Monthly Compliance Report

Solid Waste Permit #588 Bristol Integrated Solid Waste Management Facility 2655 Valley Drive Bristol, VA 24201 (276) 645-7233

SCS ENGINEERS

02218208.05 | November 10, 2022

15521 Midlothian Turnpike Suite 305 Midlothian, VA 23113 804-378-7440

Table of Contents

Sect	ion		Page	
	Exec	cutive Summary	1	
1.0	Gas	Collection	1	
	1.1	Surface and Leachate Collection Emissions	1	
		1.1.1 Surface Emissions	1	
		1.1.2 Leachate Collection Emissions	2	
	1.2	Existing Gas Extraction System Performance	2	
	1.3	Remote Monitoring System	3	
	1.4	Large-Diameter Dual-Phase Extraction Wells	4	
	1.5	VDEQ Concurrence on Wells	4	
2.0	Side	ewall Odor Mitigation	4	
	2.1	Perimeter Gas Collection System	4	
	2.2	Sidewall Odor Mitigation System	5	
	2.3	Pilot System Construction	6	
	2.4	Full System Construction	6	
3.0	Wast	ste Temperature Monitoring	6	
	3.1	Tempurature Monitoring System design	6	
	3.2	Tempurature Monitoring System Installation	7	
4.0	Leac	chate Extraction and Monitoring	7	
	4.1	Existing System Optimization	8	
	4.2	Sampling and Analysis Plan	9	
	4.3	Sampling and Analysis	10	
5.0	Settl	lement Monitoring and Management		
	5.1	Settlement Monitoring and Management Plan		
	5.2	Monthly Topographic Surveys	11	
6.0	Inter	rmediate Cover and EVOH Cover System		
	6.1	Intermediate Cover Installation	12	
	6.2	EVOH Cover System Design	14	
	6.3	EVOH Cover System Procurement	14	
	6.4	EVOH Cover System Installation		
7.0	Storr	m Water Management	14	
8.0	Ceas	se Waste Acceptance		
9.0	Long	g-Term Plan		
10.0	Community Outreach Program			

Table of Contents

<u> </u>	
Secti	n
してい	

Figures

	i igures	
Figure 1.	Wellhead Temperature Sensor and Adaptor Saddle	3
Figure 2.	Conceptual Cross Section of Dual-Phase Extraction Wells included in Landfill Expansion	
Figure 3.	Conceptual Cross Section of Perimeter Gas Extraction Wells included in Land Expansion	
Figure 4.	Conceptual Cross Section of the Sidewall Odor Mitigation System	
Figure 5.	Temperature Monitoring System Drilling	7
Figure 6.	Settlement Plate Detail	11
Figure 7.	Intermediate Cover Depth Checks	13

Tables

Table 1.	Summary of October Surface Emissions Monitoring	1
Table 2.	Cleanout Pipe Identification	
Table 3.	Summary of Dual Extraction Well Pump Stroke Counter Data	
Table 4.	Summary of Dual Extraction Well Pump Liquids Removal	9

Appendices

- Appendix A Surface Emissions Monitoring Summary Letters
- Appendix B SCS-FS October Summary Report
- Appendix C Sidewall Odor Mitigation System Design Drawings
- Appendix D Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan
- Appendix E Monthly Topography Analysis

Page

EXECUTIVE SUMMARY

On behalf of the City of Bristol, Virginia (City), SCS Engineers has prepared this report to the Virginia Department of Environmental Quality (VDEQ) outlining steps taken towards the action items outlined in the Plan of Action submitted to VDEQ on July 6, 2022. This report covers the Solid Waste Permit #588 landfill during the month of October.

1.0 GAS COLLECTION

The City has continued steps to operate, develop, and improve the facility's landfill gas collection and control system (GCCS). The following sections outline steps City is taking in collaboration with its consultants and operations and monitoring contractor.

1.1 SURFACE AND LEACHATE COLLECTION EMISSIONS

1.1.1 Surface Emissions

In addition to standard regulatory quarterly surface emissions monitoring, SCS performed additional surface emissions monitoring on October 10, 2022, October 21, 2022, and October 28, 2022. This Surface Emissions Monitoring (SEM) Event was performed in accordance with Section 3.5 of the Plan of Action in Response to the Expert Panel Report, submitted to VDEQ on July 6, 2022.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route included applicable areas of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area.

SCS submitted letters to VDEQ outlining the results of the October 21, 2022, and October 28, 2022. Copies of those submittals are included in Appendix A. Table 1 summarizes the results of the three monitoring events in October.

Description	October 10, 2022	October 21, 2022	October 28, 2022
Number of Points Sampled	140	142	140
Number of Points in Serpentine Route	100	102	100
Number of Points at Surface Cover Penetrations	40	40	40
Number of Exceedances ¹	15	7	6

 Table 1.
 Summary of October Surface Emissions Monitoring

¹ Exceedance locations were marked in the field with red flagging and were identified to landfill personnel to initiate corrective actions.

Description	October 10, 2022	October 21, 2022	October 28, 2022
Number of Serpentine Exceedances	0	0	0
Number of Pipe Penetration Exceedances	15	7	6

1.1.2 Leachate Collection emissions

SCS Field Services (SCS-FS) visited the Bristol Landfill during the month of October and performed monitoring of the leachate, witness zone, and gradient control clean-outs at the northern and southern ends of the landfill. The results of that monitoring are included in SCS-FS' summary report for the month of October dated November 8, 2022. A copy of this report is included in Appendix B. The monitoring data for the clean-outs at the southern end of the landfill are listed as LC01 – LC10. The monitoring data for the clean-outs at the northern end of the landfill are listed as NC01 – NC10. Based on site records and correspondence, SCS prepared a summary of the pipe numbering relative to the function of the pipes shown in Table 2.

Northern Cleanouts		Southern Cleanouts	
ID #	Description	ID #	Description
NC01	Leachate East	LC01	Gradient West
NC02	Leachate Center	LC02	Gradient East
NC03	Leachate West	LC03	Leachate Center
NC04	Witness East	LC04	Witness East
NC05	Witness Center	LC05	Leachate West
NC06	Witness West	LC06	Gradient Center West
NC07	Gradient East	LC07	Leachate East
NC08	Gradient Center East	LC08	Gradient Center East
NC09	Gradient Center West	LC09	Leachate West
NC10	Gradient West	LC10	Witness Center

Table 2.	Cleanout Pipe Identification
----------	-------------------------------------

1.2 EXISTING GAS EXTRACTION SYSTEM PERFORMANCE

SCS and SCS-FS have been coordinating with the City to improve the performance of the existing gas system. Specific actions taken to maintain and improve the system are detailed in SCS-FS' summary report for the month of October.

In addition to the activities outlined in the report on October 14, 2022 SCS submitted the design drawings for upgrades to the southern leachate clean-out gas collection system to the City. The City initiated procurement of materials for the project. The project is anticipated to be completed by SCS-FS in November.

The project involves replacing the existing 4-inch landfill gas (LFG) header connecting the wellheads on the southern cleanouts with the rest of the (GCCS) with a larger header. The header will be

replaced by an 8-inch or 12-inch header depending on the location. The resulting upgrades are anticipated to increase LFG flows from the southern clean-outs.

1.3 REMOTE MONITORING SYSTEM

SCS Remote Monitoring & Control (SCS-RMC) had previously furnished 25 industrial internet of things (IIoT) temperature sensors for installation on landfill gas wells at the Bristol Landfill, VA. The sensors are capable of recording and transmitting gas temperatures and GPS locations. The sensors will upload data collected via a cellular connection to a database managed by SCS-RMC

Two sensors were initially installed on wells and began recording temperature data. An initial review of the data and comparison with temperature readings recorded by field staff indicated that the measurements taken by the remote sensors were impacted by ambient air temperatures. The installation of additional sensors was put on hold until the installations could be modified to improve the accuracy of temperature readings.

During the month of October the City, SCS, SCS-FS, and SCS-RMC coordinated with the wellhead manufacturer to identify an installation configuration that provided more direct access to gas flow. The proposed solution was to thread the sensor into a saddle that could be attached to the wellhead. The City procured the necessary adapter parts which were delivered to the site during the month of October. Figure 1 shows a sensor attached to the saddle adaptor. SCS-FS will begin the installation of the remaining sensors in November.

