	2.09	30	
1,1-Dichloroethane	43.8	1	ug/L	50.0	BLOD	87.5	70-135	5.64	30	
1,1-Dichloroethylene	36.2	1	ug/L	50.0	BLOD	72.4	50-145	3.50	30	
1,1-Dichloropropene	43.8	1	ug/L	50.0	BLOD	87.5	75-135	3.39	30	
1,2,3-Trichlorobenzene	47.5	1	ug/L	50.0	BLOD	95.0	55-140	3.78	30	
1,2,3-Trichloropropane	44.6	1	ug/L	50.0	BLOD	89.1	75-125	0.0897	30	
1,2,4-Trichlorobenzene	48.5	1	ug/L	50.0	BLOD	97.0	65-135	3.11	30	
1,2,4-Trimethylbenzene	50.4	1	ug/L	50.0	0.84	99.1	75-130	5.86	30	
1,2-Dibromo-3-chloropropane (DBCP)	46.2	1	ug/L	50.0	BLOD	92.4	50-130	1.82	30	
1,2-Dibromoethane (EDB)	45.2	1	ug/L	50.0	BLOD	90.4	80-120	7.88	30	
1,2-Dichlorobenzene	45.6	0.5	ug/L	50.0	BLOD	91.1	70-120	3.98	30	
1,2-Dichloroethane	44.1	1	ug/L	50.0	BLOD	88.2	70-130	4.65	30	
1,2-Dichloropropane	47.3	0.5	ug/L	50.0	BLOD	94.6	75-125	1.66	30	
1,3,5-Trimethylbenzene	46.3	1	ug/L	50.0	BLOD	92.7	75-124	4.58	30	
1,3-Dichlorobenzene	45.7	1	ug/L	50.0	BLOD	91.4	75-125	6.27	30	
1,3-Dichloropropane	47.3	1	ug/L	50.0	BLOD	94.5	75-125	2.05	30	
1,4-Dichlorobenzene	45.0	1	ug/L	50.0	0.65	88.7	75-125	4.29	30	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BFK0850 - SW503	0B-MS								
Matrix Spike Dup (BFK0850-MSD1)	Sourc	e: 22K1068-0	3	Prepared & Anal	yzed: 11/21/2022					
2,2-Dichloropropane	49.5	1	ug/L	50.0	BLOD	98.9	70-135	2.52	30	
2-Butanone (MEK)	68.4	10	ug/L	50.0	21.5	93.7	30-150	8.72	30	
2-Chlorotoluene	47.3	1	ug/L	50.0	BLOD	94.7	75-125	8.40	30	
2-Hexanone (MBK)	43.5	5	ug/L	50.0	BLOD	87.0	55-130	3.68	30	
4-Chlorotoluene	48.3	1	ug/L	50.0	BLOD	96.6	75-130	7.19	30	
4-Isopropyltoluene	47.7	1	ug/L	50.0	0.72	94.0	75-130	5.48	30	
4-Methyl-2-pentanone (MIBK)	57.3	5	ug/L	50.0	BLOD	115	60-135	0.210	30	
Acetone	125	10	ug/L	50.0	71.9	106	40-140	10.6	30	
Benzene	62.8	1	ug/L	50.0	18.2	89.3	80-120	3.35	30	
Bromobenzene	46.1	1	ug/L	50.0	BLOD	92.2	75-125	0.455	30	
Bromochloromethane	46.0	1	ug/L	50.0	BLOD	92.1	65-130	1.20	30	
Bromodichloromethane	53.1	0.5	ug/L	50.0	BLOD	106	75-136	7.40	30	
Bromoform	44.7	1	ug/L	50.0	BLOD	89.4	70-130	0.809	30	
Bromomethane	45.4	1	ug/L	50.0	BLOD	90.8	30-145	2.74	30	
Carbon disulfide	52.9	10	ug/L	50.0	BLOD	106	35-160	1.05	30	
Carbon tetrachloride	46.1	1	ug/L	50.0	BLOD	92.2	65-140	3.98	30	
Chlorobenzene	45.8	1	ug/L	50.0	BLOD	91.5	80-120	3.88	30	
Chloroethane	43.1	1	ug/L	50.0	BLOD	86.2	60-135	4.33	30	
Chloroform	48.0	0.5	ug/L	50.0	4.30	87.3	65-135	2.08	30	
Chloromethane	42.6	1	ug/L	50.0	BLOD	85.3	40-125	5.61	30	
cis-1,2-Dichloroethylene	44.4	1	ug/L	50.0	BLOD	88.9	70-125	0.404	30	
cis-1,3-Dichloropropene	38.0	1	ug/L	50.0	BLOD	76.0	47-136	4.85	30	
Dibromochloromethane	49.2	0.5	ug/L	50.0	BLOD	98.5	60-135	3.70	30	
Dibromomethane	44.0	1	ug/L	50.0	BLOD	88.0	75-125	4.25	30	
Dichlorodifluoromethane	43.1	1	ug/L	50.0	BLOD	86.2	30-155	5.11	30	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Volatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch B	3FK0850 - SW503	0B-MS								
Matrix Spike Dup (BFK0850-MSD1)	Sourc	e: 22K1068-0	3	Prepared & Anal	yzed: 11/21/2022					
Ethylbenzene	49.1	1	ug/L	50.0	2.70	92.7	75-125	3.99	30	
Hexachlorobutadiene	45.3	8.0	ug/L	50.0	BLOD	90.6	50-140	2.96	30	
Isopropylbenzene	44.0	1	ug/L	50.0	BLOD	87.9	75-125	3.95	30	
m+p-Xylenes	88.6	2	ug/L	100	1.24	87.4	75-130	1.78	30	
Methylene chloride	44.5	4	ug/L	50.0	BLOD	88.9	55-140	1.83	30	
Methyl-t-butyl ether (MTBE)	44.6	1	ug/L	50.0	BLOD	89.1	65-125	2.26	30	
Naphthalene	50.5	1	ug/L	50.0	0.99	99.1	55-140	2.91	30	
n-Butylbenzene	49.0	1	ug/L	50.0	BLOD	98.0	70-135	7.26	30	
n-Propylbenzene	46.5	1	ug/L	50.0	BLOD	93.0	70-130	8.55	30	
o-Xylene	43.3	1	ug/L	50.0	0.77	85.1	80-120	5.41	30	
sec-Butylbenzene	48.7	1	ug/L	50.0	BLOD	97.4	70-125	7.41	30	
Styrene	45.4	1	ug/L	50.0	BLOD	90.7	65-135	5.13	30	
tert-Butylbenzene	46.0	1	ug/L	50.0	BLOD	92.0	70-130	8.59	30	
Tetrachloroethylene (PCE)	70.6	1	ug/L	50.0	BLOD	141	51-231	6.35	30	
Toluene	46.5	1	ug/L	50.0	1.52	90.0	75-120	0.647	30	
trans-1,2-Dichloroethylene	44.4	1	ug/L	50.0	BLOD	88.8	60-140	1.70	30	
trans-1,3-Dichloropropene	46.1	1	ug/L	50.0	BLOD	92.1	55-140	0.800	30	
Trichloroethylene	50.5	1	ug/L	50.0	BLOD	101	70-125	2.23	30	
Trichlorofluoromethane	40.2	1	ug/L	50.0	BLOD	80.3	60-145	6.95	30	
Vinyl chloride	44.8	0.5	ug/L	50.0	BLOD	89.7	50-145	6.18	30	
Surr: 1,2-Dichloroethane-d4 (Surr)	51.4		ug/L	50.0		103	70-120			
Surr: 4-Bromofluorobenzene (Surr)	49.9		ug/L	50.0		99.8	75-120			
Surr: Dibromofluoromethane (Surr)	51.6		ug/L	50.0		103	70-130			
Surr: Toluene-d8 (Surr)	51.4		ug/L	50.0		103	70-130			

12/6/2022 12:51:59PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BFK0845 - SW351	0C/EPA600	-MS							
Blank (BFK0845-BLK1)			P	repared & Anal	yzed: 11/21/2022					
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophenol (Surr)	64.6		ug/L	100		64.6	5-136			
Surr: 2-Fluorobiphenyl (Surr)	34.4		ug/L	50.0		68.7	9-117			
Surr: 2-Fluorophenol (Surr)	37.2		ug/L	100		37.2	5-60			
Surr: Nitrobenzene-d5 (Surr)	30.8		ug/L	50.0		61.7	5-151			
Surr: Phenol-d5 (Surr)	22.8		ug/L	100		22.8	5-60			
Surr: p-Terphenyl-d14 (Surr)	49.8		ug/L	50.0		99.5	5-141			
_CS (BFK0845-BS1)			P	repared & Anal	yzed: 11/21/2022					
1,2,4-Trichlorobenzene	31.3	10.0	ug/L	50.0		62.6	57-130			
1,2-Dichlorobenzene	30.0	10.0	ug/L	50.0		60.0	22-115			
1,3-Dichlorobenzene	29.1	10.0	ug/L	50.0		58.2	22-112			
1,4-Dichlorobenzene	32.5	10.0	ug/L	50.0		65.1	13-112			
2,4,6-Trichlorophenol	32.8	10.0	ug/L	50.0		65.6	52-129			
2,4-Dichlorophenol	31.0	10.0	ug/L	50.0		62.1	53-122			
2,4-Dimethylphenol	31.3	5.00	ug/L	50.0		62.6	42-120			
2,4-Dinitrophenol	26.5	50.0	ug/L	50.0		53.0	48-127			
2,4-Dinitrotoluene	39.6	10.0	ug/L	50.0		79.1	10-173			
2,6-Dinitrotoluene	35.4	10.0	ug/L	50.0		70.7	68-137			
2-Chloronaphthalene	34.9	10.0	ug/L	50.0		69.8	65-120			
2-Chlorophenol	31.1	10.0	ug/L	50.0		62.1	36-120			
2-Nitrophenol	34.3	10.0	ug/L	50.0		68.6	45-167			
3,3'-Dichlorobenzidine	22.3	10.0	ug/L	50.0		44.7	10-213			
4,6-Dinitro-2-methylphenol	36.5	50.0	ug/L	50.0		73.0	53-130			
4-Bromophenyl phenyl ether	33.0	10.0	ug/L	50.0		66.0	65-120			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Bristol landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Date Issued:

12/6/2022 12:51:59PM

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BFK0845 - SW351	0C/EPA600	-MS							
.CS (BFK0845-BS1)			F	Prepared & Anal	yzed: 11/21/2022					
4-Chlorophenyl phenyl ether	31.2	10.0	ug/L	50.0		62.5	38-145			
4-Nitrophenol	10.5	50.0	ug/L	50.0		21.0	13-129			
Acenaphthene	35.1	10.0	ug/L	50.0		70.3	60-132			
Acenaphthylene	36.9	10.0	ug/L	50.0		73.8	54-126			
Anthracene	41.7	10.0	ug/L	50.0		83.4	43-120			
Benzidine	ND	50.0	ug/L	50.0			12-309			L
Benzo (a) anthracene	42.0	10.0	ug/L	50.0		84.0	42-133			
Benzo (a) pyrene	47.3	10.0	ug/L	50.0		94.5	32-148			
Benzo (b) fluoranthene	52.0	10.0	ug/L	50.0		104	42-140			
Benzo (g,h,i) perylene	32.1	10.0	ug/L	50.0		64.1	10-195			
Benzo (k) fluoranthene	49.4	10.0	ug/L	50.0		98.9	25-146			
bis (2-Chloroethoxy) methane	30.1	10.0	ug/L	50.0		60.1	49-165			
bis (2-Chloroethyl) ether	30.8	10.0	ug/L	50.0		61.7	43-126			
2,2'-Oxybis (1-chloropropane)	34.6	10.0	ug/L	50.0		69.1	63-139			
bis (2-Ethylhexyl) phthalate	44.0	10.0	ug/L	50.0		88.0	29-137			
Butyl benzyl phthalate	42.2	10.0	ug/L	50.0		84.4	10-140			
Chrysene	45.9	10.0	ug/L	50.0		91.7	44-140			
Dibenz (a,h) anthracene	37.5	10.0	ug/L	50.0		75.0	10-200			
Diethyl phthalate	40.7	10.0	ug/L	50.0		81.4	10-120			
Dimethyl phthalate	40.8	10.0	ug/L	50.0		81.5	10-120			
Di-n-butyl phthalate	39.6	10.0	ug/L	50.0		79.3	10-120			
Di-n-octyl phthalate	71.0	10.0	ug/L	50.0		142	19-132			L
Fluoranthene	49.1	10.0	ug/L	50.0		98.1	43-121			
Fluorene	36.4	10.0	ug/L	50.0		72.8	70-120			
Hexachlorobenzene	43.8	1.00	ug/L	50.0		87.6	10-142			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch E	BFK0845 - SW351	0C/EPA600	-MS							
_CS (BFK0845-BS1)			F	Prepared & Anal	yzed: 11/21/2022					
Hexachlorobutadiene	32.5	10.0	ug/L	50.0		65.0	38-120			
Hexachlorocyclopentadiene	24.8	10.0	ug/L	50.0		49.7	10-76			
Hexachloroethane	30.6	10.0	ug/L	50.0		61.2	55-120			
Indeno (1,2,3-cd) pyrene	37.2	10.0	ug/L	50.0		74.5	10-151			
Isophorone	26.5	10.0	ug/L	50.0		53.0	47-180			
Naphthalene	36.5	5.00	ug/L	50.0		73.0	36-120			
Nitrobenzene	33.0	10.0	ug/L	50.0		65.9	54-158			
n-Nitrosodimethylamine	17.6	10.0	ug/L	50.0		35.1	10-85			
n-Nitrosodi-n-propylamine	32.4	10.0	ug/L	50.0		64.7	14-198			
n-Nitrosodiphenylamine	28.6	10.0	ug/L	50.0		57.2	12-97			
p-Chloro-m-cresol	31.5	10.0	ug/L	50.0		63.1	10-142			
Pentachlorophenol	28.7	20.0	ug/L	50.0		57.3	38-152			
Phenanthrene	45.7	10.0	ug/L	50.0		91.5	65-120			
Phenol	11.1	10.0	ug/L	50.5		21.9	17-120			
Pyrene	45.0	10.0	ug/L	50.0		89.9	70-120			
Pyridine	21.0	10.0	ug/L	50.0		42.0	10-103			
Surr: 2,4,6-Tribromophenol (Surr)	77.6		ug/L	100		77.6	5-136			
Surr: 2-Fluorobiphenyl (Surr)	37.7		ug/L	50.0		75.5	9-117			
Surr: 2-Fluorophenol (Surr)	38.6		ug/L	100		38.6	5-60			
Surr: Nitrobenzene-d5 (Surr)	35.0		ug/L	50.0		70.0	5-151			
Surr: Phenol-d5 (Surr)	26.3		ug/L	100		26.3	5-60			
Surr: p-Terphenyl-d14 (Surr)	48.3		ug/L	50.0		96.6	5-141			
Batch B	3FK0934 - SW351	0C/EPA600	-MS							
Blank (BFK0934-BLK1)			F	Prepared & Anal	yzed: 11/22/2022					