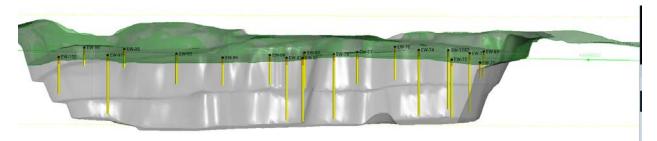


Figure 1. Wellhead Temperature Sensor and Adaptor Saddle

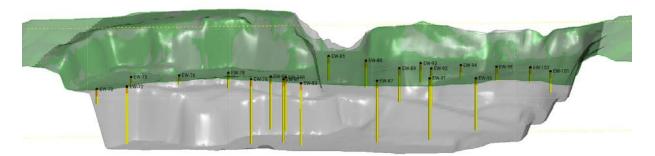
1.4 LARGE-DIAMETER DUAL-PHASE EXTRACTION WELLS

SCS has initiated design work on an expansion of the existing GCCS. The proposed expansion is anticipated to include at least 5 large diameter dual-phase extraction wells. A conceptual cross section of the proposed additional wells is shown in Figure 2. SCS will submit the design to VDEQ prior to December 31, 2022. The City intends to initiate the bidding process for construction of the GCCS prior to December 31, 2022.

Figure 2. Conceptual Cross Section of Dual-Phase Extraction Wells included in Landfill GCCS Expansion

1.5 VDEQ CONCURRENCE ON WELLS

The City has engaged with VDEQ in discussions about the proposed approach for landfill GCCS improvements and expansions. On October 27, 2022 SCS provided VDEQ with an overview of the proposed GCCS expansion design outlined in Section 1.4. The City and SCS intend to continue engaging with the Department throughout the design and installation process. The City intends to delay installation of temporary or final cover systems until the City and VDEQ agree that the GCCS is sufficient.


2.0 SIDEWALL ODOR MITIGATION

The City has initiated design work to address fugitive emission emanating from the quarry sidewalls. Specific aspects of the proposed design features are outlined in the following sections.

2.1 PERIMETER GAS COLLECTION SYSTEM

SCS' design of the GCCS expansion outlined in Section 1.5 will include perimeter LFG wells. These wells are intended to collect gas near the sidewalls that may not be collected by the rest of the GCCS. These wells will be placed closer to the sidewall to intercept landfill gas that potentially could migrate to the quarry wall. These wells will supplement the sidewall odor mitigation system described in section 2.2. A conceptual cross section of the proposed additional wells is shown in Figure 3. SCS will submit a design to VDEQ which includes these wells prior to December 31, 2022. The City intends to initiate the bidding process for construction of the GCCS expansion prior to December 31, 2022.

Figure 3. Conceptual Cross Section of Perimeter Gas Extraction Wells included in Landfill GCCS Expansion

2.2 SIDEWALL ODOR MITIGATION SYSTEM

On behalf of the City and in an effort to capture emissions from the quarry sidewall SCS prepared the design of a sidewall odor mitigation system during the month of October. A conceptual cross section of the proposed system is shown in Figure 4. The system consists of the following features:

- A perimeter LFG horizontal collector
- An external odor mitigation system horizontal collector
- A low permeability soil plug
- A protective soil cover

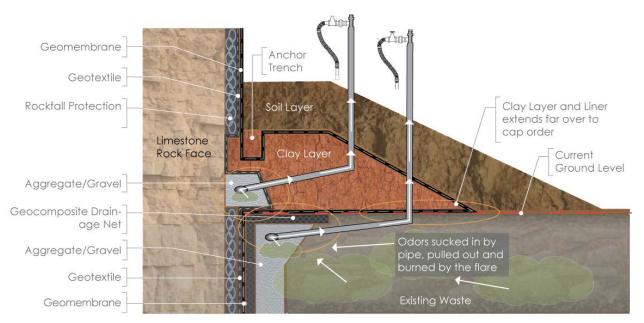


Figure 4. Conceptual Cross Section of the Sidewall Odor Mitigation System

The perimeter LFG horizontal collector will be installed in a trench excavated in the waste. It will consist of a perforated pipe, aggregate, and the existing geocomposite drainage layer. It is intended to intercept LFG that may be flowing through the aggregate/fluff layer adjacent to the sidewall or the

geocomposite drainage layer. The collector will serve as a final piece of collection infrastructure between the waste and sidewall liner to collect gas that is not captured by the rest of the GCCS.

The external odor mitigation system horizontal collector will have the same basic construction as the perimeter LFG horizontal collector, but will be installed behind the sidewall liner. The sidewall liner will be removed above the existing grade and the collector will be placed above the waste. The geotextile from the sidewall liner system will be wrapped around the collector and tied back to the sidewall liner system.

The external odor mitigation system horizontal collector will be covered by a low permeability soil with a minimum thickness of 5 feet. The geomembrane from the sidewall liner will be wrapped around the low permeability soil layer. Additional geomembrane will be attached to supplement as needed. The entire system will be covered with a 2 foot thick soil layer to protect the system from weather and impact from other activities on the site.

The proposed system will be connected to the existing GCCS as well as a secondary blower flare. A series of valves will allow the City to direct gas one or both collectors to the existing GCCS or to the secondary flare. At low points along the SOMS, pumps will be placed in vertical pipes to remove liquids from the system. Liquids discharged from the pumps will flow into forcemains connected to the existing GCCS.

On October 20, 2022 SCS provided an overview of the proposed system to VDEQ staff. The design of this system was prepared in anticipation of submittal to VDEQ on November 1st. A copy of the design of this system in included in Appendix C. A project manual detailing the system specifications of the system was developed concurrently with the design of the system.

2.3 PILOT SYSTEM CONSTRUCTION

The City intends to put the proposed system out for bid during the month of November. The proposed system is designed to be constructed in two phases. Phase 1 will include approximately 200 feet along the western sidewall. The intent is for Phase 1 to serve as a test segment prior to completing construction of the remainder of the system. The City intends to include a milestone date of December 31, 2022 in the contract for construction of the proposed system.

2.4 FULL SYSTEM CONSTRUCTION

The remainder of the sidewall odor mitigation system will be constructed as part of Phase 2. Based on constructability and effectiveness of Phase 1, modifications to the design and methods of construction may be made prior to constructing Phase 2. The City intends to include contract times in the construction contract that require the contractor to complete Phase 2 before June 14, 2023.

3.0 WASTE TEMPERATURE MONITORING

On behalf of the City SCS has designed a temperature monitoring system that is designed to collect temperature data throughout the waste mass. The City has selected a contractor to install the system. That contractor mobilized to the site and began working in October.

3.1 TEMPURATURE MONITORING SYSTEM DESIGN

The temperature monitoring system consists of 9 boreholes drilled into the waste mass. A steel casing will be placed in each borehole and the hole will be backfilled around the casing with

aggregate. A series of temperature sensors will be placed inside the steel casing. At the top of each borehole, an industrial internet of things (IIoT) transmitter will collect the data from the sensors and transmit it to a cloud-based RMC system. The City intends to submit design of the temperature monitoring system to VDEQ by November 30, 2022.

3.2 TEMPURATURE MONITORING SYSTEM INSTALLATION

On October 1st, 2022 the City awarded the construction contract for the temperature monitoring system to Connelly & Associates, Inc (Connelly). Connelly began drilling on October 26, 2022. By October 31st, 2022 Connelly had completed 160 feet of the first borehole. Drilling and installation is expected to continue into November. A photo of drilling activities taken during the month of October is shown in Figure 5.

Figure 5. Temperature Monitoring System Drilling

4.0 LEACHATE EXTRACTION AND MONITORING

The City has begun taking steps to improve the extraction of leachate from the waste mass and collect analytical data about the leachate. The following sections detail steps taken to achieve these goals.

4.1 EXISTING SYSTEM OPTIMIZATION

During mobilizations to conduct surface emissions monitoring outlined in Section 1.1.1, SCS also collected stroke counter data from the pumps installed in the GCCS wells. Stroke counts were collected from 18 wells on October 10, 2022; October 21, 2022; and October 28, 2022. The data collected is summarized in Table 3.

Well	October 10, 2022	October 21, 2022	October 28, 2022
GW64	97936	97942	97942
GW61	193233	211534	211540
GW50	497578	524193	551369
GW49	438118	438133	438133
GW60	55250	55250	55250
GW52	227419	227419	227419
GW68	1259680	1259685	1259685
GW67	87445	87445	87445
GW54	105740	105740	105740
GW55	529010	529010	529010
GW58	1608419	1608418	1608418
GW59		547361	547361
GW57	120591	120834	124834
GW65	552	558	558
GW63	47624	47625	47625
GW62	113958	113995	113995
GW53	779731	779736	779736
GW56	28427	29172	29930

Table 3.	Summary of Dual Extraction Well Pump Stroke Counter Data
Table J.	summary of Dual Extraction Wein unp stroke Counter Data

Based on this data and stroke counts taken on September 30, 2022, SCS can estimate the number of gallons of liquid pumped from each well. SCS assumed that each stroke correlates to approximately 0.3 gallons of liquid removed from the well. This data will then be used to repair or replace pumps or replace nonfunctional stroke counters. Estimates of the quantities of liquids removed between the reading dates is shown in Table 4 below.

Well	Liquids Removed (gal) September 30, 2022 to October 10, 2022	Liquids Removed (gal) October 10, 2022 to October 21, 2022	Liquids Removed (gal) October 21, 2022 to October 28, 2022
EW64	0	1.8	0
EW61	3583.5	5490.3	1.8
EW50	10019.4	7984.5	8152.8
EW49	0	4.5	0
EW60	0	0	0
EW52 ²	0	0	0
EW68	0	1.5	0
EW67	0	0	0
EW54	0	0	0
EW55	0	0	0
EW58 ³	0	0	0
EW59	7.8	-	0
EW57	-	-	0
EW65	150.9	72.9	1200
EW63	1.2	1.8	0
EW62	0	0.3	0
EW53	0	11.1	0
EW56	0	1.5	0

Table 4. Summary of Dual Extraction Well Pump Liquids Removal

As outlined in Appendix B repairs were made to the liquids removal system during the month of October. The effects of those repairs may not be fully reflected in this data. The City's contractors will continue repairs of pumping infrastructure and pumps during the month of November.

4.2 SAMPLING AND ANALYSIS PLAN

SCS prepared a the Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan for the Bristol Integrated Solid Waste Management Facility Solid Waste Permit #588 Landfill for submittal to VDEQ on November 1, 2022. The Plan documents procedures and instructions necessary to implement a leachate monitoring program for the Dual Phase Landfill Gas Extraction Wells (LFG-EWs) installed within the Permit #588 Landfill. The Plan was prepared in response to the Expert Panel Report

² Subsequent investigation indicated that the pump in EW 52 is working but strokes are not being recorded. ³ Subsequent investigation indicated that the pump in EW 58 is working but strokes are not being recorded.

prepared by the Expert Panel convened by the Virginia Department of Environmental Quality to address odor problems and operational concerns at the Facility. A copy of the plan is included in Appendix D.

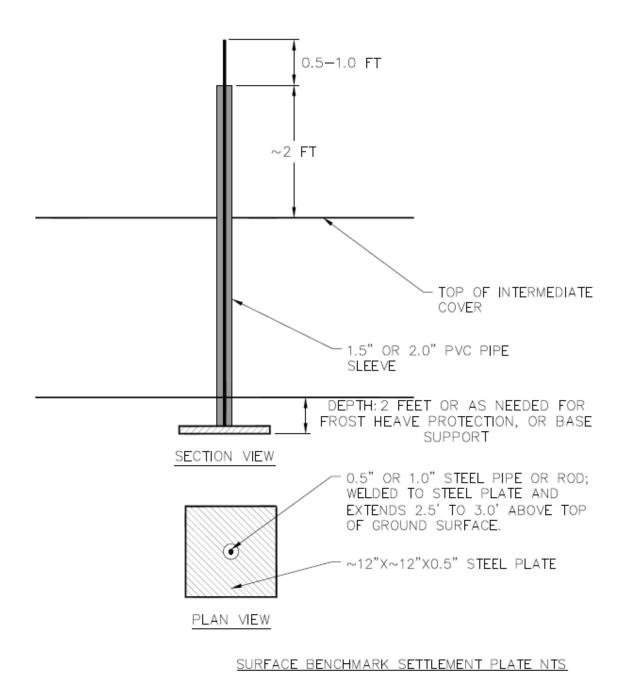
4.3 SAMPLING AND ANALYSIS

SCS will begin sampling and analysis in accordance with the submitted plan on the City's behalf in November.

5.0 SETTLEMENT MONITORING AND MANAGEMENT

The City is taking steps to track and manage settlement occurring in the landfill. A summary of actions taken to quantify and manage settlement is included in the sections below.

5.1 SETTLEMENT MONITORING AND MANAGEMENT PLAN


On behalf of the City SCS has begun preparing a settlement monitoring and management plan. The plan will address both how to monitor settlement and how to mitigate the effects of settlement on landfill infrastructure.

Settlement monitoring is anticipated to include two components:

- Installation and monitoring of settlement plates installed within the waste mass
- Monthly surveys of the landfill topography

The City contracted with SCS-FS to fabricate settlement plates based on the design included in the Plan of Action. The general settlement plate design is shown in Figure 6. The settlement plates will be installed during the month of November.

5.2 MONTHLY TOPOGRAPHIC SURVEYS

The City through SCS, contracted with NV5 (formerly Quantum Spatial) to collect topographic data of the entire landfill property using aerial Light Detection and Ranging (Lidar). On October 7, 2022 the flight was completed and the topographic data collected. The topographic data collected is shown on Sheet 1 in Appendix E.

The topography within the landfill footprint was compared to topographic data collected by Draper Aden Associates (DAA) in June 2021. A drawing depicting the June 2021 topography is included as Sheet 3 in Appendix E.

Based on a comparison of the topographic data collected on those two dates, settlement occurred that reduced the volume of waste in the landfill by approximately 102,100 cubic yards. During that same time period approximately 120,700 cubic yards of waste and cover soil were placed on the landfill. This resulted in a net volume increase of approximately 18,600 cubic yards. Filling primarily occurred in the southwest corner of the landfill. Settlement was spread across the remainder of the landfill. A visual depiction of settlement and filling at the landfill during this time is depicted on Sheet 4 in Appendix E.

SCS will collect topographic data covering the landfill surface again in November using photogrammetric methods via an unmanned aerial vehicle (UAV or drone). This data will be compared to the data collected in October.

6.0 INTERMEDIATE COVER AND EVOH COVER SYSTEM

The City is taking steps to provide intermediate and temporary cover of the wastes in the landfill. The sections below outline the steps taken by the City.

6.1 INTERMEDIATE COVER INSTALLATION

The City has been hauling soil to the landfill to install a 12-inch thick intermediate cover across the entire landfill. The cover is being placed in accordance with 9VAC20-81-140(B)(1)(d). The City completed hauling and placement prior to October 10, 2022.

On October 11, 2022 an employee of Golder Associates dug test holes which were observed by SCS' project manager Brandon King. All of the test holes indicated at least 12 inches of soil cover was in place on top of the waste. On October 20, 2022 SCS dug 7 additional test holes across the landfill confirm the depth of intermediate cover. The depth of intermediate cover exceeded 12 inches at all 7 locations. The approximate locations of the test holes are shown in Figure 7.

Figure 7. Intermediate Cover Depth Checks

Intermediate Cover Depth Check Locations

6.2 EVOH COVER SYSTEM DESIGN

SCS has begun the process of preparing a scope for the EVOH cover system design for submittal to the City.

6.3 EVOH COVER SYSTEM PROCUREMENT

City has initiated discussion with EVOH cover vendors to facilitate future procurement of an EVOH cover system.

6.4 EVOH COVER SYSTEM INSTALLATION

Installation of the EVOH cover system will begin after completion of installation of other infrastructure is compete.

7.0 STORM WATER MANAGEMENT

SCS is reviewing the topography collected on October 7, 2022 to determine the scope of design needed to manage stormwater on the site. SCS is preparing an approach for submittal to the City that will address stormwater management design, construction, and stormwater sampling.

8.0 CEASE WASTE ACCEPTANCE

The City ceased acceptance of offsite waste at the Solid Waste Permit #588 landfill prior to September 12, 2022.

9.0 LONG-TERM PLAN

The City has begun reviewing available resources and the workload associate with long term maintenance and monitoring of the landfill.

10.0 COMMUNITY OUTREACH PROGRAM

The City has hired an outside consulted to lead community outreach efforts. In additional to posting updates and data on the City's website the City has set up a website specific to the landfill (bristolvalandfill.org).

Earlier this month, the City began planning for an open house held on November 1, 2022. The open house was set-up to provide the public with the opportunity to get information about activities at the landfill and to ask questions.

Appendix A

Surface Emissions Monitoring Summary Letters

October 27, 2022 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – October 21, 2022 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on October 21, 2022. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Section 3.5 of the Plan of Action in Response to the Expert Panel Report, submitted to VDEQ on July 6, 2022.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route included applicable areas of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	142
Number of Points in Serpentine Route	102
Number of Points at Surface Cover Penetrations	40
Number of Exceedances1	7
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	7

Table 1.Summary of Surface Emissions Monitoring

Proposed corrective actions at these locations involved addition and compaction of low permeability soil as well as vacuum adjustments to adjacent vertical wells. Results of corrective actions and remonitoring results will be presented in subsequent reports.

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performed corrective actions including wellhead vacuum adjustments and addition of soil cover prior to this event at locations that previously exhibited elevated methane concentrations².

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations That continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

¹ Exceedance locations were marked in the field with red flagging and were identified to landfill personnel to initiate corrective actions.