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BFK0934 - SW351	0C/EPA600	-MS							
Blank (BFK0934-BLK1)			F	Prepared & Anal	yzed: 11/22/2022					
Anthracene	ND	10.0	ug/L							
Surr: 2,4,6-Tribromophenol (Surr)	64.2		ug/L	100		64.2	5-136			
Surr: 2-Fluorobiphenyl (Surr)	31.2		ug/L	50.0		62.5	9-117			
Surr: 2-Fluorophenol (Surr)	28.5		ug/L	100		28.5	5-60			
Surr: Nitrobenzene-d5 (Surr)	30.1		ug/L	50.0		60.2	5-151			
Surr: Phenol-d5 (Surr)	23.1		ug/L	100		23.1	5-60			
Surr: p-Terphenyl-d14 (Surr)	44.5		ug/L	50.0		88.9	5-141			
LCS (BFK0934-BS1)			F	Prepared & Anal	yzed: 11/22/2022					
1,2,4-Trichlorobenzene	28.1	10.0	ug/L	50.0		56.1	57-130			L
1,2-Dichlorobenzene	24.9	10.0	ug/L	50.0		49.9	22-115			
1,3-Dichlorobenzene	23.4	10.0	ug/L	50.0		46.9	22-112			
1,4-Dichlorobenzene	26.1	10.0	ug/L	50.0		52.3	13-112			
2,4,6-Trichlorophenol	37.8	10.0	ug/L	50.0		75.5	52-129			
2,4-Dichlorophenol	34.4	10.0	ug/L	50.0		68.8	53-122			
2,4-Dimethylphenol	34.4	5.00	ug/L	50.0		68.8	42-120			
2,4-Dinitrophenol	33.8	50.0	ug/L	50.0		67.6	48-127			
2,4-Dinitrotoluene	43.5	10.0	ug/L	50.0		87.0	10-173			
2,6-Dinitrotoluene	40.6	10.0	ug/L	50.0		81.2	68-137			
2-Chloronaphthalene	37.0	10.0	ug/L	50.0		74.0	65-120			
2-Chlorophenol	33.1	10.0	ug/L	50.0		66.3	36-120			
2-Nitrophenol	37.0	10.0	ug/L	50.0		74.1	45-167			
3,3'-Dichlorobenzidine	24.8	10.0	ug/L	50.0		49.6	10-213			
4,6-Dinitro-2-methylphenol	41.1	50.0	ug/L	50.0		82.2	53-130			
4-Bromophenyl phenyl ether	36.9	10.0	ug/L	50.0		73.8	65-120			

12/6/2022 12:51:59PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Bristol landfill

Submitted To: Jennifer Robb

Client Site I.D.:

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	n BFK0934 - SW351	0C/EPA600	-MS							
CS (BFK0934-BS1)			F	Prepared & Anal	yzed: 11/22/2022					
4-Chlorophenyl phenyl ether	34.8	10.0	ug/L	50.0		69.7	38-145			
4-Nitrophenol	15.2	50.0	ug/L	50.0		30.5	13-129			
Acenaphthene	38.7	10.0	ug/L	50.0		77.5	60-132			
Acenaphthylene	40.2	10.0	ug/L	50.0		80.4	54-126			
Anthracene	46.9	10.0	ug/L	50.0		93.8	43-120			
Benzidine	ND	50.0	ug/L	50.0			12-309			L
Benzo (a) anthracene	44.3	10.0	ug/L	50.0		88.7	42-133			
Benzo (a) pyrene	48.2	10.0	ug/L	50.0		96.4	32-148			
Benzo (b) fluoranthene	50.0	10.0	ug/L	50.0		100	42-140			
Benzo (g,h,i) perylene	30.3	10.0	ug/L	50.0		60.6	10-195			
Benzo (k) fluoranthene	51.5	10.0	ug/L	50.0		103	25-146			
bis (2-Chloroethoxy) methane	34.2	10.0	ug/L	50.0		68.4	49-165			
bis (2-Chloroethyl) ether	33.0	10.0	ug/L	50.0		65.9	43-126			
2,2'-Oxybis (1-chloropropane)	35.0	10.0	ug/L	50.0		70.1	63-139			
bis (2-Ethylhexyl) phthalate	43.8	10.0	ug/L	50.0		87.6	29-137			
Butyl benzyl phthalate	41.3	10.0	ug/L	50.0		82.6	10-140			
Chrysene	45.2	10.0	ug/L	50.0		90.5	44-140			
Dibenz (a,h) anthracene	37.2	10.0	ug/L	50.0		74.3	10-200			
Diethyl phthalate	45.0	10.0	ug/L	50.0		90.1	10-120			
Dimethyl phthalate	45.9	10.0	ug/L	50.0		91.7	10-120			
Di-n-octyl phthalate	61.6	10.0	ug/L	50.0		123	19-132			
Fluoranthene	50.6	10.0	ug/L	50.0		101	43-121			
Fluorene	41.5	10.0	ug/L	50.0		83.0	70-120			
Hexachlorobenzene	46.7	1.00	ug/L	50.0		93.4	10-142			
Hexachlorobutadiene	27.7	10.0	ug/L	50.0		55.5	38-120			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
-	BFK0934 - SW351	0C/EPA600-N	ns							
.CS (BFK0934-BS1)				Prepared & Anal	yzed: 11/22/2022					
Hexachlorocyclopentadiene	25.7	10.0	ug/L	50.0		51.4	10-76			
Hexachloroethane	24.2	10.0	ug/L	50.0		48.5	55-120			L
Indeno (1,2,3-cd) pyrene	36.4	10.0	ug/L	50.0		72.8	10-151			
Isophorone	29.3	10.0	ug/L	50.0		58.6	47-180			
Naphthalene	34.5	5.00	ug/L	50.0		69.0	36-120			
Nitrobenzene	34.7	10.0	ug/L	50.0		69.4	54-158			
n-Nitrosodimethylamine	17.2	10.0	ug/L	50.0		34.4	10-85			
n-Nitrosodi-n-propylamine	34.9	10.0	ug/L	50.0		69.8	14-198			
n-Nitrosodiphenylamine	32.3	10.0	ug/L	50.0		64.6	12-97			
p-Chloro-m-cresol	36.3	10.0	ug/L	50.0		72.7	10-142			
Pentachlorophenol	33.8	20.0	ug/L	50.0		67.5	38-152			
Phenanthrene	50.0	10.0	ug/L	50.0		100	65-120			
Phenol	15.4	10.0	ug/L	50.5		30.5	17-120			
Pyrene	45.5	10.0	ug/L	50.0		91.0	70-120			
Pyridine	30.6	10.0	ug/L	50.0		61.2	10-103			
Surr: 2,4,6-Tribromophenol (Surr)	84.9		ug/L	100		84.9	5-136			
Surr: 2-Fluorobiphenyl (Surr)	41.9		ug/L	50.0		83.8	9-117			
Surr: 2-Fluorophenol (Surr)	44.1		ug/L	100		44.1	5-60			
Surr: Nitrobenzene-d5 (Surr)	36.6		ug/L	50.0		73.2	5-151			
Surr: Phenol-d5 (Surr)	28.8		ug/L	100		28.8	5-60			
Surr: p-Terphenyl-d14 (Surr)	47.8		ug/L	50.0		95.6	5-141			
fatrix Spike (BFK0934-MS1)	Sourc	e: 22K1067-02		Prepared & Anal	yzed: 11/22/2022					
1,2,4-Trichlorobenzene	26.7	10.0	ug/L	49.5	BLOD	53.9	44-142			
1,2-Dichlorobenzene	23.5	10.0	ug/L	49.5	BLOD	47.5	22-115			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batc	h BFK0934 - SW351	0C/EPA600	MS							
Matrix Spike (BFK0934-MS1)	Sourc	e: 22K1067-0	12	Prepared & Anal	yzed: 11/22/2022					
1,3-Dichlorobenzene	22.5	10.0	ug/L	49.5	BLOD	45.4	22-112			
1,4-Dichlorobenzene	26.1	10.0	ug/L	49.5	BLOD	52.7	13-112			
2,4,6-Trichlorophenol	31.9	10.0	ug/L	49.5	BLOD	64.5	37-144			
2,4-Dichlorophenol	30.7	10.0	ug/L	49.5	BLOD	62.1	39-135			
2,4-Dimethylphenol	29.9	5.00	ug/L	49.5	BLOD	60.3	32-120			
2,4-Dinitrophenol	26.1	50.0	ug/L	49.5	BLOD	52.7	39-139			
2,4-Dinitrotoluene	37.5	10.0	ug/L	49.5	BLOD	75.8	10-191			
2,6-Dinitrotoluene	34.8	10.0	ug/L	49.5	BLOD	70.3	50-158			
2-Chloronaphthalene	31.3	10.0	ug/L	49.5	BLOD	63.2	60-120			
2-Chlorophenol	29.4	10.0	ug/L	49.5	BLOD	59.4	23-134			
2-Nitrophenol	32.2	10.0	ug/L	49.5	BLOD	65.0	29-182			
3,3'-Dichlorobenzidine	20.7	10.0	ug/L	49.5	BLOD	41.8	10-262			
4,6-Dinitro-2-methylphenol	33.6	50.0	ug/L	49.5	BLOD	67.9	10-181			
4-Bromophenyl phenyl ether	32.9	10.0	ug/L	49.5	BLOD	66.5	53-127			
4-Chlorophenyl phenyl ether	30.0	10.0	ug/L	49.5	BLOD	60.5	25-158			
4-Nitrophenol	12.6	50.0	ug/L	49.5	BLOD	25.4	10-132			
Acenaphthene	32.4	10.0	ug/L	49.5	BLOD	65.4	47-145			
Acenaphthylene	33.8	10.0	ug/L	49.5	BLOD	68.2	33-145			
Anthracene	39.9	10.0	ug/L	49.5	BLOD	80.7	27-133			
Benzidine	ND	50.0	ug/L	49.5	BLOD		12-309			М
Benzo (a) anthracene	38.8	10.0	ug/L	49.5	BLOD	78.4	33-143			
Benzo (a) pyrene	41.4	10.0	ug/L	49.5	BLOD	83.6	17-163			
Benzo (b) fluoranthene	44.2	10.0	ug/L	49.5	BLOD	89.2	24-159			
Benzo (g,h,i) perylene	27.3	10.0	ug/L	49.5	BLOD	55.2	10-219			
Benzo (k) fluoranthene	44.5	10.0	ug/L	49.5	BLOD	90.0	11-162			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BFK0934 - SW351	0C/EPA600-	MS							
Matrix Spike (BFK0934-MS1)	Sourc	e: 22K1067-0	2	Prepared & Anal	yzed: 11/22/2022					
bis (2-Chloroethoxy) methane	28.9	10.0	ug/L	49.5	BLOD	58.4	33-184			
bis (2-Chloroethyl) ether	29.0	10.0	ug/L	49.5	BLOD	58.5	12-158			
2,2'-Oxybis (1-chloropropane)	31.2	10.0	ug/L	49.5	BLOD	63.0	36-166			
bis (2-Ethylhexyl) phthalate	39.1	10.0	ug/L	49.5	BLOD	79.0	10-158			
Butyl benzyl phthalate	37.7	10.0	ug/L	49.5	BLOD	76.1	10-152			
Chrysene	39.2	10.0	ug/L	49.5	BLOD	79.1	17-169			
Dibenz (a,h) anthracene	33.0	10.0	ug/L	49.5	BLOD	66.8	10-227			
Diethyl phthalate	37.9	10.0	ug/L	49.5	BLOD	76.6	10-120			
Dimethyl phthalate	38.7	10.0	ug/L	49.5	BLOD	78.2	10-120			
Di-n-butyl phthalate	42.8	10.0	ug/L	49.5	BLOD	86.5	10-120			
Di-n-octyl phthalate	55.7	10.0	ug/L	49.5	BLOD	113	10-146			
Fluoranthene	42.7	10.0	ug/L	49.5	BLOD	86.3	26-137			
Fluorene	34.8	10.0	ug/L	49.5	BLOD	70.3	59-121			
Hexachlorobenzene	42.3	1.00	ug/L	49.5	BLOD	85.5	10-152			
Hexachlorobutadiene	27.6	10.0	ug/L	49.5	BLOD	55.7	24-120			
Hexachlorocyclopentadiene	21.1	10.0	ug/L	49.5	BLOD	42.6	10-90			
Hexachloroethane	23.9	10.0	ug/L	49.5	BLOD	48.2	40-120			
Indeno (1,2,3-cd) pyrene	32.4	10.0	ug/L	49.5	BLOD	65.4	10-171			
Isophorone	24.6	10.0	ug/L	49.5	BLOD	49.6	21-196			
Naphthalene	31.3	5.00	ug/L	49.5	BLOD	63.3	21-133			
Nitrobenzene	30.5	10.0	ug/L	49.5	BLOD	61.7	35-180			
n-Nitrosodimethylamine	15.0	10.0	ug/L	49.5	BLOD	30.3	10-85			
n-Nitrosodi-n-propylamine	30.5	10.0	ug/L	49.5	BLOD	61.6	10-230			
n-Nitrosodiphenylamine	27.7	10.0	ug/L	49.5	BLOD	55.9	12-111			
p-Chloro-m-cresol	31.6	10.0	ug/L	49.5	BLOD	63.8	10-127			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BFK0934 - SW351	0C/EPA600-	-MS							
Matrix Spike (BFK0934-MS1)	Sourc	e: 22K1067-0	12	Prepared & Anal	lyzed: 11/22/2022					
Pentachlorophenol	31.6	20.0	ug/L	49.5	BLOD	63.8	14-176			
Phenanthrene	43.0	10.0	ug/L	49.5	BLOD	86.8	54-120			
Phenol	10.4	10.0	ug/L	50.0	BLOD	20.8	10-120			
Pyrene	40.2	10.0	ug/L	49.5	BLOD	81.2	52-120			
Pyridine	26.2	10.0	ug/L	49.5	BLOD	52.9	10-110			
Surr: 2,4,6-Tribromophenol (Surr)	76.5		ug/L	99.0		77.3	5-136			
Surr: 2-Fluorobiphenyl (Surr)	34.3		ug/L	49.5		69.4	9-117			
Surr: 2-Fluorophenol (Surr)	38.4		ug/L	99.0		38.8	5-60			
Surr: Nitrobenzene-d5 (Surr)	31.9		ug/L	49.5		64.4	5-151			
Surr: Phenol-d5 (Surr)	24.0		ug/L	99.0		24.2	5-60			
Surr: p-Terphenyl-d14 (Surr)	38.6		ug/L	49.5		78.0	5-141			
Matrix Spike Dup (BFK0934-MSD1)	Sourc	e: 22K1067-0)2	Prepared & Anal	lyzed: 11/22/2022					
1,2,4-Trichlorobenzene	23.1	10.0	ug/L	48.1	BLOD	48.0	44-142	14.5	20	
1,2-Dichlorobenzene	20.3	10.0	ug/L	48.1	BLOD	42.2	22-115	14.7	20	
1,3-Dichlorobenzene	19.1	10.0	ug/L	48.1	BLOD	39.8	22-112	16.2	20	
1,4-Dichlorobenzene	22.6	10.0	ug/L	48.1	BLOD	47.0	13-112	14.2	20	
2,4,6-Trichlorophenol	30.8	10.0	ug/L	48.1	BLOD	64.1	37-144	3.58	20	
2,4-Dichlorophenol	28.6	10.0	ug/L	48.1	BLOD	59.6	39-135	7.07	20	
2,4-Dimethylphenol	28.2	5.00	ug/L	48.1	BLOD	58.6	32-120	5.72	20	
2,4-Dinitrophenol	27.0	50.0	ug/L	48.1	BLOD	56.1	39-139	3.22	20	
2,4-Dinitrotoluene	38.7	10.0	ug/L	48.1	BLOD	80.4	10-191	2.99	20	
2,6-Dinitrotoluene	34.2	10.0	ug/L	48.1	BLOD	71.1	50-158	1.88	20	
2-Chloronaphthalene	29.7	10.0	ug/L	48.1	BLOD	61.8	60-120	5.10	20	
2-Chlorophenol	28.1	10.0	ug/L	48.1	BLOD	58.4	23-134	4.59	20	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch	BFK0934 - SW351	0C/EPA600-	MS							
Matrix Spike Dup (BFK0934-MSD1)	Sourc	e: 22K1067-0	2	Prepared & Anal	yzed: 11/22/2022					
2-Nitrophenol	29.7	10.0	ug/L	48.1	BLOD	61.8	29-182	8.01	20	
3,3'-Dichlorobenzidine	22.2	10.0	ug/L	48.1	BLOD	46.2	10-262	6.90	20	
4,6-Dinitro-2-methylphenol	35.8	50.0	ug/L	48.1	BLOD	74.5	10-181	6.40	20	
4-Bromophenyl phenyl ether	32.5	10.0	ug/L	48.1	BLOD	67.5	53-127	1.41	20	
4-Chlorophenyl phenyl ether	29.0	10.0	ug/L	48.1	BLOD	60.2	25-158	3.42	20	
4-Nitrophenol	12.6	50.0	ug/L	48.1	BLOD	26.2	10-132	0.326	20	
Acenaphthene	31.1	10.0	ug/L	48.1	BLOD	64.8	47-145	3.82	20	
Acenaphthylene	32.8	10.0	ug/L	48.1	BLOD	68.2	33-145	3.04	20	
Anthracene	41.9	10.0	ug/L	48.1	BLOD	87.1	27-133	4.73	20	
Benzidine	ND	50.0	ug/L	48.1	BLOD		12-309		20	M
Benzo (a) anthracene	41.9	10.0	ug/L	48.1	BLOD	87.1	33-143	7.55	20	
Benzo (a) pyrene	47.1	10.0	ug/L	48.1	BLOD	97.9	17-163	12.8	20	
Benzo (b) fluoranthene	49.6	10.0	ug/L	48.1	BLOD	103	24-159	11.6	20	
Benzo (g,h,i) perylene	28.3	10.0	ug/L	48.1	BLOD	58.8	10-219	3.28	20	
Benzo (k) fluoranthene	51.1	10.0	ug/L	48.1	BLOD	106	11-162	13.7	20	
bis (2-Chloroethoxy) methane	27.6	10.0	ug/L	48.1	BLOD	57.3	33-184	4.79	20	
bis (2-Chloroethyl) ether	27.5	10.0	ug/L	48.1	BLOD	57.2	12-158	5.21	20	
2,2'-Oxybis (1-chloropropane)	28.2	10.0	ug/L	48.1	BLOD	58.7	36-166	9.99	20	
bis (2-Ethylhexyl) phthalate	44.6	10.0	ug/L	48.1	BLOD	92.9	10-158	13.2	20	
Butyl benzyl phthalate	42.9	10.0	ug/L	48.1	BLOD	89.2	10-152	12.9	20	
Chrysene	44.9	10.0	ug/L	48.1	BLOD	93.4	17-169	13.6	20	
Dibenz (a,h) anthracene	34.6	10.0	ug/L	48.1	BLOD	72.1	10-227	4.71	20	
Diethyl phthalate	39.2	10.0	ug/L	48.1	BLOD	81.5	10-120	3.30	20	
Dimethyl phthalate	38.8	10.0	ug/L	48.1	BLOD	80.7	10-120	0.295	20	
Fluoranthene	47.9	10.0	ug/L	48.1	BLOD	99.7	26-137	11.5	20	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.:

Submitted To:

Bristol landfill Jennifer Robb Date Issued:

12/6/2022 12:51:59PM

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BFK0934 - SW351	0C/EPA600	-MS							
Matrix Spike Dup (BFK0934-MSD1)	Source	e: 22K1067-0)2	Prepared & Anal	yzed: 11/22/2022					
Fluorene	34.3	10.0	ug/L	48.1	BLOD	71.4	59-121	1.40	20	
Hexachlorobenzene	42.1	1.00	ug/L	48.1	BLOD	87.7	10-152	0.455	20	
Hexachlorobutadiene	24.2	10.0	ug/L	48.1	BLOD	50.4	24-120	12.9	20	
Hexachlorocyclopentadiene	19.2	10.0	ug/L	48.1	BLOD	40.0	10-90	9.22	20	
Hexachloroethane	20.2	10.0	ug/L	48.1	BLOD	41.9	40-120	16.8	20	
Indeno (1,2,3-cd) pyrene	34.3	10.0	ug/L	48.1	BLOD	71.4	10-171	5.90	20	
Isophorone	23.3	10.0	ug/L	48.1	BLOD	48.5	21-196	5.17	20	
Naphthalene	27.8	5.00	ug/L	48.1	BLOD	57.8	21-133	12.0	20	
Nitrobenzene	28.8	10.0	ug/L	48.1	BLOD	60.0	35-180	5.72	20	
n-Nitrosodimethylamine	13.4	10.0	ug/L	48.1	BLOD	27.8	10-85	11.3	20	
n-Nitrosodi-n-propylamine	29.0	10.0	ug/L	48.1	BLOD	60.4	10-230	4.89	20	
n-Nitrosodiphenylamine	28.4	10.0	ug/L	48.1	BLOD	59.1	12-111	2.71	20	
p-Chloro-m-cresol	30.1	10.0	ug/L	48.1	BLOD	62.6	10-127	4.79	20	
Pentachlorophenol	31.9	20.0	ug/L	48.1	BLOD	66.3	14-176	0.947	20	
Phenanthrene	44.2	10.0	ug/L	48.1	BLOD	91.9	54-120	2.69	20	
Phenol	9.48	10.0	ug/L	48.6	BLOD	19.5	10-120	9.40	20	
Pyrene	46.1	10.0	ug/L	48.1	BLOD	95.9	52-120	13.7	20	
Pyridine	26.8	10.0	ug/L	48.1	BLOD	55.7	10-110	2.27	20	
Surr: 2,4,6-Tribromophenol (Surr)	74.2		ug/L	96.2		77.1	5-136			
Surr: 2-Fluorobiphenyl (Surr)	32.7		ug/L	48.1		68.1	9-117			
Surr: 2-Fluorophenol (Surr)	25.4		ug/L	96.2		26.5	5-60			
Surr: Nitrobenzene-d5 (Surr)	29.3		ug/L	48.1		61.0	5-151			
Surr: Phenol-d5 (Surr)	21.9		ug/L	96.2		22.8	5-60			
Surr: p-Terphenyl-d14 (Surr)	45.7		ug/L	48.1		95.0	5-141			

12/6/2022 12:51:59PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.:

Submitted To:

Jennifer Robb

Bristol landfill

Wet Chemistry Analysis - Quality Control

<u>.</u>	5 "			Spike	Source	0/ 550	%REC	222	RPD	0 1
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch	BFK0801 - No Prej	Wet Chem								
Blank (BFK0801-BLK1)				Prepared & Analy	/zed: 11/18/2022					
BOD	ND	2.0	mg/L							
LCS (BFK0801-BS1)				Prepared & Analy	zed: 11/18/2022					
BOD	206	2	mg/L	198		104	84.6-115.4			
Duplicate (BFK0801-DUP1)	Sourc	e: 22K1013-01		Prepared & Analy	/zed: 11/18/2022					
BOD	56.8	2.0	mg/L		56.5			0.530	20	
Batch	BFK0861 - No Prej	Wet Chem								
Blank (BFK0861-BLK1)				Prepared & Analy	yzed: 11/21/2022					
Ammonia as N	ND	0.10	mg/L							
LCS (BFK0861-BS1)				Prepared & Analy	/zed: 11/21/2022					
Ammonia as N	2.11	0.1	mg/L	2.00		105	90-110			
Matrix Spike (BFK0861-MS1)	Sourc	e: 22K0802-01		Prepared & Analy	/zed: 11/21/2022					
Ammonia as N	2.16	0.10	mg/L	2.00	BLOD	108	89.3-131			
Matrix Spike (BFK0861-MS2)	Sourc	e: 22K0993-01		Prepared & Analyzed: 11/21/2022						
Ammonia as N	2.12	0.10	mg/L	2.00	BLOD	106	89.3-131			
Matrix Spike Dup (BFK0861-MSD1)	Sourc	e: 22K0802-01		Prepared & Analy	yzed: 11/21/2022					
Ammonia as N	2.19	0.10	mg/L	2.00	BLOD	109	89.3-131	1.33	20	
Matrix Spike Dup (BFK0861-MSD2)	Sourc	e: 22K0993-01		Prepared & Analy	/zed: 11/21/2022					
Ammonia as N	2.19	0.10	mg/L	2.00	BLOD	110	89.3-131	3.34	20	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BFK0981 - No Pre	p Wet Chem								
Blank (BFK0981-BLK1)				Prepared & Analyze	d: 11/23/2022					
Ammonia as N	ND	0.10	mg/L							
LCS (BFK0981-BS1)				Prepared & Analyze	d: 11/23/2022					
Ammonia as N	1.98	0.1	mg/L	2.00		99.2	90-110			
Matrix Spike (BFK0981-MS1)	Source	ce: 22K1168-0	3	Prepared & Analyze	d: 11/23/2022					
Ammonia as N	1.98	0.10	mg/L	2.00	BLOD	99.2	89.3-131			
Matrix Spike (BFK0981-MS2)	Source	ce: 22K1179-0	1	Prepared & Analyze	d: 11/23/2022					
Ammonia as N	2.12	0.10	mg/L	2.00	BLOD	106	89.3-131			
Matrix Spike Dup (BFK0981-MSD1)	Source	ce: 22K1168-0	3	Prepared & Analyze	d: 11/23/2022					
Ammonia as N	1.99	0.10	mg/L	2.00	BLOD	99.7	89.3-131	0.553	20	
Matrix Spike Dup (BFK0981-MSD2)	Source	ce: 22K1179-0	1	Prepared & Analyzed: 11/23/2022						
Ammonia as N	2.15	0.10	mg/L	2.00	BLOD	107	89.3-131	1.31	20	
Batch I	BFK1020 - No Pre	p Wet Chem								
Blank (BFK1020-BLK1)				Prepared & Analyze	d: 11/28/2022					
COD	ND	10.0	mg/L							
LCS (BFK1020-BS1)				Prepared & Analyze	d: 11/28/2022					
COD	52.1	10.0	mg/L	50.0		104	88-119			
Matrix Spike (BFK1020-MS1)	Source	ce: 22K0966-0	2	Prepared & Analyze	d: 11/28/2022					
COD	79.0	10.0	mg/L	50.0	29.8	98.3	72.4-130	·		

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Wet Chemistry Analysis - Quality Control

Analista	Decult	1.00	Units	Spike	Source	0/ DEC	%REC Limits	DDD	RPD	Oval
Analyte	Result	LOQ	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch	BFK1020 - No Prep	Wet Chem								
Matrix Spike Dup (BFK1020-MSD1)	Source	e: 22K0966-02	!	Prepared & Analy	yzed: 11/28/2022					
COD	75.7	10.0	mg/L	50.0	29.8	91.7	72.4-130	4.29	20	
Batch	BFK1032 - No Prep	Wet Chem								
Blank (BFK1032-BLK1)				Prepared & Analy	yzed: 11/28/2022					
Nitrate+Nitrite as N	ND	0.10	mg/L							
LCS (BFK1032-BS1)				Prepared & Analy	yzed: 11/28/2022					
Nitrate+Nitrite as N	2.65	0.1	mg/L	2.50		106	90-110			
Matrix Spike (BFK1032-MS1)	32-MS1) Source: 22K1228-01		Prepared & Analy	yzed: 11/28/2022						
Nitrate+Nitrite as N	3.09	0.1	mg/L	2.50	0.68	96.5	90-110			
Matrix Spike Dup (BFK1032-MSD1)	Source	: 22K1228-01		Prepared & Analyzed: 11/28/2022						
Nitrate+Nitrite as N	3.13	0.1	mg/L	2.50	0.68	98.1	90-110	1.28	20	
Batch	BFK1053 - No Prep	Wet Chem								
Blank (BFK1053-BLK1)				Prepared & Analy	yzed: 11/28/2022					
Total Recoverable Phenolics	ND	0.050	mg/L							
LCS (BFK1053-BS1)				Prepared & Analy	yzed: 11/28/2022					
Total Recoverable Phenolics	0.45	0.050	mg/L	0.500		90.4	80-120			
Matrix Spike (BFK1053-MS1)	Source	: 22K1159-02		Prepared & Analy	yzed: 11/28/2022					
Total Recoverable Phenolics	0.45	0.050	mg/L	0.500	BLOD	90.4	70-130			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Wet Chemistry Analysis - Quality Control

Analyte	Result	LOQ	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch I	BFK1053 - No Pre	p Wet Chem								
Matrix Spike Dup (BFK1053-MSD1)	Source	e: 22K1159-02		Prepared & Analy	yzed: 11/28/2022					
Total Recoverable Phenolics	0.42	0.050	mg/L	0.500	BLOD	84.0	70-130	7.34	20	
Batch I	BFL0064 - No Pre	p Wet Chem								
Blank (BFL0064-BLK1)				Prepared & Analy	yzed: 12/01/2022					
TKN as N	ND	0.50	mg/L							
LCS (BFL0064-BS1)				Prepared & Analy	yzed: 12/01/2022					
TKN as N	10.3	0.50	mg/L	10.0		103	90-110			
Matrix Spike (BFL0064-MS1)	Sourc	e: 22K1280-03		Prepared & Analy	Prepared & Analyzed: 12/01/2022					
TKN as N	10.2	0.50	mg/L	10.0	0.71	94.7	90-110			
Matrix Spike (BFL0064-MS2)	Sourc	e: 22K1026-06		Prepared & Analy	yzed: 12/01/2022					
TKN as N	10.4	0.50	mg/L	10.0	0.51	99.0	90-110			
Matrix Spike Dup (BFL0064-MSD1)	Sourc	e: 22K1280-03		Prepared & Analy	yzed: 12/01/2022					
TKN as N	10.7	0.50	mg/L	10.0	0.71	99.7	90-110	4.76	20	
Matrix Spike Dup (BFL0064-MSD2)	Sourc	e: 22K1026-06		Prepared & Analyzed: 12/01/2022						
TKN as N	10.7	0.50	mg/L	10.0	0.51	102	90-110	2.53	20	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Analytical Summary