Point ID	Initial Exceedance Date	10/21/22 Event	10/21/22 Event Result	Comments
Tag 25	9/16/22	30-Day Retest	Pass	No Further Action
EW-38	9/16/22	30-Day Retest	Pass	No Further Action
EW-34	9/23/22	Not Required	Pass	Requires 30-Day Retest
EW-66	9/23/22	Not Required	Pass	Requires 30-Day Retest
EW-46	10/10/22	First10-Day Retest	Pass	Requires 30-Day Retest
EW-67	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-56	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-57	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-41	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-53	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-40	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-51	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-68	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-42	8/12/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-52	8/19/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-39	8/19/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-48	8/26/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-47	8/26/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-54	9/2/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-35	9/9/22	N/A	Fail	Subject to 1960(c)(4)(v)

Table 2.Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman October 27, 2022 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

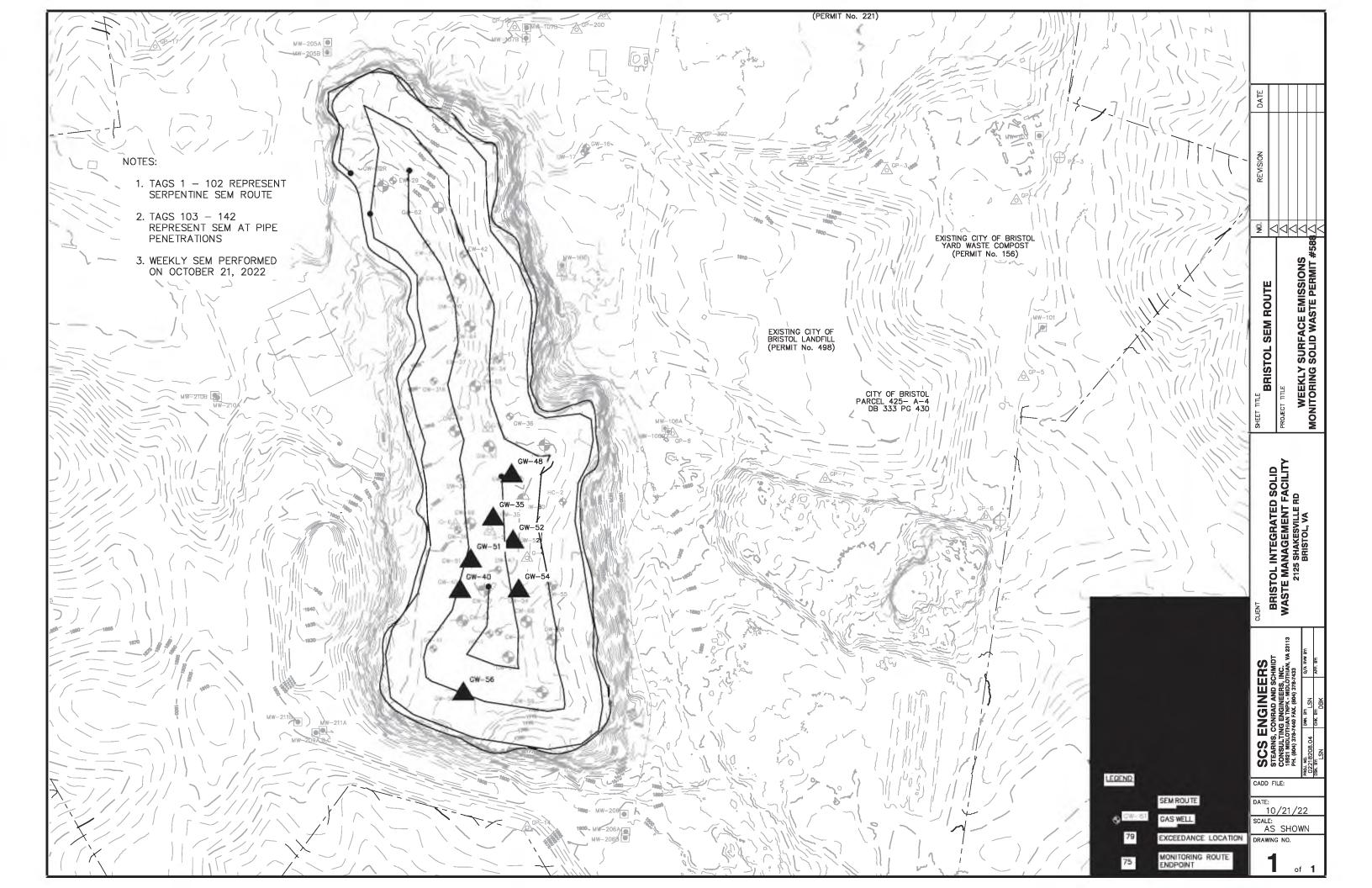
allalle Varien

Charles J. Warren Project Manager SCS Engineers

Lucus D. Nachman

Lucas S. Nachman Project Professional SCS Engineers

LSN/LEH/cjw


- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jake Chandler, City of Bristol Crystal Bazyk, VDEQ Charles Warren, SCS Engineers
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	3.8 PPM	OK			Start Serpentine
2	6.1 PPM	OK			Route
3	3.7 PPM	OK			
4	34.1 PPM	OK			
5	11.6 PPM	OK			
6	35.8 PPM	OK			
7	151.0 PPM	OK			
8	8.3 PPM	OK			
9	6.7 PPM	OK			
10	113.0 PPM	OK			
11	266.0 PPM	OK			
12	118.0 PPM	OK			
13	100.0 PPM	OK			
14	93.5 PPM	OK			
15	258.0 PPM	OK			
16	80.5 PPM	OK			
17	65.5 PPM	OK			
18	269.0 PPM	OK			
19	294.0 PPM	OK			
20	229.0 PPM	OK			
21	23.7 PPM	OK			
22	42.8 PPM	OK			
23	13.7 PPM	OK			
24	104.0 PPM	OK			
25	32.8 PPM	OK			
26	97.4 PPM	OK			
27	455.0 PPM	OK			
28	424.0 PPM	OK			
29	237.0 PPM	OK			
30	384.0 PPM	OK			
31	144.0 PPM	OK			
32	104.0 PPM	OK			
33	67.6 PPM	OK			
34	40.0 PPM	OK			
35	90.0 PPM	OK			
36	9.2 PPM	OK			
37	4.5 PPM	OK			
38	15.8 PPM	OK			
39	60.1 PPM	OK			
40	209.0 PPM	OK			
41	27.4 PPM	OK			
42	61.0 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
				-	
43	401.0 PPM	OK			
44	22.3 PPM	OK			
45	2.6 PPM	OK			
46	6.7 PPM	OK			
47	8.9 PPM	OK			
48	33.4 PPM	OK			
49	2.6 PPM	OK			
50	1.2 PPM	OK			
51	1.2 PPM	OK			
52	10.8 PPM	OK			
53	3.9 PPM	OK			
54	2.0 PPM	OK			
55	5.6 PPM	OK			
56	64.2 PPM	OK			
57	11.6 PPM	OK			
58	7.8 PPM	OK			
59	10.6 PPM	OK			
60	23.6 PPM	OK			
61	6.7 PPM	OK			
62	7.1 PPM	OK			
63	27.6 PPM	OK			
64	21.4 PPM	OK			
65	9.7 PPM	OK			
66	4.7 PPM	OK			
67	3.5 PPM	OK			
68	33.6 PPM	OK			
69	5.7 PPM	OK			
70	49.3 PPM	OK			
71	19.9 PPM	OK			
72	64.0 PPM	OK			
73	8.1 PPM	OK			
74	6.0 PPM	OK			
75	36.3 PPM	OK			
76	16.2 PPM	OK			
77	8.4 PPM	OK			
78	8.4 PPM	OK			
79	4.7 PPM	OK			
80	299.0 PPM	OK			
81	90.4 PPM	OK			
82	57.1 PPM	OK			
83	129.0 PPM	OK			
84	82.7 PPM	OK			

	Meth	nane		GPS Co	ordinates	
ID #	Concer	ntration	Compliance	Lat.	Long.	Comments
85	10.2	PPM	OK			
86	15.2	PPM	OK			
87	40.4	PPM	OK			
88	6.9	PPM	OK			
89	5.7	PPM	OK			
90	5.4	PPM	OK			
91	4.8	PPM	OK			
92	10.2	PPM	OK			
93	9.5	PPM	OK			
94	22.8	PPM	OK			
95	16.0	PPM	OK			
96	24.5	PPM	OK			
97	335.0	PPM	OK			
98	14.2	PPM	OK			
99	252.0	PPM	OK			
100			OK			
101	196.0	PPM	OK			
102			OK			End Serpentine
						Route
103	4396.0	PPM	HIGH_ALRM	36.59916	-82.14769	EW-35
104			HIGH_ALRM	36.59900	-82.14750	EW-52
105			ŌK			EW-60
106			HIGH_ALRM	36.59950	-82.14753	EW-48
107		PPM	ŌK			EW-61
108		PPM	OK			EW-36
109			OK			EW-34
110			OK			EW-65
111	56.0		OK			EW-50
112			OK			EW-55
113			HIGH_ALRM	36.59865	-82.14743	EW-54
114			OK			EW-47
115			OK			EW-67
116			HIGH_ALRM	36.59864	-82.14796	EW-40
117			OK			EW-53
118			OK			EW-41
119			OK			EW-46
120			OK			EW-66
121			OK			EW-58
122			OK			EW-57
123		PPM	OK			EW-59
124			HIGH_ALRM	36.59789	-82.14790	EW-56
125			HIGH_ALRM	36.59884	-82.14786	EW-51