 22K1011-01
 Subcontract

 22K1011-02
 Subcontract

 22K1011-03
 Subcontract

Preparation Factors

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EP	A 6000/7000 Series Methods		Preparation Method:	EPA200.2/R2.8	
22K1011-01	25.0 mL / 50.0 mL	SW6010D	BFK0920	SFK0885	AK20127
22K1011-02	25.0 mL / 50.0 mL	SW6010D	BFK0920	SFK0885	AK20127
22K1011-03	25.0 mL / 50.0 mL	SW6010D	BFK0920	SFK0885	AK20127
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	ysis		Preparation Method:	No Prep Wet Chem	
22K1011-01	300 mL / 300 mL	SM22 5210B-2011	BFK0801	SFK0915	
22K1011-02	300 mL / 300 mL	SM22 5210B-2011	BFK0801	SFK0915	
22K1011-03	300 mL / 300 mL	SM22 5210B-2011	BFK0801	SFK0915	
22K1011-01	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0861	SFK0807	AK20125
22K1011-01RE1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0861	SFK0807	AK20125
22K1011-02	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0861	SFK0807	AK20125
22K1011-02RE1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0861	SFK0807	AK20125
22K1011-03	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0981	SFK0912	AK20141
22K1011-01	2.00 mL / 2.00 mL	SM22 5220D-2011	BFK1020	SFK0976	AK20081
22K1011-02	2.00 mL / 2.00 mL	SM22 5220D-2011	BFK1020	SFK0976	AK20081
22K1011-03	2.00 mL / 2.00 mL	SM22 5220D-2011	BFK1020	SFK0976	AK20081
22K1011-01	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BFK1032	SFK0968	AK20154
22K1011-02	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BFK1032	SFK0968	AK20154
22K1011-03	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BFK1032	SFK0968	AK20154
22K1011-01	0.500 mL / 10.0 mL	SW9065	BFK1053	SFK0994	Al20184
22K1011-02	0.500 mL / 10.0 mL	SW9065	BFK1053	SFK0994	Al20184

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	<i>y</i> sis		Preparation Method:	No Prep Wet Che	m
22K1011-03	0.200 mL / 10.0 mL	SW9065	BFK1053	SFK0994	Al20184
22K1011-01	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
22K1011-01RE1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
22K1011-02	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
22K1011-02RE1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
22K1011-03	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
22K1011-03RE1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600)-MS
22K1011-01	1070 mL / 1.00 mL	SW8270E	BFK0845	SFK0842	Al20131
22K1011-02	1070 mL / 1.00 mL	SW8270E	BFK0845	SFK0842	Al20131
22K1011-03	1070 mL / 1.00 mL	SW8270E	BFK0934	SFK0957	Al20131
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Com	npounds by GCMS		Preparation Method:	SW5030B-MS	
22K1011-01	5.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
22K1011-01RE1	5.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
22K1011-02	5.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
22K1011-02RE1	5.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
22K1011-03	5.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
22K1011-03RE1	5.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
22K1011-04	5.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
22K1011-05	5.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	SW7470A	

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill

Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by E	PA 6000/7000 Series Methods		Preparation Method:	SW7470A	
22K1011-01	10.0 mL / 20.0 mL	SW7470A	BFL0136	SFL0142	AL20029
22K1011-02	10.0 mL / 20.0 mL	SW7470A	BFL0136	SFL0142	AL20029
22K1011-03	5.00 mL / 20.0 mL	SW7470A	BFL0136	SFL0142	AL20029

Client Name: SCS Engineers-Winchester

Preparation Factors

Bristol landfill

Jennifer Robb Submitted To:

Client Site I.D.:

QC Analytical Summary

|--|

Date Issued: 12/6/2022 12:51:59PM

Sample ID	Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	EPA200.2/R2.8	
BFK0920-BLK1	25.0 mL / 50.0 mL	SW6010D	BFK0920	SFK0885	AK20127
BFK0920-BS1	25.0 mL / 50.0 mL	SW6010D	BFK0920	SFK0885	AK20127
BFK0920-MS1	25.0 mL / 50.0 mL	SW6010D	BFK0920	SFK0885	AK20127
BFK0920-MS2	25.0 mL / 50.0 mL	SW6010D	BFK0920	SFK0885	AK20127
BFK0920-MSD1	25.0 mL / 50.0 mL	SW6010D	BFK0920	SFK0885	AK20127
BFK0920-MSD2	25.0 mL / 50.0 mL	SW6010D	BFK0920	SFK0885	AK20127
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	ysis .		Preparation Method:	No Prep Wet Chem	
BFK0801-BLK1	300 mL / 300 mL	SM22 5210B-2011	BFK0801	SFK0915	
BFK0801-BS1	300 mL / 300 mL	SM22 5210B-2011	BFK0801	SFK0915	
BFK0801-DUP1	300 mL / 300 mL	SM22 5210B-2011	BFK0801	SFK0915	
BFK0861-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0861	SFK0807	AK20125
BFK0861-BS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0861	SFK0807	AK20125
BFK0861-MS1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0861	SFK0807	AK20125
BFK0861-MS2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0861	SFK0807	AK20125
BFK0861-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0861	SFK0807	AK20125
BFK0861-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0861	SFK0807	AK20125
BFK0981-BLK1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0981	SFK0912	AK20141
	0.00 1.40.00 1	EPA350.1 R2.0	BFK0981	SFK0912	AK20141
BFK0981-BS1	6.00 mL / 6.00 mL				
	6.00 mL / 6.00 mL 6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0981	SFK0912	AK20141
BFK0981-BS1 BFK0981-MRL1 BFK0981-MS1		EPA350.1 R2.0 EPA350.1 R2.0	BFK0981 BFK0981	SFK0912 SFK0912	AK20141 AK20141

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Wet Chemistry Analy	rsis		Preparation Method:	No Prep Wet Chem	
BFK0981-MSD1	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0981	SFK0912	AK20141
BFK0981-MSD2	6.00 mL / 6.00 mL	EPA350.1 R2.0	BFK0981	SFK0912	AK20141
BFK1020-BLK1	2.00 mL / 2.00 mL	SM22 5220D-2011	BFK1020	SFK0976	AK20081
BFK1020-BS1	2.00 mL / 2.00 mL	SM22 5220D-2011	BFK1020	SFK0976	AK20081
BFK1020-MS1	2.00 mL / 2.00 mL	SM22 5220D-2011	BFK1020	SFK0976	AK20081
BFK1020-MSD1	2.00 mL / 2.00 mL	SM22 5220D-2011	BFK1020	SFK0976	AK20081
BFK1032-BLK1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BFK1032	SFK0968	AK20154
BFK1032-BS1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BFK1032	SFK0968	AK20154
BFK1032-MRL1	5.00 mL / 5.00 mL	SM22 4500-NO3F-2011	BFK1032	SFK0968	AK20154
BFK1032-MS1	10.0 mL / 10.0 mL	SM22 4500-NO3F-2011	BFK1032	SFK0968	AK20154
BFK1032-MSD1	10.0 mL / 10.0 mL	SM22 4500-NO3F-2011	BFK1032	SFK0968	AK20154
BFK1053-BLK1	5.00 mL / 10.0 mL	SW9065	BFK1053	SFK0994	Al20184
BFK1053-BS1	5.00 mL / 10.0 mL	SW9065	BFK1053	SFK0994	Al20184
BFK1053-MS1	5.00 mL / 10.0 mL	SW9065	BFK1053	SFK0994	AI20184
BFK1053-MSD1	5.00 mL / 10.0 mL	SW9065	BFK1053	SFK0994	Al20184
BFL0064-BLK1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
BFL0064-BS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
BFL0064-MRL1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
BFL0064-MS1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
BFL0064-MS2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
BFL0064-MSD1	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
BFL0064-MSD2	25.0 mL / 25.0 mL	EPA351.2 R2.0	BFL0064	SFL0075	AL20015
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600-M	S
BFK0845-BLK1	1000 mL / 1.00 mL	SW8270E	BFK0845	SFK0847	Al20189
BFK0845-BS1	1000 mL / 1.00 mL	SW8270E	BFK0845	SFK0847	AI20189
BFK0934-BLK1	1000 mL / 1.00 mL	SW8270E	BFK0934	SFK0910	Al20189

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Semivolatile Organic	Compounds by GCMS		Preparation Method:	SW3510C/EPA600	-MS
BFK0934-BS1	1000 mL / 1.00 mL	SW8270E	BFK0934	SFK0910	Al20189
BFK0934-MS1	1010 mL / 1.00 mL	SW8270E	BFK0934	SFK0910	Al20189
BFK0934-MSD1	1040 mL / 1.00 mL	SW8270E	BFK0934	SFK0910	Al20189
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Con	npounds by GCMS		Preparation Method:	SW5030B-MS	
BFK0850-BLK1	5.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
BFK0850-BS1	5.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
BFK0850-MS1	1.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
BFK0850-MSD1	1.00 mL / 5.00 mL	SW8260D	BFK0850	SFK0799	AJ20160
Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Metals (Total) by EPA	A 6000/7000 Series Methods		Preparation Method:	SW7470A	
BFL0136-BLK1	20.0 mL / 20.0 mL	SW7470A	BFL0136	SFL0142	AL20029
BFL0136-BS1		SW7470A	BFL0136	SFL0142	AL20029
BFL0136-MS1	20.0 mL / 20.0 mL	SW7470A	BFL0136	SFL0142	AL20029
BFL0136-MSD1	20.0 mL / 20.0 mL	SW7470A	BFL0136	SFL0142	AL20029

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Certified Analyses included in this Report

Analyte	Certifications
EPA350.1 R2.0 in Non-Potable Water	
Ammonia as N	VELAP,NCDEQ,PADEP,WVDEP
EPA351.2 R2.0 in Non-Potable Water	
TKN as N	VELAP,NCDEQ,WVDEP
SM22 4500-NO3F-2011 in Non-Potable Water	
Nitrate+Nitrite as N	VELAP,WVDEP
SM22 5210B-2011 in Non-Potable Water	
BOD	VELAP,NCDEQ,WVDEP
SM22 5220D-2011 in Non-Potable Water	, "
COD	VELAP,NCDEQ,PADEP,WVDEP
SW6010D in Non-Potable Water	, , ,
Arsenic	VELAP,WVDEP
Barium	VELAP,WVDEP,PADEP
Cadmium	VELAP,WVDEP,PADEP
Chromium	VELAP,WVDEP
Copper	VELAP,WVDEP
Lead	VELAP,WVDEP
Nickel	VELAP,WVDEP
Selenium	VELAP,WVDEP
Silver	VELAP,WVDEP,PADEP
Zinc	VELAP,WVDEP
SW7470A in Non-Potable Water	
Mercury	VELAP,NCDEQ,WVDEP
SW8260D in Non-Potable Water	
2-Butanone (MEK)	VELAP,NCDEQ,PADEP,WVDEP

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Date Issued:

12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Certified Analyses included in this Report

Analyte	Certifications	
Acetone	VELAP,NCDEQ,PADEP,WVDEP	
Benzene	VELAP,NCDEQ,PADEP,WVDEP	
Ethylbenzene	VELAP,NCDEQ,PADEP,WVDEP	
Toluene	VELAP,NCDEQ,PADEP,WVDEP	
Xylenes, Total	VELAP,NCDEQ,PADEP,WVDEP	
Tetrahydrofuran	VELAP,PADEP	
SW8270E in Non-Potable Water		
Anthracene	VELAP,PADEP,NCDEQ,WVDEP	
OM/ODOF in Non Bodoble Meden		

SW9065 in Non-Potable Water

Total Recoverable Phenolics VELAP, WVDEP

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2022
NC	North Carolina DENR	495	07/31/2023
NCDEQ	North Carolina DEQ	495	07/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2022

12/6/2022 12:51:59PM

Date Issued:

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Bristol landfill

Submitted To: Jennifer Robb

Qualifiers and Definitions

DS Surrogate concentration reflects a dilution factor.

E Estimated concentration, outside calibration range

J The reported result is an estimated value.

LCS recovery is outside of established acceptance limits

M Matrix spike recovery is outside established acceptance limits

RPD Relative Percent Difference

Qual Qualifers

Client Site I.D.:

-RE Denotes sample was re-analyzed

LOD Limit of Detection

BLOD Below Limit of Detection

LOQ Limit of Quantitation

DF Dilution Factor

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral

library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are

estimated and are calculated using an internal standard response factor of 1.

PCBs, Total Total PCBs are defined as the sum of detected Aroclors 1016, 1221, 1232, 1248, 1254, 1260, 1262, and 1268.

1941 REYMET ROAD **RICHMOND, VIRGINIA 23237** (804) 358-8295 PHONE (804)358-8297 FAX

Chain of Custody Effective: Mar 10, 2021

CHAIN OF CUSTODY

PAGE 1 OF 1 . 11

COMPANY NAME: 505 E	ngi	ne	us	5	IN	VOICE TO	:	SU	5 Re	18	non		PF	ROJEC	Г NAM	E/Quot	e #:	Bro	stol Lengh M
CONTACT: Jan Robb	00				IN	VOICE CC	NTAC	T: (ion (TE NAM					
ADDRESS: 246 Victory Por	11	Jin	elek	VA 229	12 IN	VOICE AD	DRES	S:					PF	ROJEC	T NUM	BER:	022	2152	106,15
PHONE #: 703-471-618	0				IN	VOICE PH	ONE#	:					P.	O. #:					
FAX #:				EMAIL:	Trob	b@ scs	engir	veers	CON	1			Pr	etreatm	ent Pr	ogram:			at:
Is sample for compliance reporting	ng?	-	YES			ry State:			nple fro		chlori	nated s	supply	? YE	ES (N	19	PWSI	.D. #:	
SAMPLER NAME (PRINT):	deu	0	Ha	end	SA	MPLER S	IGNAT	URE:	1	m	S	el	Tu	ırn Arou	ınd Tir	ne: Cir	cle 10) 5 D	ays or _Day(s)
Matrix Codes: WW=Waste Water/Storm Wa	ter G	W=G	round	d Water DW=	Orinking	Water S=Soi	I/Solids	OR=Orga	mic A=Ai	r WF	=Wipe C	T=Other							COMMENTS
CLIENT SAMPLE I.D.		Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Time Preserved	Matrix (See Codes)	Number of Containers	Ammonia 600, COD Nitrale, Withthe	KN '	SVOC: Anthracone SATA	Phenolics Phenolics Ad Ad Ad Ad Ad Ad Ad Ad Ad A	Metals	olie Fatty ds: scelift	s: see List		Preservative Codes: N=Nitric Acid C=Hydrochloric Acid S=Sulfuric Acid H=Sodium Hydroxide A=Ascorbic Acid Z=Zinc Acetate T=Sodium Thiosulfate M=Methanol
	Grab	Com	Field	Com	Com			Time		Num	AN	TK	SVO	Total	Total	107	700		INTERFERENCE CHECKS or PUMP RATE (L/min)
1) EW-65	X	H	\vdash		-1	111622	1345		ww	11									
2) EW-61 3) EW-89	X	\vdash	H		-	111622			ww	ii									
4) Trop Dlak	7				_	111422	1610		ID	2							×		unpresered
5) Trip Black	1					111422			70	2							×		Hel
6)												li li							1111
7)														W 1					1.5
8)																			277
9)					T			У					Υ						(ce
10)																			Secled
LINQUISHED	DAT		TIME	RECEIVE	D: (DATE /	TIME	QC	Data P	ackage	Custody	SE ONLY Seals use	The d and into	rm ID: act? (Y/N	1)		LER TEMP °C Received on ice? (Y/N)
LINQUISHED:	DAT	TE /	Total Control of the	RECEIVE	0	1118	122	DATE /	50	Leve					5	SCS-V	V	ol Ser	22K1011 ni-Annual
of 59		-										-			— I	Recd:	11/17/2	2022	Due: 12/05/2022 v130325002

Terms and Conditions

| Enthapy Terms and Conditors (Standard) |L SCOPE

Any orders received by Enlhelpy Analytical, LLC or its affixed (Enlhelpy), by a purphaser of laboratory consulting or sampling services (Client) will be governed by linese Standard Terms and Conditions, including orders made by delivery of samples or by phone or in person which have not been confirmed in writing, unless otherwise agreed to in a written contract. In the absence of any written contract between Enlhelpy's offer to newde services subject to these Standard Terms and Conditions and an agreement to be bound by the terms hereof. No contrary or additional terms and conditions expressed by Client, orally or in writing, shall be deemed to be accepted by Enthalpy or part of the contract created by acceptance of Enthalpy in writing and page the property when the Sample of Sample of Sample or Sample of Sample or Sample of Sample or IL ORDERS AND ACCEPTANCE OF SAMPLES

A Client may order services by submitting a written chain of custody—record/order to Enthalpy or by submitting a purchase order in writing or by telephone or in person and subsequently confirmed in writing (an "Order"). For any Order to be valid, it must contain sufficient specification to enable Enthalpy will be treated as a new order and may require changes to prucing and may postoone any estimated delivery dates accordingly. For purposes of these Standard Terms and Conditions, "services" shall mean all work to be performed for Client including provision of any equipment end/or materials to be furnished by Enthalpy.