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comment
126	213.0 PPM	ОК			EW-39
127	41.8 PPM	OK			EW-68
128	468.0 PPM	ОК			EW-38
129	2.0 PPM	OK			EW-49
130	1.5 PPM	ОК			EW-31R
131	3.1 PPM	ОК			EW-37
132	5.8 PPM	OK			EW-65
133	3.3 PPM	OK			EW-30R
134	4.8 PPM	OK			EW-63
135	361.0 PPM	OK			EW-42
136	4.8 PPM	OK			EW-33R
137	4.4 PPM	OK			EW-62
138	1.8 PPM	OK			EW-29R
139	8.8 PPM	OK			EW-25
140	5.6 PPM	OK			EW-24
141	2.7 PPM	OK			EW-32
142	6.9 PPM	OK			EW-32R
	Number of locations Number of exceedance		142 7		
				J	
NOTES: Points 1 through	102 represent serpent	ine SFM route.			
Points 1 through	n 102 represent serpent ugh 143 represent SEM		\$		
Points 1 through Points 103 throu	n 102 represent serpent ugh 143 represent SEM itions: Sunny <i>55°</i> F Wind:	at Pipe Penetration	S		
Points 1 through Points 103 throu Weather Condi	ugh 143 represent SEM	at Pipe Penetration 0 MPH			
Points 1 through Points 103 throu Weather Condi	ugh 143 represent SEM itions: Sunny 55°F Wind: ration: Methane - 500 p	at Pipe Penetration 0 MPH opm, Zero Air - 0.0 j	<u>opm</u>		
Points 1 through Points 103 throu Weather Condi	ugh 143 represent SEM itions: Sunny 55°F Wind:	at Pipe Penetration 0 MPH	<u>opm</u> PM		
Points 1 through Points 103 throu Weather Condi Sampling Calib 10/21/2022	ugh 143 represent SEM itions: Sunny 55°F Wind: <u>ration: Methane - 500 p</u> 8:57 ZERO 9:00 SPAN	at Pipe Penetration 0 MPH opm, Zero Air - 0.0 (0.1 P	<u>opm</u> PM		
Points 1 through Points 103 throu Weather Condi <u>Sampling Calib</u> 10/21/2022 10/21/2022	ugh 143 represent SEM itions: Sunny 55°F Wind: <u>ration: Methane - 500 p</u> 8:57 ZERO 9:00 SPAN	at Pipe Penetration O MPH opm, Zero Air - 0.0 p 0.1 P 504.0 P	<u>ppm</u> PM PM		

November 2, 2022 File No. 02218208.04

Mr. Jonathan Chapman Enforcement Specialist Virginia Department of Environmental Quality SW Regional Office 355-A Deadmore Street Abingdon, VA 24210

Subject: Weekly Surface Emissions Monitoring Event – October 28, 2022 Bristol Integrated Solid Waste Facility – Bristol, Virginia

Dear Mr. Chapman:

On behalf of the City of Bristol (City), SCS Engineers (SCS), is pleased to submit the results of the Weekly Surface Emissions Monitoring event performed at the Bristol Integrated Solid Waste Facility located in Bristol, Virginia on October 28, 2022. This Weekly Surface Emissions Monitoring (SEM) Event was performed in accordance with Section 3.5 of the Plan of Action in Response to the Expert Panel Report, submitted to VDEQ on July 6, 2022.

The monitoring generally conforms to the requirements of 40 CFR 63.1960(c) and (d), and 40 CFR 60.36f(c) and (d), and 40 CFR 60, Appendix A, Method 21. The landfill gas (LFG) collection system is required to operate such that the methane concentration is less than 500 ppm above background at the landfill surface.

The monitoring route included applicable areas of the Permit No. 588 landfill. Sampling was conducted with a Thermo Scientific TVA-2020 Flame Ionization Detector (FID) at 30-meter intervals and where visual observations indicated the potential for elevated concentrations of LFG, such as distressed vegetation and surface cover cracks. In addition, in accordance with 40 CFR 63.1958(d)(ii)(2) and 40 CFR 60.34f(d), monitoring was conducted at all surface cover penetrations within the waste footprint outside of the active filling area. The approximate monitoring route and sampling locations are presented in the attached Drawing.

At the time of monitoring, all areas of the Permit No. 588 landfill footprint are subject to regulatory monitoring based on the regulatory time schedule stipulated in 40 CFR 63.1960(b) and 40 CFR 60.36f(b). The Permit 588 Landfill has a surface area of approximately 17.3 acres. Therefore, the minimum number of sampling points to cover the appropriate portion of the landfill footprint, utilizing a 30-meter grid interval, is approximately 82 (4.75 points per acre). A summary of the results of the surface emissions monitory is provided in Table 1.

Description	Quantity
Number of Points Sampled	140
Number of Points in Serpentine Route	100
Number of Points at Surface Cover Penetrations	40
Number of Exceedances ¹	6
Number of Serpentine Exceedances	0
Number of Pipe Penetration Exceedances	6

Table 1.Summary of Surface Emissions Monitoring

Proposed corrective actions at these locations involved addition and compaction of low permeability soil as well as vacuum adjustments to adjacent vertical wells. In some select locations a foam seal or a well bore skirt may be installed. Results of corrective actions and remonitoring results will be presented in subsequent reports.

Remonitoring of Ongoing Exceedances

In accordance with 40 CFR 63.1960(c)(4)(ii) and 40 CFR 60.36f(c)(4)(ii), corrective actions and a remonitoring event are to be performed within 10 days of the initial exceedance. In accordance with 40 CFR 63.1960(c)(4)(iii) and 40 CFR 60.36f(c)(4)(iii) additional corrective actions and a second 10-day retest are to be performed if the initial 10-day retest indicates methane values greater than the regulatory threshold. The Facility performed corrective actions including wellhead vacuum adjustments and addition of soil cover prior to this event at locations that previously exhibited elevated methane concentrations².

In accordance with 40 CFR 63.1960(c)(4)(v) and 40 CFR 60.36f(c)(4)(v) a new well or collection device must be installed or an alternate remedy must be submitted within 120-days at locations That continue to exhibit methane concentrations above the regulatory threshold for two consecutive retests.

A summary of ongoing exceedance points is provided in Table 2.

¹ Exceedance locations were marked in the field with red flagging and were identified to landfill personnel to initiate corrective actions.

Point ID	Initial Exceedance Date	10/28/22 Event	10/28/22 Event Result	Comments
EW-34	9/23/22	30-Day Retest	Pass	No Further Action
EW-66	9/23/22	30-Day Retest	Pass	No Further Action
EW-46	10/10/22	N/A	Pass	Requires 30-Day Retest
EW-67	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-56	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-57	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-41	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-53	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-40	8/4/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-51	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-68	8/4/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-42	8/12/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-52	8/19/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-39	8/19/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-48	8/26/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-47	8/26/22	N/A	Pass	Subject to 1960(c)(4)(v)
EW-54	9/2/22	N/A	Fail	Subject to 1960(c)(4)(v)
EW-35	9/9/22	N/A	Fail	Subject to 1960(c)(4)(v)

Table 2.Ongoing Weekly SEM Exceedances

Mr. Jonathan Chapman November 2, 2022 Page 4

If you have questions or require additional information, please contact either of the undersigned.