Client shall pay Enthalpy in accordance with Enthalpy's applicable price schedule in effect in the area of operations on the date the services were rendered or as otherwise agreed to in any written price quote by Enthalpy.

Prices are subject to change at any time without notice.

Payment of all invoices is due within 30 days of the invoice date. Any disputas regarding invoices must be provided to Enthalpy in writing within 30 days of the invoice which remains outstanding after the due date may be charged a late fee of \$50, in addition to being subject to interest at the lesser of the maximum amount permitted by law or 1.5% per month of the unpoid balance. Client shall be responsible for the reasonable costs of collection (by legal proceeding or collection agency) of any late payments.

In the event Client falls to make timely payment of its invoices. Enthalpy reserves the right to pursue all appropriate remedies, including but not limited to withholding selivery of data suspension of work or otherwise, without

Payment is not conlinged on payment from any another party. IV. CLIENT RESPONSIBILITY; HOLDING TIMES

IN. CLIENT RESPONSIBILITY; HOLDING TIMES

Prior to Enthalpy a acceptance of any samples, the entire risk of loss or damage to samples remains with Client, except where Enthalpy provides courier service, in no event will Enthalpy be liable or responsible for the actions or fractions of any carrier shipping or delivering any sample to or from any Enthalpy premises. Client is responsible for the proper packaging labeling, transportation and delivery of any hazardous materials in accordance with all applicable laws and represents and warrants to Enthalpy that all samples sent to Enthalpy are sele and in stable condition. Client shall be responsible for, and indemnifies Enthalpy against all losses, costs, damages, it abilities and injuries that may be caused or incurred by Enthalpy or its personnel or reported in sample or responsible for including damage to persons or property.

All samples/materials delivered to Enthalpy must be in a condition that allows for the preparation of reports and analysis. Enthalpy reserves the right to refuse acceptance of any sample delivery which, in the sole judgement of Enthalpy is insufficient for sampling purposes, poses any risk of handling, transport or processing for any health, safety or environmental concerns, or which holding times cannot be mel based on the deadlines set forth herein or as otherwise may be required.)

Samples and influence in a terral processing for any terral processing for any terral processing for any terral processing for any terral processing for any appropriate for processing for any expensive for processing for any terral processing for any appropriate for processing for any appropriate for processing for any appropriate for processing for any appropriate for processing for any appropriate for processing for any appropriate for any appropriate for processing for any appropriate for processing for any appropriate for processing for any appropriate for processing for any appropriate for any appropriate for any appropriate for any appropriate for any ap

Samples and all relevant materials must be received by 3 p.m. on weekdays in order to be processed on the date of delivery/receipt. Enthalpy is not responsible for holding times that are exceeded because samples are delivered on weekdays without prior notification or acceptance. For holding times of 48 hours or less, same-day delivery is required to guarantee holding times. For samples with short holding times (i.e. 7 days or less), samples must be received by Enthalpy no more than 48 hours after sampling to ensure that holding times can be met. For all other analyses with holding times of 14 days or less, samples must be received by Enthalpy within 95 hours of collection to ensure that houring times can be met.

Client shall be responsible for the receir or replacement cost, as applicable, of any sample collection containers rented or loaned to Client by Enthalpy in the event of damage, loss or delay in the timely return of such

V. CHANGE ORDERS: CANCELLATION

Changes to any Order (including scope of work, specifications and timelines) may be initiated by Client effer sample delivery acceptance. Any such changes will be documented in writing and may result in a change of cost and furnaround time commitment. Enthalpy's acceptance of any such requested changes is contingent tipon operational capacity and technical feasibility.

Client may suspend or cancel any order for services or supplies at any time, provided, however, that in the event of any such cancellation. Client shall remain responsible for payment for all services or supplies at any time.

If-of-pocket expenses incurred by Enthalpy in accordance with Article III hereof, each through the date of cence letton or suspension

VI. SAMPLE RETENTION

VI. SAMPLE RETENTION
Unless officenses agreed to in writing by Enthelipy, all samples shall be retained for a period of at least thirty (20) days after analysis and/or reporting is complete, except for gas-phase and short hold (47 day analysis window) samples which will be retained for a period of ten (10) days after analysis and/or reporting is complete. Pre-arranged long ferm storage will be subject to additional charges. Samples may be discarded or des at the expiration of the applicable retention period (or such other date as agreed to in writing between Enthalpy and Client) without further notice. Client may request the return of unused sample materials prior to the scheduled disposal, and such samples shall be returned to the Client at Client's sole expense and risk, furthermore the lab may impose additional fees for surplus sample disposal or returning samples to the Client.

To the extent provided by Enthalpy, delivery dates and turn-around times are estimates which may be changed as reasonably necessary and do not constitute a commitment by Enthalpy. If and when estimated delivery dates are provided by Enthalpy enthalpy shall use commercially reasonable efforts to meet such estimated deadlines.

Rush analyses may be available for certain services for an additional charge and must be arranged in advanced. If, as a result of unforeseen circumstances, the rush turnaround times cannot be diet, normal pricing will

VIII. LIMITED WARRANTIES AND LIMITATION OF LIABILITY

Enthalpy represents and warrants to Client that.

(a) Analyses, interpretations and conclusions are prepared with a commercially reasonable degree of care, but cannot be guaranteed as correct or absolute;

(b) it holds all licenses and certifications required to perform services, provided, however, that any requirements specific to Client's requested services are provided to Enthelpy prior to acceptance of samples, and

(c) it will use analytical methodologies in substantial conformity with published lest methods. Enthalpy reserves the right to deviate from any such methodologies as necessary or appropriate, based on Enthalpy's reasonable judgment, which deviations, if any, will be made on a basis consistent with recognized industry stendards and/or Enthalpy's quality manuals.

stendards and/or Enthalpy's quality manuals.

Client's sole and exclusive remedy for the breach of warranty in connection with any services performed by Enthalpy will be limited to repeating any services performed, provided, however that Client's shall be responsible for providing any additional samples necessary to repeating such services. If resampling is necessary. Enthalpy's liability for resampling costs will be limited to the lesser of \$5,000 and the actual cost of resempling. Enthalpy purchases supplies from vendors that are provided to customers for the collection of laboratory samples. Enthalpy is not responsible for their malfunction or substandard performance.

Enthalpy (together with its employees, representatives officers; directors, agents and affiliates) shall be leable only for the proven clirect and immediate damage caused by Enthalpy gross negligence or willful misconduct in connection with the performance of services in connection with any envised. Their provided under applicable law Enthalpy must receive written notice of any claims of such losses within six (5) months of the date of Client's knowledge of relevant claims. Enthalpy's lightly for any and all causes of action arising hereunder (whether based in contract, tort, negligence, strict liability or otherwise), shall be limited to the lesser of (a) the amount paid by Client for the services and (b) \$25,000. Under no circumstances shall Enthalpy be liable for any indirect, consequential, special, incidental or punitive damages, including loss of use, lost

IX. REPEATED ANALYSIS/CONFIRMATIONS

Client may provide objections to any test results within thirty (30) days of Client's recept of results. Any reanalysis requested by Client which generates results consistent with the original results shall be at Client's sole cost and expense. A repeated analysis will only be possible if Enthalpy has sufficient quantities of original samples available when the Client objection is received. To the extent original samples are not available or are not sufficient in quantity for reanalysis. Client will be required to pay all costs, including sampling, transportation, analytical and disposal costs incurred in connection with remained analysis. ysis. Client will be required to pay all costs, including sampling, transportation, analytical and disposal costs incurred in connection with repeated analysis. X. CONFIDENTIALITY: REPORTS

Any reports, data and information provided by Enthalpy to Client is for the exclusive use of Client. Enthalpy will not disclose client data to any third party (including regulatory agencies, unless required by law) without notification of and consent from client.

All original computations reports and other documents and plans prepared pursuant to these Standard Terms and Conditions are and remain the property of Enthalpy as instruments of service, provided however, that reproducible copies will be provided to Client upon a written request from Client. Such reports shall not be reproduced, except in full, without the written approval of Enthalpy. Client agrees it will not use any such documents or materials for any other than their original intended purpose without the prior written approval of Enthalpy.

Enthalpy shall not be responsible in any way for errors, damage, delay or failure to perform any services due to unforeseen circumstances or causes beyond its control, or which result from compliance with eny governmental requests or laws and/or regulations

- At all times during the performance of services, Enthalpy shall maintain the following minimum insurance:

 1. Commercial general liability including bodily injury, property damage, owners and contractors protective, products/completed operations, contractual and personal injury. The combined single limit for bodily injury and property damage shall not be less than \$1,000,000.
- Automobile podily injury and property damage liability insurance covering owned, non-owned, and hired cars. The combined single limit for bodily injury and property damage shall be not less than \$1,000,000. Statutory worker's compensation and employers' liability insurance as required by state law.

XIII. NO BENEFIT FOR THIRD PARTIES: NO RIGHT OF RELIANCE

Enthalpy shall not be responsible or liable for Client's use of or reliance on the data, information or reports furnished by Enthalpy. No right or benefit is conferred on, nor any contractual relationship intended or established with any other person or entity. No such person or entity shall be entitled to rely on Enthalpy's performance of its services hereunder.

The relationship between the parties is that of independent confinations. Nothing contained in these Standard Terms and Conditions shall be construed as creating any agency, partnership, joint venture or other form of joint enterprise, employment or inductory relationship between the parties, and neither party shall have authority to contract for or bind the other party in any manner whatsperver.

These Standard Terms and Conditions are binding on the heirs, successors, and assigns of the parties hereto.

These Standard Terms and Conditions represent the entire understanding of Client and Enthalpy as to those matters contained herein. No prior oral or written understanding shall be of any force or effect with respect to those matters covered herein. These Standard Terms and Conditions may not be modified or eitered except in writing signed by both parties.

These Standard Terms and Conditions shall be administered and interpreted under the laws of the state in which the Enthalpy office primarily performing the services is located. Jukisdiction of litigation ansing from these Standard Terms and Conditions shall be administered and interpreted under the laws of the state in which the Enthalpy office primarily performing the services is located. Jukisdiction of litigation ansing from these Standard Terms and Conditions shall be in that state.

The Client acknowledges that any litigation between Client, or its client, and third parties may require Enthalpy to spend time responding to discovery requests. Client agrees to pay Enthalpy for time and expenses at a rate of \$200 per hour incurred in discovery relating to such litigation including, without limitation, depositions, the production of documents, and consultations with Client's counsel.

If any part of these Standard Terms and Conditions is found to be in conflict with applicable laws, such part shall be inoperative, null and void insofar as it is in conflict with said laws, but the remainder of these Terms and

Conditions shall be in full force and effect.

These Standard Terms and Conditions may be modified at any time by Enthalpy, without prior notice to Client. Any order placed by Client constitutes Client's acceptance of Enthalpy's offer to provide services subject to these (or subsequently issued) Standard Terms and Conditions and an agreement to be bound by the terms hereof or thereof.

Sample Preservation Log

Order ID	22	KI	01	(Date	Perf	orm	ed: _		11	8]z	Z		_				Ana	alyst I	Perfo	ming C	heck:		SB				_			
D	Ω		/letal	s	yanio	le	l	Sulfic			mmc	nia		TKN			nos,		ł	O3+l		DR	_	(80	estic 81/60 B DW	8/508)	(52	SVO 25/8270	V625)	CrV	* **		Pest/Pi (508) VOC(5	1		OD			cooli	cs.
Sample ID	Container	Rec	l as elved Other	Final pH	as ilved Other	Final pH		i as elved Other] [Rec	H as celved Other	1 2		H as selved Other	Final pH		i as elved Other	1	P Red	H as celved Other	Final pH	H as ceived Other	1 2	Re	celved es. Cl	fina + or	Re	eived s. Cl	final + or -	Received pH	Final pH	Re	H as celved Other	76	PH Rec	as elved Other	1 2	Rec	as eived Other	Final pH
01	Α		8	42																																				
01	B										8	42		8	42					8	42															8	42			
01	F																																						8	۷2
01	G																										+													
02	Α		8	42																																				
02	В										8	42		8	42					8	42															8	42			
02	F																		Г																				8	د 2
02	G																										+		_											
03	A		8	42			П																	Π																
03											6	42		6	42					6	42															6	42			
03							П																																6	42
03	G																							Π			+		_											
							П																																	
NaOH	ID:							HNC)3 ID:	:_3	2K	222	236	<u></u>			CrVI											Ana	ılyst lı	nitials:										
H ₂ SO ₄	ID:	2 <u>T</u>	03/	<u> 36</u>	 		_	Na ₂ S	S2O3	ID: _							* <i>pH t</i> Buffe).7																	
HCL I	D:				 		_	Na ₂ S	SO ₃ I	D: _																		5N	NaOl	l:							_			

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Date Issued: 12/6/2022 12:51:59PM

Certificate of Analysis

Client Name: SCS Engineers-Winchester

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Date Issued: 12/6/2022 12:51:59PM

Laboratory Order ID:

22K1011

Sample Conditions Checklist

Samples Received at:	1.50°C
How were samples received?	Logistics Courier
Were Custody Seals used? If so, were they received intact?	Yes
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	Yes
Are all volatile organic and TOX containers free of headspace?	Yes
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	Yes
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	No

Samples logged as Ground water and for the gorund water methods per Jennifer Robb via email
Samples are too dark to chlorine check and have been decholrinated out of precautions.

Certificate of Analysis

Client Name: SCS Engineers-Winchester Date Issued: 12/6/2022 12:51:59PM

Client Site I.D.: Bristol landfill Submitted To: Jennifer Robb

Samples preserved with sulfuric acid for EW-59 were received at a pH of 6.

Samples have been adjusted in the lab to less than 2.

Samples preserved with sulfuric acid for EW-61 and EW-65 were received at a pH

of 8. Samples have been adjusted in the lab to less than 2.

Jennifer Robb notified via email.

MNM 11/18/22 1436

ANALYTICAL RESULTS

PERFORMED BY

Pace Analytical Gulf Coast 7979 Innovation Park Dr. Baton Rouge, LA 70820 (225) 769-4900

Report Date 11/30/2022

Report # 222112259

Project 22K1011

Samples Collected 11/16/22

Deliver To
Jennifer Sult
Air Water and Soil Labs
1941 Reymet Road
Richmond, VA 23237
804 358 8295

Additional RecipientsKatrina Cooke, Air Water and Soil Labs

Project ID: 22K1011 Report Date: 11/30/2022

Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with Pace Gulf Coast's Standard Operating Procedures.