Sincerely,

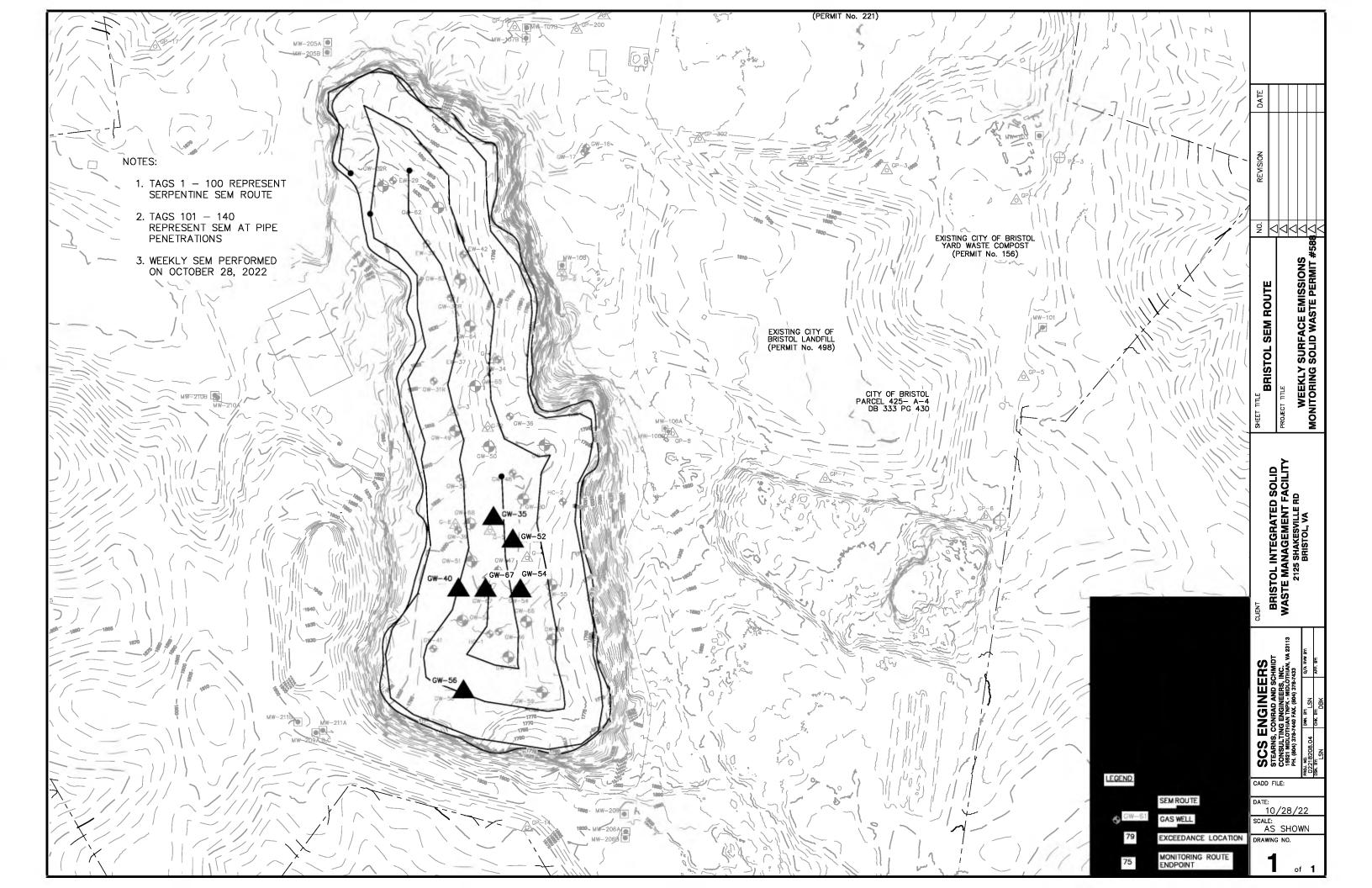
alalle Varen

Charles J. Warren Project Manager SCS Engineers

LSN/LEH/cjw

Lucus D. Nachman

Lucas S. Nachman Project Professional SCS Engineers


- cc: Randall Eads, City of Bristol Mike Martin, City of Bristol Joey Lamie, City of Bristol Jake Chandler, City of Bristol Crystal Bazyk, VDEQ Charles Warren, SCS Engineers
- Encl. Surface Emissions Monitoring Results Bristol SEM Route Drawing

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
1	122.0 PPM	ОК			Start Serpentine
2	223.0 PPM	OK			Route
3	7.5 PPM	OK			
4	9.7 PPM	OK			
5	80.0 PPM	OK			
6	10.2 PPM	OK			
7	108.0 PPM	OK			
8	40.1 PPM	OK			
9	9.3 PPM	OK			
10	15.9 PPM	OK			
11	20.7 PPM	OK			
12	42.4 PPM	OK			
13	47.2 PPM	OK			
14	129.0 PPM	OK			
15	17.5 PPM	OK			
16	35.8 PPM	OK			
17	32.8 PPM	OK			
18	33.1 PPM	OK			
19	21.1 PPM	OK			
20	35.4 PPM	OK			
21	33.0 PPM	OK			
22	42.4 PPM	OK			
23	89.2 PPM	OK			
24	44.8 PPM	OK			
25	99.3 PPM	OK			
26	53.8 PPM	OK			
27	58.2 PPM	OK			
28	90.0 PPM	OK			
29	13.7 PPM	OK			
30	6.9 PPM	OK			
31	2.5 PPM	OK			
32	3.3 PPM	OK			
33	16.3 PPM	OK			
34	18.0 PPM	OK			
35	8.1 PPM	OK			
36	4.8 PPM	OK			
37	1.5 PPM	OK			
38	43.6 PPM	OK			
39	55.8 PPM	OK			
40	22.0 PPM	OK			
41	71.1 PPM	OK			
42	324.0 PPM	OK			

	Methane		GPS Co	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
		<u> </u>			
43	63.8 PPM	OK			
44	8.8 PPM	OK			
45	2.8 PPM	OK			
46	3.6 PPM	OK OK			
47 48	5.2 PPM	OK			
	6.5 PPM				
49 50	21.9 PPM	OK OK			
51	21.5 PPM	OK			
	9.0 PPM				
52	6.0 PPM	OK			
53	18.1 PPM	OK			
54	9.1 PPM	OK			
55	7.7 PPM	OK			
56	11.4 PPM	OK			
57	22.3 PPM	OK			
58	21.0 PPM	OK			
59	16.2 PPM	OK			
60	17.6 PPM	OK			
61	9.3 PPM	OK			
62	8.3 PPM	OK			
63	3.6 PPM	OK			
64	7.2 PPM	OK			
65	7.0 PPM	OK			
66	28.7 PPM	OK			
67	8.0 PPM	OK			
68	18.1 PPM	OK			
69 70	16.3 PPM	OK			
70	7.4 PPM	OK			
71 72	35.3 PPM	OK			
72	79.7 PPM	OK			
	97.2 PPM	OK			
74	7.6 PPM 98.4 PPM	OK OK			
75					
76	48.1 PPM	OK			
77	26.2 PPM	OK			
78	35.9 PPM	OK			
79	26.4 PPM	OK			
80	13.5 PPM	OK			
81	13.3 PPM	OK			
82	165.0 PPM	OK			
83	11.6 PPM	OK			
84	20.4 PPM	OK			

	Methane		GPS Cod	ordinates	
ID #	Concentration	Compliance	Lat.	Long.	Comments
85	5.9 PPM	OK			
86	7.8 PPM	OK			
87	10.5 PPM	OK			
88	18.6 PPM	OK			
89	11.2 PPM	OK			
90	7.2 PPM	OK			
91	33.1 PPM	OK			
92	8.8 PPM	OK			
93	11.8 PPM	OK			
94	47.6 PPM	OK			
95	28.4 PPM	OK			
96	279.0 PPM	OK			
97	8.7 PPM	OK			
98	65.0 PPM	OK			
99	11.7 PPM	OK			
100	42.3 PPM	OK			End Serpentine Route
101	1426.0 PPM	HIGH_ALRM	36.59916	-82.14769	EW-35
102	12100.0 PPM	HIGH_ALRM	36.59900	-82.14750	EW-52
103	79.1 PPM	OK		0200 // 00	EW-60
104	365.0 PPM	OK			EW-48
105	13.2 PPM	OK			EW-61
106	15.7 PPM	OK			EW-36
107	44.8 PPM	OK			EW-34
108	10.1 PPM	OK			EW-65
109	64.7 PPM	OK			EW-50
110	124.0 PPM	OK			EW-55
111	1260.0 PPM	HIGH_ALRM	36.59865	-82.14743	EW-54
112	290.0 PPM	OK			EW-47
113	145.0 PPM	OK			EW-41
114	21100.0 PPM	HIGH_ALRM	36.59864	-82.14774	EW-67
115	29800.0 PPM	HIGH_ALRM	36.59864	-82.14796	EW-40
116	430.0 PPM	OK			EW-53
117	10.3 PPM	OK			EW-46
118	11.1 PPM	OK			EW-66
119	193.0 PPM	ОК			EW-58
120	15.1 PPM	ОК			EW-57
121	2136.0 PPM	HIGH_ALRM	36.59789	-82.14790	EW-56
122	276.0 PPM	ОК			EW-59
123	31.9 PPM	ОК			EW-51
124	51.8 PPM	ОК			EW-39
125	94.2 PPM	OK			EW-68

	Methane		GPS Coordinates			
ID #	Concentration	Compliance	Lat.	Long.	Comme	
126	6.3 PPM	OK			EW-3	
127	5.1 PPM	OK			EW-4	
128	1.5 PPM	OK			EW-3	
129	0.4 PPM	OK			EW-3	
130	1.7 PPM	OK			EW-6	
131	1.4 PPM	OK			EW-3	
132	27.7 PPM	OK			EW-6	
133	7.0 PPM	OK			EW-4	
134	2.9 PPM	OK			EW-3	
135	4.3 PPM	OK			EW-6	
136	13.1 PPM	OK			EW-2	
137	12.7 PPM	OK			EW-2	
138	3.7 PPM	OK			EW-3	
139	15.5 PPM	OK			EW-2	
140	11.9 PPM	OK			EW-3	
	Number of exceedance	e locations:	6			
Points 101 thro	n 100 represent serpent ugh 140 represent SEM tions: Sunny 55°F Wind:	at Pipe Penetrations				
Points 1 through Points 101 throu Weather Condi	ugh 140 represent SEM tions: Sunny 55°F Wind:	at Pipe Penetrations E - 10 MPH				
Points 1 through Points 101 throu Weather Condi Sampling Calib	ugh 140 represent SEM tions: Sunny 55°F Wind: ration: Methane - 500 p	at Pipe Penetrations E - 10 MPH	opm			
Points 1 through Points 101 throu Weather Condi	ugh 140 represent SEM tions: Sunny 55°F Wind: ration: Methane - 500 p	at Pipe Penetrations E - 10 MPH opm, Zero Air - 0.0 p	opm PM			
Points 1 through Points 101 throu Weather Condi Sampling Calib 10/28/2022	ugh 140 represent SEM tions: Sunny 55°F Wind: <u>ration: Methane - 500 p</u> 8:59 ZERO 9:02 SPAN	at Pipe Penetrations E - 10 MPH opm, Zero Air - 0.0 p 0.0 PF	opm PM			
Points 1 through Points 101 through Weather Condit Sampling Calib 10/28/2022 10/28/2022	ugh 140 represent SEM tions: Sunny 55°F Wind: <u>ration: Methane - 500 p</u> 8:59 ZERO 9:02 SPAN	at Pipe Penetrations E - 10 MPH opm, Zero Air - 0.0 p 0.0 PF 502.0 PF	opm PM PM			

Appendix B

SCS-FS October Summary Report

SCS FIELD SERVICES

November 8, 2022 Job No. 07220028.00

Mr. Michael Martin City of Bristol 2125 Shakesville Road Bristol, VA 24201

Subject: Summary of Operation, Monitoring, and Maintenance (OM&M) Services for Gas Collection Control System (GCCS) at the City of Bristol Landfill, Bristol, Virginia October 2022

Dear Mr. Martin:

SCS Field Services (SCS-FS) visited the Bristol Landfill during the month of October, 2022, for routine and non-routine monitoring and maintenance on the gas collection and control system (GCCS). This report summarizes the work performed and presents the data collected. The monitoring data is presented in the following attachments:

Attachment 1. Wellfield Monitoring DataAttachment 2. Exceedance Detail ReportAttachment 3. Enhanced Monitoring Record Form and Analytical ResultsAttachment 4. Daily Logs

GCCS SITE ACTIVITES

On October 12, SCS-FS visited the landfill for routine and non-routine monitoring. The Flare was operating and the Ingenco Power Plant was not operating. SCS-FS monitored the blower/flare station (BFS) and the extraction wells (EW) in Cell 221 and 588.

SCS-FS conducted non-routine enhanced monitoring and sampling for carbon monoxide (CO) analysis (enhanced monitoring) for compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAP). SCS-FS sampled EW-37, -57, and -67, and submitted the samples to Enthalpy Analytical for analysis. Analytical results are included in Attachment 3.

Between October 12 and 14, SCS-FS made the following repairs and system modifications:

- Repaired two broken air lines and one broken force main in Cell 588.
- Installed an air release valve on the force main near EW-32R.
- Replaced a 6-inch butterfly valve on the header for Cell 498.
- Started investigating lack of vacuum on header in Cell 498.
- Repaired a broken test port on boundary probe GP-9.
- Installed new fittings on EW-37, -40, and -67.
- Repaired the discharge line on EW-57.

On October 19, SCS-FS monitored the BFS and conducted non-routine enhanced monitoring at EW-37 and -57. A sample was collected for CO at EW-37 and submitted to Enthalpy Analytical for analysis. A sample could not be collected from EW-57 due to liquid at the sampling port. SCS-FS Mr. Michael Martin November 8, 2022 Page 2

conducted non-routine recheck monitoring at EW-40 for a pressure exceedance and found no available vacuum on the system or the well sides of the wellhead. SCS-FS monitored the north and south leachate clean outs.

On October 26, SCS-FS monitored the BFS and conducted non-routine enhanced monitoring and CO analysis sampling at EW-57. SCS-FS conducted non-routine recheck monitoring at EW-40 for a pressure exceedance and determined there was vacuum on the system and well sides of the wellhead. SCS-FS monitored the north and south leachate clean outs.

RECOMMENDATIONS

SCS-FS has the following recommendations based on observations made during our site visits:

- Continue adding cover to the landfill surface and realigning the header so liquid drains to condensate sumps.
- Maintain spare pumps in working order.
- Connect wells in permit area 498 to the active extraction system.

SCS-FS appreciates the opportunity to provide our services. Please contact either of the undersigned if you have any questions or need additional information.

Very truly yours,

mit lit

Mike Gibbons Project Manager SCS FIELD SERVICES

Attachments

cc: Bob Dick, SCS Engineers

Thomas M. Lock Vice President / Northeast Region Manager SCS FIELD SERVICES

Attachments

- 1. Wellfield Monitoring Data
- 2. Exceedance Detail Report
- 3. Enhanced Monitoring Record Forms and Analytical Results
- 4. Daily Logs

Attachment 1

Wellfield Monitoring Data

Bristol Virginia Landfill - Blower/Flare Station Data - 10/01/2022 to 10/31/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Static Pressure ("H2O)	Temp (F)	Flow (scfm)	Comments
Blower Inlet	10/12/2022 08:38	26.7	25.5	8.3	39.5	-24.3	64.8	894.0	
Blower Inlet	10/12/2022 15:04	23.0	21.1	11.8	44.1	-24.3	84.5	778.0	
Blower Inlet	10/14/2022 10:30	34.6	29.8	5.8	29.8	-24.2	77.4	780.0	
Blower Inlet	10/19/2022 10:27	31.2	31.0	6.0	31.8	-24.3	78.3	765.0	
Blower Inlet	10/26/2022 08:09	31.4	29.5	6.0	33.1	-24.3	54.0	690.0	
L221 Header	10/12/2022 08:35	14.9	11.3	14.7	59.1	-24.1	61.4	890.0	
L221 Header	10/14/2022 09:38	33.7	29.8	6.1	30.4	-24.3	59.4	768.0	
Technician/Weather									
Field Technician	Record Date	Ambient Temp	Barometric Pressure	Wind Speed	Wind Direction	General Weather			
Will Fabre/Ryan Seymour	10/12/2022	52	28.22	12	NE	Partly Cloudy			
Ryan Seymour	10/14/2022	68	28.34	9	SW	Clear			
Ryan Seymour	10/26/2022	45	27.83	12	NE	Partly Cloudy			