Common Abbreviations that may be Utilized in this Report

ND Indicates the result was Not Detected at the specified reporting limit

NO Indicates the sample did not ignite when preliminary test performed for EPA Method 1030

DO Indicates the result was Diluted Out

MI Indicates the result was subject to Matrix Interference
TNTC Indicates the result was Too Numercus To Count
SUBC Indicates the analysis was Sub-Contracted
Indicates the analysis was performed in the Field

DL Detection Limit
LOD Limit of Detection
LOQ Limit of Quantitation
RE Re-analysis

CF HPLC or GC Confirmation

00:01 Reported as a time equivalent to 12:00 AM

Reporting Flags that may be Utilized in this Report

J or I Indicates the result is between the MDL and LOQ

J DOD flag on analyte in the parent sample for MS/MSD cutside acceptance criteria

U Indicates the compound was analyzed for but not detected

B or V Indicates the analyte was detected in the associated Method Blank Indicates a non-compliant QC Result (See Q Flag Application Report)

Indicates a non-compliant of Nesdate (dee of rag Application report)

Indicates a non-compliant or not applicable QC recovery or RPD – see narrative

E Organics - The result is estimated because it exceeded the instrument calibration range

E Metals - % diference for the serial dilution is > 10%
L Reporting Limits adjusted to meet risk-based limit.

P RPD between primary and confirmation result is greater than 40

DL Diluted analysis – when appended to Client Sample ID

Sample receipt at Pace Gulf Coast is documented through the attached chain of custody. In accordance with NELAC, this report shall be reproduced only in full and with the written permission of Pace Gulf Coast. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with The NELAC Institute (TNI) Standard 2009 and terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

Estimated uncertainty of measurement is available upon request. This report is in compliance with the DOD QSM as specified in the contract if applicable.

11/30/2022 05:28

Authorized Signature

Pace Gulf Coast Report 222112259

Report#: 222112259 **Project ID:** 22K1011

Report Date: 11/30/2022

Certifications

Certification	Certification Number
A2LA Accredited (DoD ELAP-QSM 5.4)	6429.01
Alabama	01955
Arkansas	88-0655
Colorado	01955
Delaware	01955
Florida	E87854
Georgia	01955
Hawaii	01955
Idaho	01955
Illinois	200048
Indiana	01955
Kansas	E-10354
Kentucky	95
Louisiana	01955
Maryland	01955
Massachusetts	01955
Michigan	01955
Mississippi	01955
Missouri	01955
Montana	N/A
Nebraska	01955
New Mexico	01955
North Carolina	618
North Dakota	R-195
Oklahoma	9403
South Carolina	73006001
South Dakota	01955
Tennessee	01955
Texas	T104704178
Vermont	01955
Virginia	460215
Washington	C929
USDA Soil Permit	P330-16-00234

Project ID:

22K1011

Report Date: 11/30/2022

Case Narrative

Client: Air Water and Soil Labs - Richmond, VA

Report: 222112259

Pace Analytical Gulf Coast received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report is being reissued on 11/30/22 to correct the project number to read 22K1011.

This report supersedes and replaces any prior reports issued under this workorder

No anomalies were found for the analyzed sample(s).

Project ID: 22K1011 Report Date: 11/30/2022

Sample Summary

Lab ID	Client ID	Matrix	Collect Date	Receive Date
22211225901	22K1011: EW-65	Water	11/16/22 11:25	11/22/22 09:13
22211225902	22K1011: EW-61	Water	11/16/22 13:45	11/22/22 09:13
22211225903	22K1011: EW-59	Water	11/16/22 17:45	11/22/22 09:13

Project ID: 22K1011

Report Date: 11/30/2022

Detect Summary

Results and Detection Limits are adjusted for dilution and moisture when applicable

		AM23G				
Lab ID	Client ID	Parameter	Units	Result	Dil.	%Moist
22211225901	22K1011: EW-65	Acetic Acid	mg/L	150J	500	NA
22211225901	22K1011: EW-65	Propionic Acid	mg/L	73J	500	NA
22211225902	22K1011: EW-61	Acetic Acid	mg/L	1600	200	NA
22211225902	22K1011: EW-61	Butyric Acid	mg/L	430	200	NA
22211225902	22K1011: EW-61	i-Pentanoic Acid	mg/L	51J	200	NA
22211225902	22K1011: EW-61	Pentanoic Acid	mg/L	24 J	200	NA
22211225902	22K1011: EW-61	Propionic Acid	mg/L	620	200	NA
22211225902	22K1011: EW-61	Pyruvic Acid	mg/L	46J	200	NA
22211225903	22K1011: EW-59	Acetic Acid	mg/L	3500	500	NA
22211225903	22K1011: EW-59	Butyric Acid	mg/L	830	500	NA
22211225903	22K1011: EW-59	Pentanoic Acid	mg/L	160J	500	NA
22211225903	22K1011: EW-59	Propionic Acid	mg/L	1600	500	NA
22211225903	22K1011: EW-59	Pyruvic Acid	mg/L	98J	500	NA

Project ID: 22K1011 Report Date: 11/30/2022

Sample Results

CHOSERENY) YE

AM23G

*Results and limits are adjusted for dilution.

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	500	11/24/22 10:08	754583	LHM	NA
CAS#	Parameter		Result	DL	LOQ		Units
64-19-7	Acetic Acid		150J	62	250		mg/L
107-92-6	Butyric Acid		250 U	29	250		mg/L
142-62-1	Hexancic Acid		250 U	29	250		mg/L
646-07-1	i-Hexancic Acid		250 U	28	250		mg/L
503-74-2	i-Pentanoic Acid		250 U	30	250		mg/L
50-21-5	Lactic Acid		250 U	27	250		mg/L
109-52-4	Pentanoic Acid		250 U	28	250		mg/L
79-09-4	Propionic Acid		73J	27	250		mg/L
127-17-3	Pyruvic Acid		250 U	30	250		mg/L

AM23G

*Results and limits are adjusted for dilution.

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	200	11/24/22 10:30	754583	LHM	NA
CAS#	Parameter		Result	DL	LOQ		Units
64-19-7	Acetic Acid		1600	25	100		mg/l
107-92-6	Butyric Acid		430	12	100		mg/l
142-62-1	Hexanoic Acid		100 U	12	100		mg/l
646-07-1	i-Hexanoic Acid		100 U	11	100		mg/l
503-74-2	i-Pentanoic Acid		5 1 J	12	100		mg/l
50-21-5	Lactic Acid		100 U	11	100		mg/l
109-52-4	Pentanolc Acid		24J	11	100		mg/l
79-09-4	Propionic Acid		620	11	100		mg/l
127-17-3	Pyruvic Acid		46J	12	100		mg/l

AM23G

*Results and limits are adjusted for dilution.

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	500	11/24/22 10:51	754583	LHM	NA
CAS#	Parameter	-	Result	DL	LOQ		Units
64-19-7	Acetic Acid		3500	62	250		mg/l
107-92-6	Butyric Acid		830	29	250		mg/l
142-62-1	Hexanoic Acid		250 U	29	250		mg/l
646-07-1	i-Hexanoic Acid		250 U	28	250		mg/l
503-74-2	i-Pentanoic Acid		250 U	30	250		mg/l
50-21-5	Lactic Acid		250 U	27	250		mg/l
109-52-4	Pentanoic Acid		160J	28	250		mg/l

Pace Gulf Coast Report#: 222112259 11/30/2022 05:28 Page 7 of 11

Project ID: 22K1011

....

Report Date: 11/30/2022

Sample Results

AM23G (Continued)

*Results and limits are adjusted for dilution.

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	500	11/24/22 10:51	754583	LHM	NA
CAS#	Parameter		Result	DL	LOQ		Units
79-09-4	Propionic Acid		1600	27	250		mg/L
127-17-3	Pyruvic Acid		98J	30	250		mg/L

Project ID: 22K1011 Report Date: 11/30/2022

General Chemistry QC Summary

Analytical Batch	Client ID	MB754583		LCS754	583			LCSD75	4583			
754583	Lab ID	2424189 2424190				2424191						
	Sample Type	MB		LCS				LCSD				
	Prep Date			NA ·				NA				
	Analysis Date	11/24/22 02:57	7	11/24/22	2 02:35			11/24/22	2 11:13			
		Water	<u> </u>	Water				Water				
AM23G		Units Result	mg/L LOQ	Spike Added	Result	%R	Control Limits%R	Spike Added	Result	%R	RPD	RPD Limit
Acetic Acid	64-19-7	0.50U	0.50	2.0	2.0	98	70 - 130	2.0	2.0	99	1	20
Butyric Acid	107-92-6	0.50U	0.50	2.0	2.1	104	70 - 130	2.0	2.1	105	0	20
Hexanoic Acid	142-62-1	0.50U	0.50	2.0	2.1	103	70 - 130	2.0	1.9	98	5	20
i-Hexanoic Acid	646-07-1	0.50U	0.50	2.0	2.0	100	70 - 130	2.0	2.1	103	2	20
i-Pentanoic Acid	503-74-2	0.50U	0.50	2.0	1.9	98	70 - 130	2.0	2.1	103	5	20
Lactic Acid	50-21-5	0.50U	0.50	2.0	1.9	95	70 - 130	2.0	2.0	99	4	20
Pentancic Acid	109-52-4	0.50U	0.50	2.0	2.0	101	70 - 130	2.0	2.1	103	2	20
Propionic Acid	79-09-4	0.50U	0.50	2.0	2.1	104	70 - 130	2.0	2.1	106	2	20
Pyruvic Acid	127-17-3	0.50U	0.50	2.0	1.9	97	70 - 130	2.0	1.9	95	2	20

Pace - Florida: Cart 7979 Innovation Park Dr Baton Rouge, LA 70820 15 RICHMON (80) Client ID: AWS-R - Air Water and Soil Labs - Richmond, VA

SDG: 222112259

PM: RWe

CHAIN OF CUSTODY

COMPANY NAME: Air, Water & Soil Labs, INC			INV	INVOICE TO: AWS LABS PROJECT NAME/Quote #: 22K1011)11											
CONTACT:					INV	INVOICE CONTACT: Jennifer Sult					SI	SITE NAME: 22K1011								
ADDRESS:1941 Reymet Rd, Rich	nmo	ond,	VA 2	23237	INV	INVOICE ADDRESS:					P	PROJECT NUMBER: 22K1011								
PHONE #: 804-358-8295	2.200.000				INV						P.	O. #: (03	714	19					
FAX #:804-358-8297 EMAIL: sup				port@	gawslabs.c	com						Р	retreatme	ent Pro	gram:					
Is sample for compliance reporting? YES NO					Is sample		chlorin	nated s	ирр	ly?	YES	NO				PWS I	.D. #:			
SAMPLER NAME (PRINT):					SA	MPLER SI	GNAT	JRE:									Turn /	Around	d Time:	Day(s)
Matrix Codes: WW=Waste Water/Storm Water	r GV	N=Gı	round \	Water DW=D	rinking '	Water S=Soil/	Solids O	R=Organ	ic A=Air	WP:	-Wipe O	T=Other							COMM	
			(8)									ANA	LYS	SIS / (PR	ESER'	VATIV	E)		Preservative Cod C=Hydrochloric Aci	d S=Sulfuric Acid
1) 22K1011: EW-65 2) 22K1011:EW-61 3) 22K1011:EW-59 4)	X X X Grab	Composite	Field Filtered (Dissolved Metals)	Composite Start Date	Composite Start Time	11/16 (Stab Date or Composite Stop Date 1884)	1745 1745 1745 1745 1745 1745 1745 1745	Time Preserved	S S Matrix (See Codes)	ο ο Number of Containers	X X Volatile Fatty Acids - See								PLEASE NOTE PFINTERFERENCE (RATE (2 3	tate T=Sodium 4=Methanol ESERVATIVE(S), CHECKS or PUMP
5) 6)																				
7)	_	-	\vdash						-	H			-					-		
8)	-	\vdash	\vdash					MACHINE.	-	-									-	
9)	\vdash	-	\vdash							-										
10) RELINQUISHED: JH 11/21/22 1450 RELINQUISHED: FUEX 11- RELINQUISHED:	DAT	TE 1 -2Ω	TIME TIME TIME TIME	MEGETAL	2nd	ensi III	ulur	CALLE !	50 TIME 22 91	Leve	el II	ackage	_AB	USE ON		5	2282		MP 5.8 = 3	

SAMPLE RECEIVING CHECKLIST

SAMPLE DELIVERY GRO	UP 2221122	259	CHECKLIST		YES	NO			
Client PM RWe AWS-R - Air Water and Soil Labs - Richmond, VA	Transport N	lethod	Samples received with proper thermal preservation? Radioactivity is <1600 cpm? If no, record cpm value in notes section.						
Profile Number 284518 Received By Roberts, George S.			COC relinquished and complete (including sampleIDs, collect times, and sampler)? All containers received in good condition and within hold time?						
Line Item(s) Receive Date(s) 2 - LLVFAs 11/22/22			All sample labels and containers received match	n the chain of custody?	✓				
2-LLVFAs 11/22/22			Preservative added to any containers?		•				
			If received, was headspace for VOC water containers < 6mm?						
			Samples collected in containers provided by Pa	ce Gulf Coast?		Y			
COOLERS			DISCREPANCIES	LAB PRESERVATIONS					
Airbill Thermom	eter ID: E38	Temp °C	None	None					
770555848263		5.8							
NOTES									

Revision 1.6

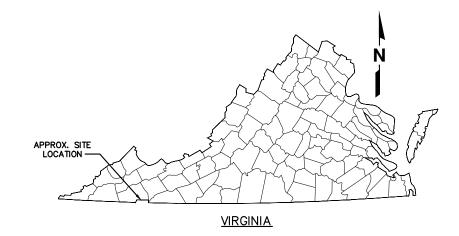
Page 69 of 69

Page 1 of 1

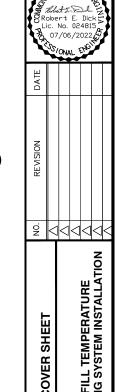
Appendix G

Landfill Temperature Monitoring System Drawings

CITY OF BRISTOL INTEGRATED SOLID WASTE MANAGEMENT FACILITY LANDFILL TEMPERATURE MONITORING SYSTEM DRAWINGS



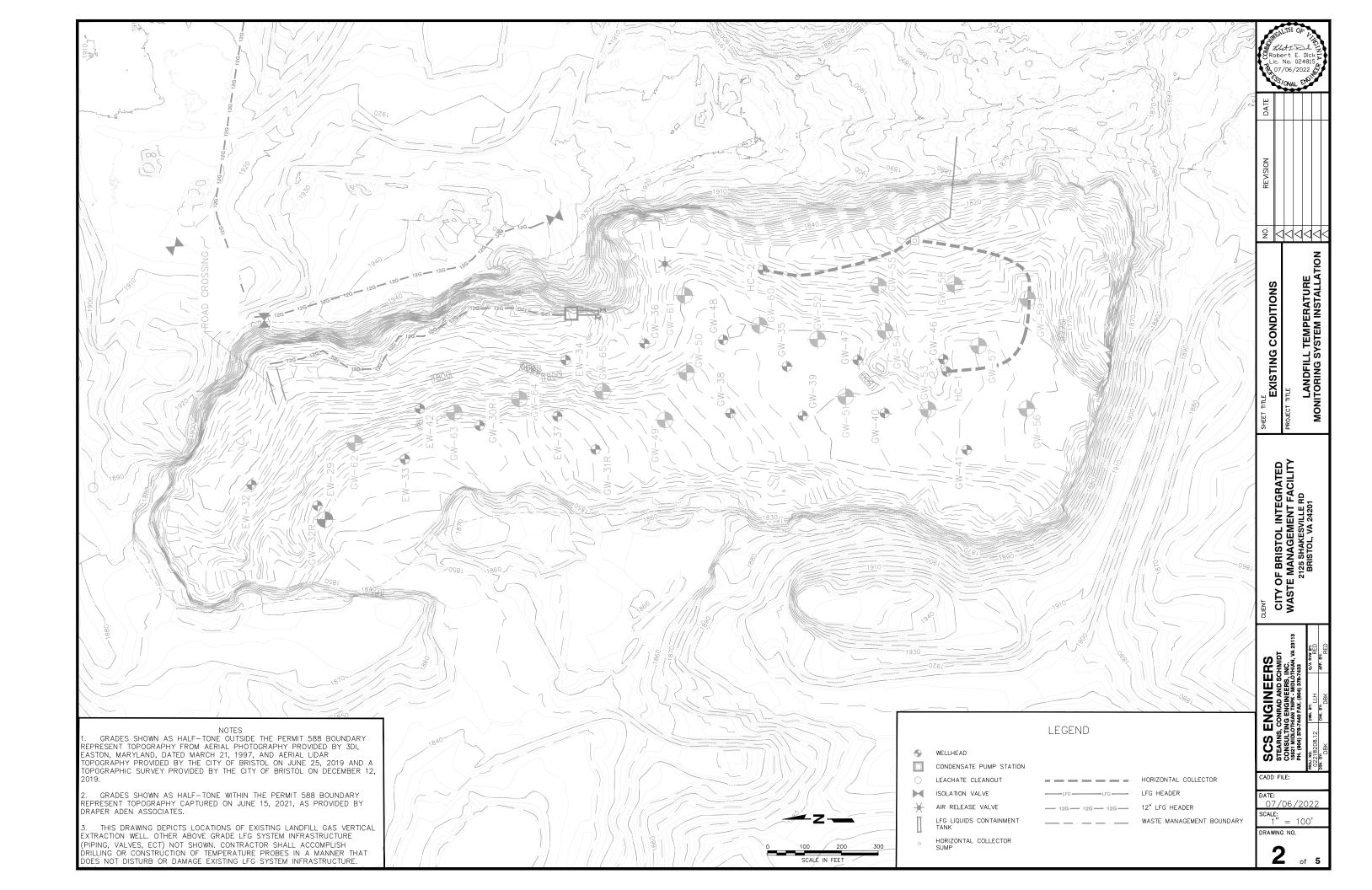
BRISTOL ISWMF AERIAL PHOTO

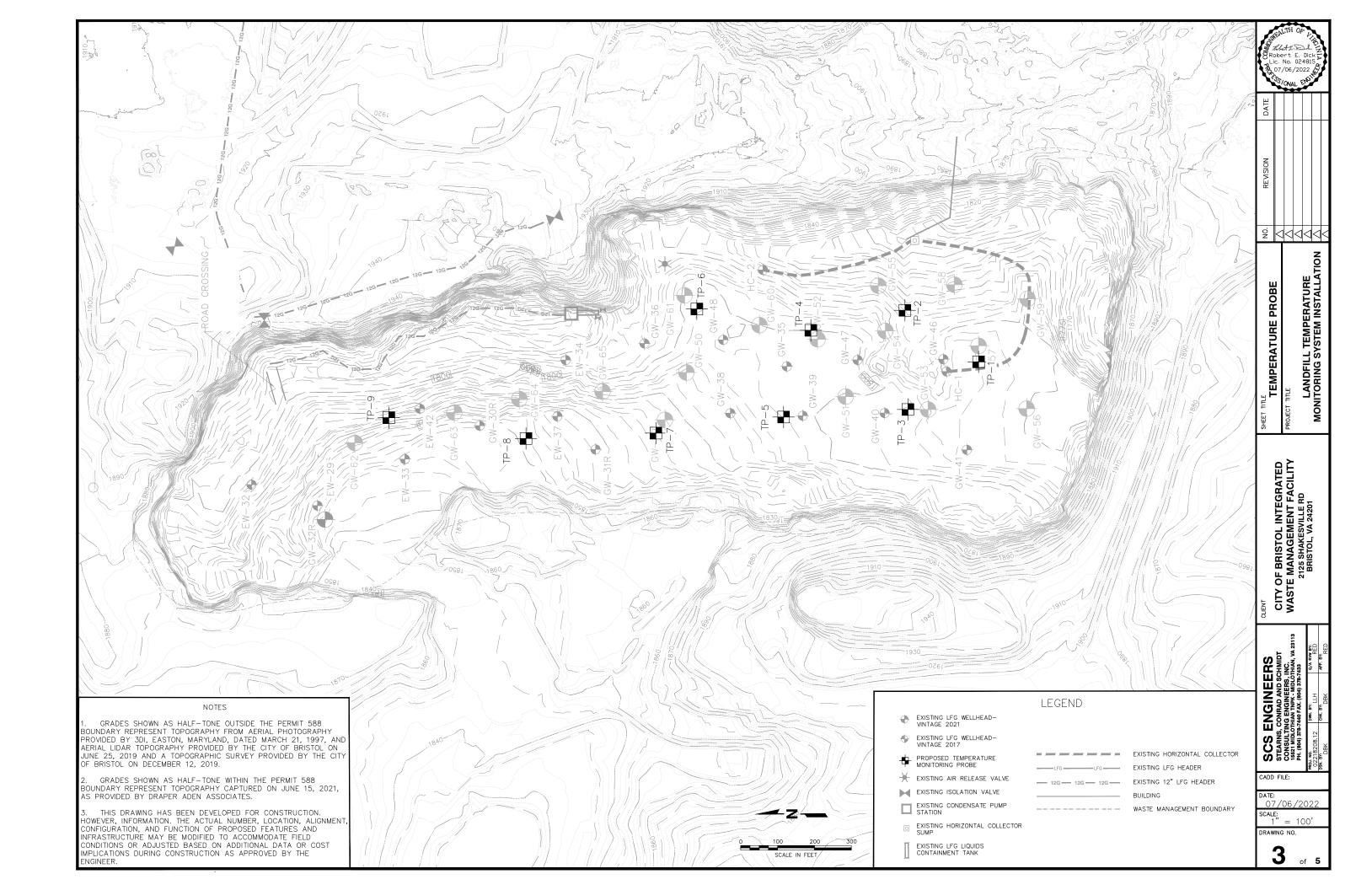

2125 SHAKESVILLE RD BRISTOL, VA 24201

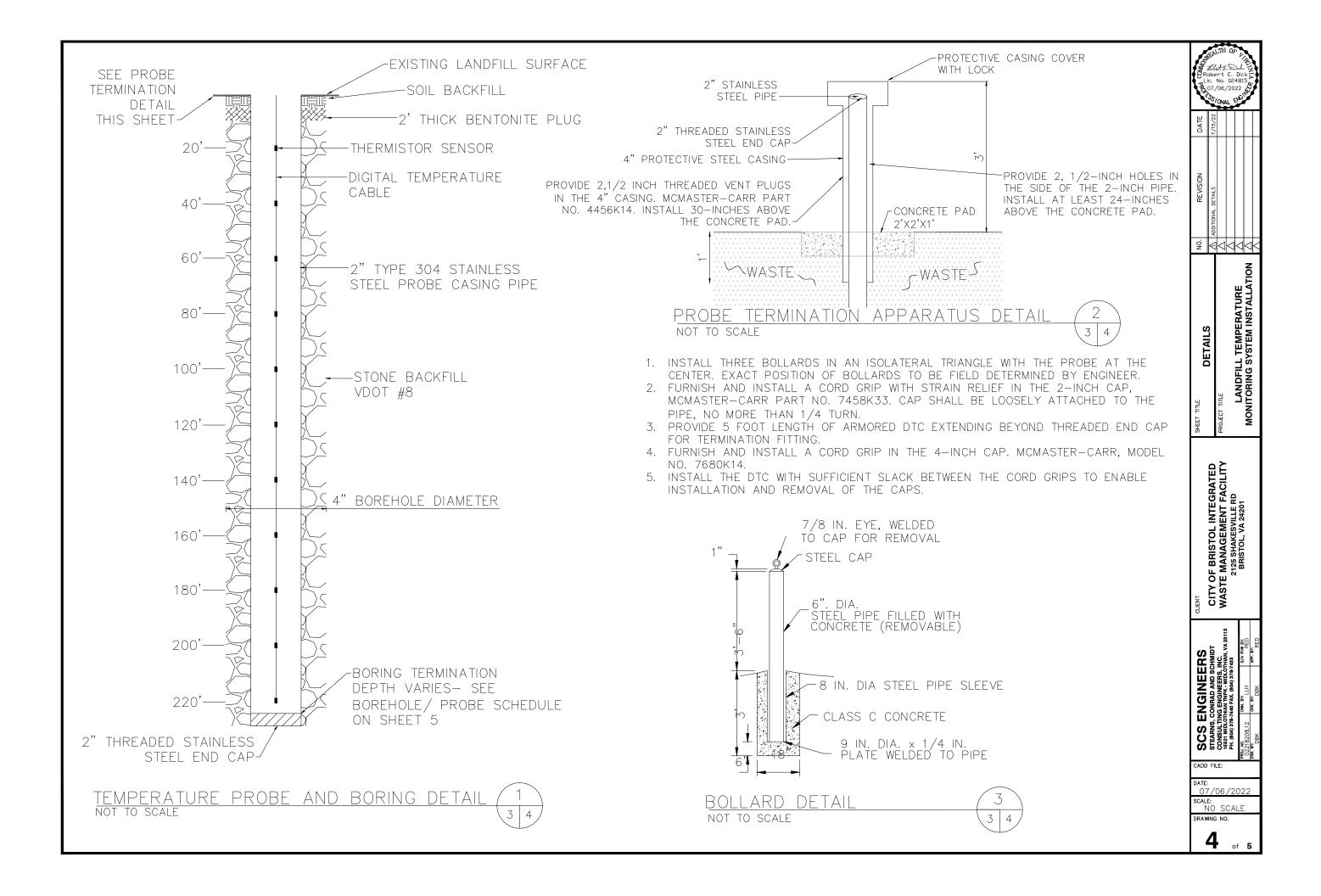
PREPARED BY:
SCS ENGINEERS
15521 MIDLOTHIAN TURNPIKE
SUITE 305
MIDLOTHIAN, VA 23113-7313

LIST OF DRAWINGS

- 1. COVER SHEET
- 2. EXISTING CONDITIONS
- 3. TEMPERATURE PROBE LAYOUT
- 4. DETAILS
- 5. BOREHOLE/PROBE SCHEDULE

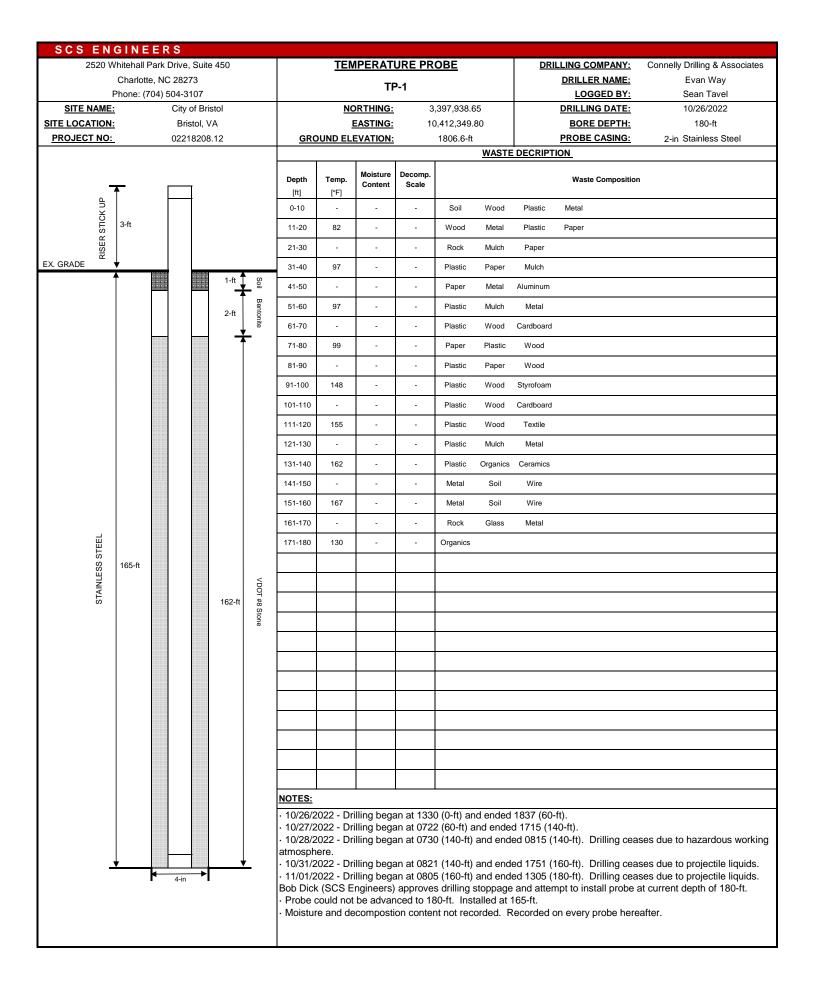

	CLIENT	涺
	CITY OF BRISTOL INTEGRATED	
113	WASTE MANAGEMENT FACILITY	PROJE
	2125 SHAKESVILLE RD	
	BRISTOL, VA 24201	

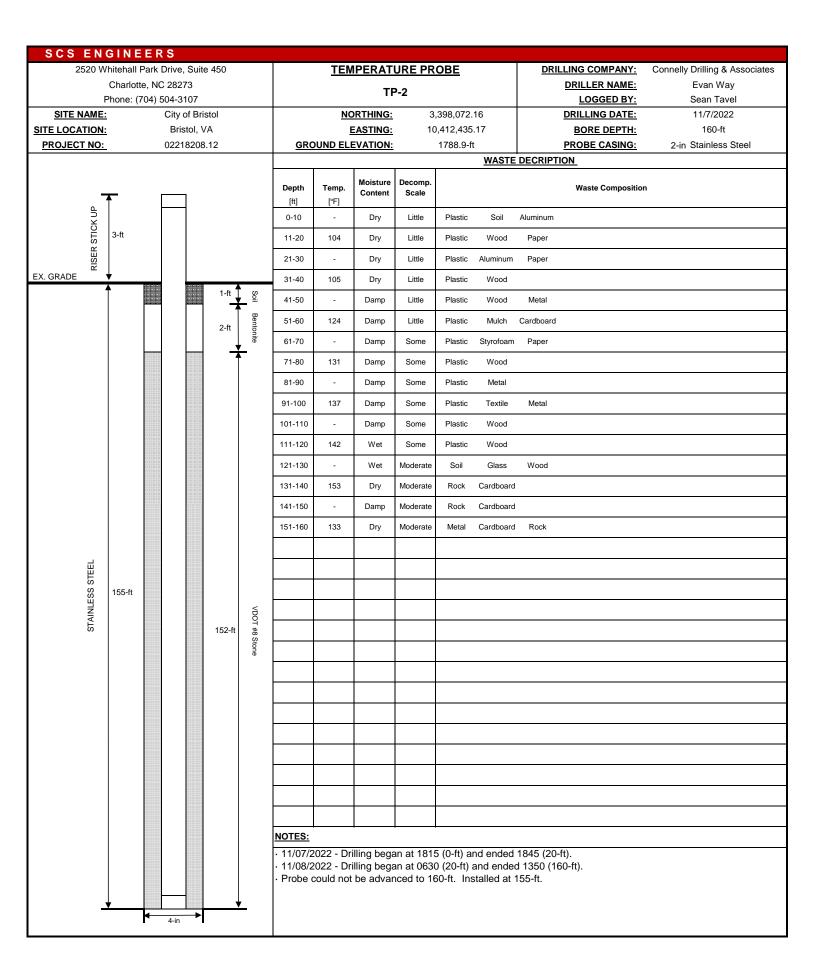

CADD	FII
0,100	

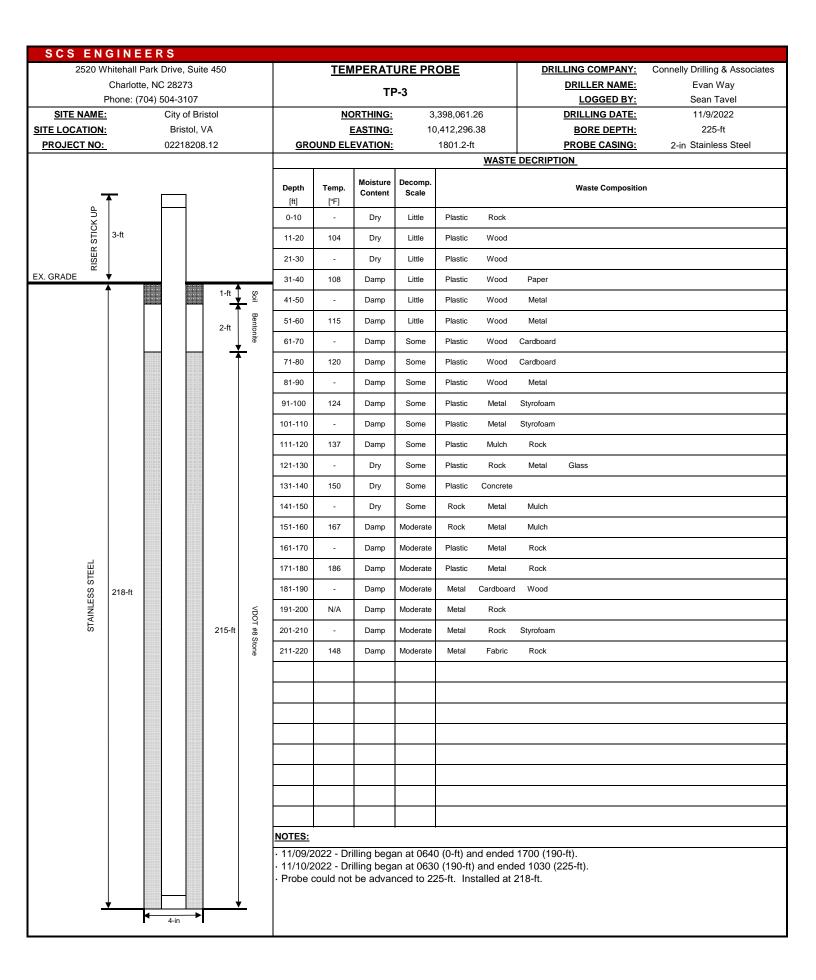

SCALE: NO SCALE

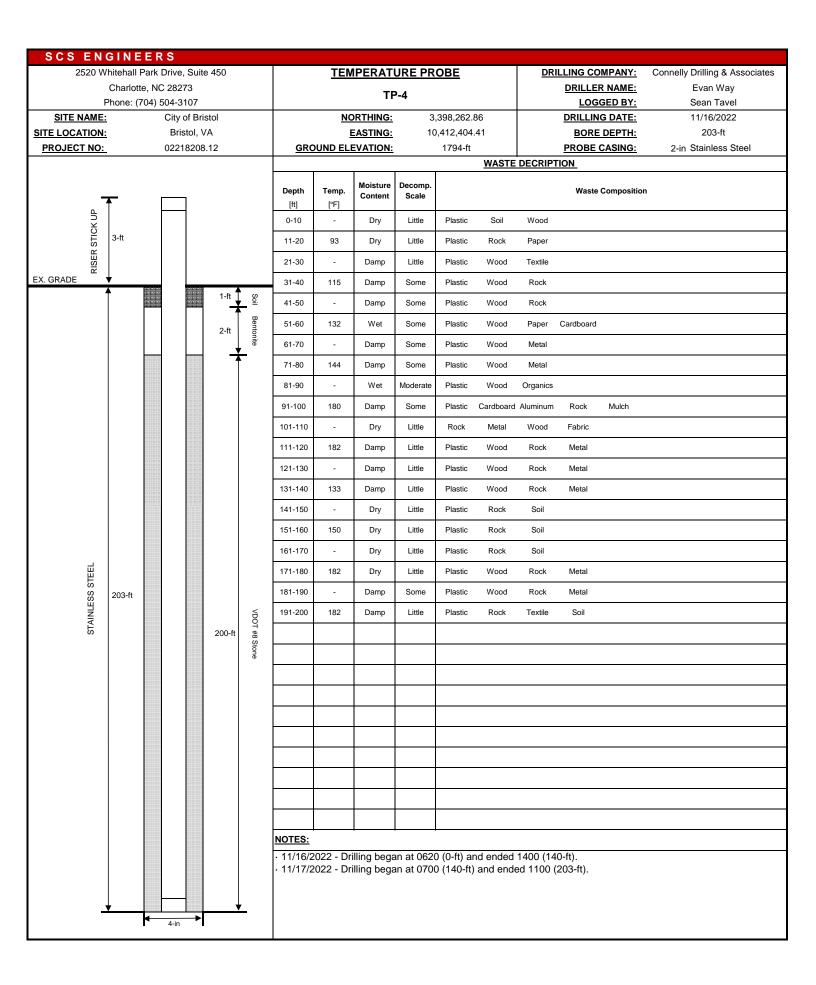
1

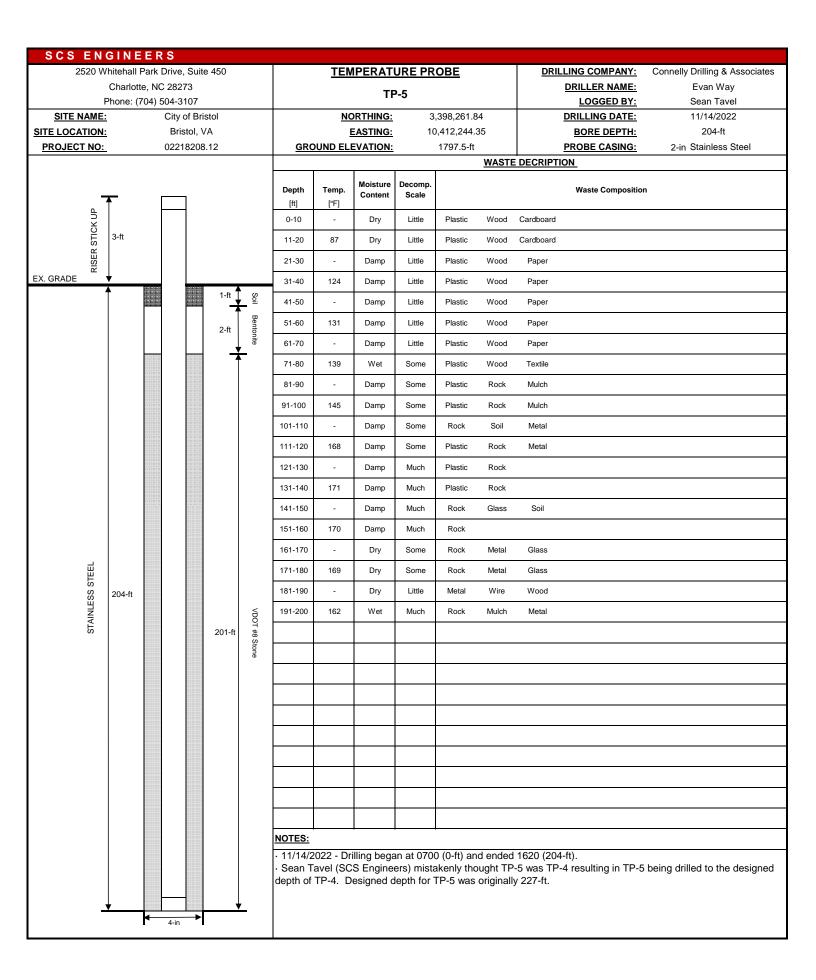
of **5**




BRISTOL BOREHOLE/ PROBE SCHEDULE


			Assumed	Surveyed	Estimation of Top of	Assumed	Proposed
Proposed			Surface	Surface	Liner System	Waste	Boring
Well ID	Northing	Easting	Elevation	Elevation	Elevation	Depth	Depth
			(MSL)	(MSL)	(MSL)	(ft)	(ft)
TP-1	3397936.81	10412346.63	1794.00		1587	207.0	182
TP-2	3398077.82	10412445.28	1784.00		1617	167.0	142
TP-3	3398071.96	10412255.46	1798.00		1553	245.0	220
TP-4	3398257.96	10412407.01	1800.00		1575	225.0	200
TP-5	3398310.09	10412241.03	1802.00		1550	252.0	227
TP-6	3398476.17	10412447.89	1802.00		1558	244.0	219
TP-7	3398554.55	10412210.26	1814.00		1556	258.0	233
TP-8	3398803.21	10412199.95	1828.00		1575	253.0	228
TP-9	3399065.89	10412239.78	1816.00		1575	241.0	216
					TOTAL BOR	RING DEPTH (ft)=	1867
Notes:							
1. All Value	es are units of Fee	t.					
2. Owner's	surveyor shall surv	ey and stake prob	e locations prior to drillin	g. Probe locations	may be adjusted by t	he engineer or owne	er prior to dril
3. Assumed	Surface Elevation	for the proposed	probe is based on topogr	aphy created from	a surface dated 6/13	5/2021 provided by	DAA.
4. Driller to	drill down to pro	posed boring dept	h as shown in probe sched	dule on this sheet.			
5. Probe pi	pe material shall l	be 2-inch diameter	type 304 stainless steel s	olid- wall pipe.			
Approval S	ignatures:						
Approval S	ignatures:						
Approval S				Contractor:			
				Contractor:			


NOW REL	EAL Cobe	TH xxx rt No.	O/ E. 02	Di 48	L k 15	AINIA
D.	07 3 5/	/06 On/	1/2 1L	02:		
DAIE			_			
REVISION						
O	4	\Box	4	_	 <	1<
ROBEHOI E/ PROBE SCHEDIII		PROJECT TITLE		LANDFILL TEMPERATURE	MONITORING SYSTEM INSTALL AT	
	SITY OF BRISTOL INTEGRATED	ASTE MANAGEMENT FACILITY	2125 SHAKESVII I F BD	BDIGTO WA 24204		
j	U	>				
}		_		30 av 6 47 0	RED	APP. BY: RED
}		_		No mile #/ O	H.I.	CHK. BY: DBK APP. BY: RED
}		CONSULTING ENGINEERS, INC.			H	APP. BY
}	STEARNS, CONRAD AND SCHMIDT	_			H.I.	DBK CHK. BY: BY:
	REVISION REVISION	TY OF BRISTOL INTEGRATED BOREHOLE/ PROBE SCHEDULE	TY OF BRISTOL INTEGRATED STEMANAGEMENT FACILITY PROJECT TITLE NO. REVISION DATE O. STATEMANAGEMENT FACILITY PROJECT TITLE	TY OF BRISTOL INTEGRATED STEE MANAGEMENT FACILITY STEE MANAGEMENT FACILITY PROJECT TILE ALAKESWII F RD CONT. REVISION DATE ALAKESWII F RD	TY OF BRISTOL INTEGRATED STE MANAGEMENT FACILITY STESSHAKESVILLE RD LANDFILL TEMPERATURE NO. HEVISION DAIL PROJECT TITLE AND FILL TEMPERATURE NO. HEVISION DAIL STESSHAKESVILLE RD LANDFILL TEMPERATURE	TY OF BRISTOL INTEGRATED STE MANAGEMENT FACILITY ASTER MANAGEMENT FACILITY PROJECT TITE ASTER MANAGEMENT FACILITY PROJECT TITE ASTER MANAGEMENT FACILITY PROJECT TITE ASTER MANAGEMENT FACILITY ASTER MAN


Appendix H Landfill Temperature Monitoring System Drill Logs

SCS ENGINEERS

Transmittal

Midlothian, VA

PROJECT: City Bristol, LF Engineering,

DATE: 12/9/2022

ISWMF, VA 02218208.05

SUBJECT: Monthly Reports SWP#588, 498,

TRANSMITTAL ID: 00006

& 221

PURPOSE: For Record VIA: Info Exchange

FROM

NAME	COMPANY	EMAIL	PHONE
Charles Warren Midlothian, VA	SCS Engineers	CWarren@scsengineers.com	+1-804-486-1903

TO

NAME	COMPANY	EMAIL	PHONE
Jonathan Chapman 355-A Deadmore Street Abingdon VA 24210 United States	Virginia Department of Environmental Quality	Jonathan.chapman@deq.virg inia.gov	

REMARKS: Jonathan,

The Monthly Reports of the Solid Waste Permit #588, 498, and 221 landfills can be downloaded using the links below. Please note that the data from monthly gas monitoring of leachate collection components, sampling and analysis of dual extraction wells, and topographic survey are contained within the Solid Waste Permit #588 report. Records of self-inspection training, self-inspection responsibilities, and an update to record keeping procedures for the Solid Waste Permit #498 Landfill are contained withing the Solid Waste Permit #498 report. Let us know if you have questions about the contents of these reports.

Regards, Charles

DESCRIPTION OF CONTENTS

QTY	DATED	TITLE	NOTES
1	12/9/2022	November Compliance Report - SWP 221.pdf	
1	12/9/2022	November Compliance Report - SWP 498.pdf	
1	12/9/2022	November Compliance Report - SWP 588.pdf	

Transmittal

DATE: 12/9/2022 TRANSMITTAL ID: 00006

COPIES:

Bob Dick (SCS Engineers)
Brandon King (SCS Engineers)
Charles Warren (SCS Engineers)

Crystal Bazyk (Virginia Department of Environmental Quality)

Jacob Chandler (Bristol, VA, City of) Jennifer Robb (SCS Engineers)

Jeffery Hurst (Virginia Department of Environmental Quality)

Tom Lock (SCS Field Services)
Michael Gibbons (SCS Engineers)

Stacy Bowers (Virginia Department of Environmental Quality)

Randall Eads (City of Bristol)
Michael Martin (Bristol, VA, City of)
Jonathan Hayes (Bristol, VA, City of)
Joey Lamie (City of Bristol)
Robert Gardner (SCS Engineers)
Ryan Mahon (SCS Engineers)

Susan Blalock (Virginia Department of Environmental Quality)

Tom Lock (SCS Field Services)

Daniel Scott (Virginia Department of Environmental Quality)

Erin Willard (Environmental Protection Agency)