Bristol Virginia Landfill - Extraction Well Data - 10/01/2022 to 10/31/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	Temp (F)	Flow (scfm)	System Pressure ("H20)	Comments
01	10/12/2022 09:16	21.4	15.6	11.4	51.6	-22.8	-22.7	59.6		-22.6	
02	10/12/2022 09:06	34.4	23.2	8.7	33.7	-18.5	-18.5	56.7	62.3	-22.5	Slightly Open
03	10/12/2022 08:56	18.6	13.6	14.5	53.3	-9.4	-9.4	57.4	5.2	-22.6	
04	10/12/2022 08:52	51.5	38.4	2.0	8.1	-5.7	-5.6	57.5	10.8	-22.5	
05	10/12/2022 08:48	53.9	39.8	0.9	5.4	-24.9	-22.5	60.3		-22.3	
06	10/12/2022 09:49	18.7	12.3	14.2	54.8	-20.4	-20.4	64.3	3.0	-22.5	
07	10/12/2022 09:45	57.9	40.1	0.0	2.0	-9.4	-9.4	67.7		-22.5	
08	10/12/2022 09:38	4.4	3.1	19.4	73.1	-1.9	-1.9	64.5		-22.4	
09	10/12/2022 09:34	50.0	35.7	3.1	11.2	-21.9	-21.9	61.1		-22.3	
10	10/12/2022 09:30	56.5	41.5	0.0	2.0	-1.3	-1.2	64.6	2.9	-22.4	Fully Closed
11	10/12/2022 09:23	25.0	18.6	12.4	44.0	-22.6	-22.6	59.3		-22.4	
12	10/12/2022 09:19	27.5	20.0	12.3	40.2	-22.8	-22.8	66.0	5.6	-22.7	
13	10/12/2022 08:59	55.0	38.7	5.3	1.0	-22.5	-22.5	60.3	9.0	-22.5	
14	10/12/2022 09:41	39.5	24.5	7.5	28.5	-1.6	-1.6	67.8		-22.4	
15	10/12/2022 09:10	59.4	40.6	0.0	0.0	-22.6	-22.6	60.7	5.5	-22.7	Slightly Open
16	10/12/2022 10:02	38.7	35.1	0.2	26.0	-10.9	-10.9	70.2		-18.8	
17	10/12/2022 10:06	33.1	26.6	13.1	27.2	-15.2	-15.1	58.7		-22.5	
18	10/12/2022 10:34	48.9	39.0	0.1	12.0	-12.1	-12.1	65.6	3.6	-22.5	
23	10/12/2022 10:14	0.2	0.5	21.4	77.9	-20.1	-20.1	56.5		-22.0	
24	10/12/2022 09:34	2.0	2.2	19.6	76.2	-1.1	-1.0	59.8	4.0	-21.7	
25	10/12/2022 09:32	0.1	0.3	20.5	79.1	-0.1	-0.1	59.2	27.4	-22.2	
29	10/12/2022 09:39	59.1	40.9	0.0	0.0	-2.6	-2.7	108.0	98.9	-10.7	
30R	10/12/2022 10:23	32.2	23.4	5.9	38.5	-1.3	-1.3	89.0	70.6	-1.3	
31R	10/12/2022 10:01	23.5	23.4	5.9	47.2	-1.6	-1.5	85.8	70.7	-1.4	
31R	10/12/2022 10:20	32.2	66.0	1.8	0.0	-1.2	-1.1	168.3	46.6	-1.0	
31R	10/19/2022 10:55	19.9	21.2	6.8	52.1	-1.5	-1.5	131.2		1	
32R	10/12/2022 09:22	47.8	37.8	0.0	14.4	-3.1	-3.1	133.8	35.9	-8.2	
32	10/12/2022 09:27	58.0	42.0	0.0	0.0	-11.2	-11.3	76.4		-18.5	
33	10/19/2022 10:39	29.1	24.4	5.0	41.5	-2.3	-2.3	69.3	97.0	-2.3	Well needs extension/lowered
34	10/12/2022 10:12	15.1	71.5	0.0	13.4	-12.0	-11.9	132.3		-11.6	
35	10/12/2022 11:05	59.4	35.3	3.0	2.3	-2.4	-2.4	88.5	1.5	-12.4	
36	10/12/2022 11:39	42.0	29.1	6.3	22.6	-1.3	-1.3	63.1	68.7	-1.2	
37	10/12/2022 10:08	20.5	25.5	7.6	46.4	-2.7	-2.6	152.0	91.2	-12.4	
37	10/12/2022 14:36	28.3	26.1	7.1	38.5	-2.7	-2.8	151.0	94.8	-13.0	

-9-21

Bristol Virginia Landfill - Extraction Well Data - 10/01/2022 to 10/31/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	Temp (F)	Flow (scfm)	System Pressure ("H20)	Comments
37	10/19/2022 10:59	20.0	27.0	7.4	45.6	-2.9	-2.9	149.0		-13.3	
38	10/12/2022 10:54	60.8	34.5	2.9	1.8	-6.4	-6.4	105.7	163.5	-6.4	
39	10/12/2022 10:57	59.0	40.9	0.1	0.0	-8.0	-8.4	110.2	192.1	-8.1	
40	10/12/2022 11:30	56.8	43.2	0.0	0.0	1.1	1.1	105.1		1.1	
40	10/14/2022 09:56	57.9	42.0	0.1	0.0	1.4	1.4	110.6		1.4	Fully Open,Surging Flow,Bad Sample Port,No system vac due to liquid
40	10/26/2022 09:07	30.0	21.3	17.1	31.6	-2.9	-2.9	120.1	102.9	-13.9	
41	10/12/2022 11:24	57.3	40.7	1.0	1.0	-12.3	-12.3	143.9		-12.3	
42	10/12/2022 09:47	47.0	35.0	2.7	15.3	-1.4	-1.4	115.6	72.8	-1.4	
46	10/12/2022 11:20	43.0	38.3	4.8	13.9	-13.5	-13.5	119.4	4.0	-13.7	
47	10/12/2022 11:22	58.4	41.6	0.0	0.0	-16.5	-16.5	132.8		-16.5	
48	10/12/2022 10:47	55.0	39.6	3.2	2.2	-16.7	-16.6	66.5		-16.5	
49	10/12/2022 10:31	42.2	32.6	3.4	21.8	-6.6	-6.5	134.1		-15.4	
50	10/12/2022 10:35	46.5	30.4	5.0	18.1	-1.5	-1.4	130.6	19.2	-16.9	
51	10/12/2022 11:03	56.6	40.0	3.4	0.0	-10.7	-10.7	144.4		-10.7	
52	10/12/2022 11:11	50.9	37.3	3.9	7.9	-12.7	-12.6	110.5		-11.5	
53	10/12/2022 11:29	56.9	43.1	0.0	0.0	-5.8	-5.7	137.3	43.1	-12.0	
54	10/12/2022 11:17	54.5	45.2	0.3	0.0	-15.9	-15.9	141.1		-15.9	
55	10/12/2022 11:14	32.2	23.5	7.5	36.8	-15.9	-15.9	97.5		-15.8	
56	10/12/2022 10:45	56.4	43.6	0.0	0.0	-9.6	-10.0	134.7		-9.2	
57	10/12/2022 11:02	18.8	14.7	10.2	56.3	-0.1	-1.0	183.6		-9.7	
57	10/19/2022 11:14	52.3	44.5	1.0	2.2	-18.1	-18.1	152.9		-18.2	
57	10/26/2022 09:16	32.4	29.3	8.0	30.3	-18.3	-18.3	149.3		-18.4	
58	10/12/2022 11:05	0.6	1.0	21.0	77.4	-14.6	-14.6	66.9	6.2	-14.8	
59	10/12/2022 10:50	53.4	43.7	0.3	2.6	-4.5	-4.4	125.8		-0.5	
60	10/12/2022 10:50	59.6	36.1	1.3	3.0	-13.2	-13.1	135.7		-13.1	
61	10/12/2022 10:40	35.3	44.7	4.2	15.8	-0.6	-0.5	132.7	31.9	-0.5	
62	10/12/2022 09:44	54.7	45.3	0.0	0.0	-0.1	0.0	95.8	1.7	-1.1	
62	10/14/2022 10:13	18.9	19.4	7.8	53.9	-3.8	-3.8	125.5	62.7	-11.3	
63	10/12/2022 09:51	20.1	21.6	7.2	51.1	-0.2	-0.2	127.4	4.0	-0.4	
64	10/12/2022 10:04	15.3	17.3	10.1	57.3	-2.4	-2.3	138.5	88.8	-2.3	
65	10/12/2022 10:16	1.6	2.1	20.3	76.0	-0.4	-0.3	107.4	8.7	-0.4	
66	10/12/2022 11:09	46.9	52.1	1.0	0.0	-2.4	-2.4	135.5		-13.8	

-9-21

Bristol Virginia Landfill - Extraction Well Data - 10/01/2022 to 10/31/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Init Static Pressure ("H2O)	Adj Static Pressure ("H20)	Temp (F)	Flow (scfm)	System Pressure ("H20)	Comments
67	10/12/2022 11:24	46.2	53.8	0.0	0.0	-16.2	-16.2	154.5		-16.2	
67	10/12/2022 14:12	39.9	58.0	0.2	1.9	-18.1	-18.1	154.7		-18.1	
67	10/19/2022 11:11	31.8	56.0	0.2	12.0	-18.7	-18.7	140.3	17.9	-18.8	
68	10/12/2022 11:35	57.1	40.8	2.0	0.1	0.2	-0.1	77.6		-0.1	
68	10/14/2022 09:49	59.0	40.2	0.8	0.0	-7.2	-7.3	125.3	76.1	-17.5	
HC01	10/12/2022 11:15	0.1	0.4	21.5	78.0	-13.5	-13.5	64.2			

Bristol Virginia Landfill - North/South Cleanouts Data - 10/01/2022 to 10/31/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Static Pressure ("H2O)	Temp (F)	Comments
LC01	10/19/2022 12:06	0.7	0.6	20.5	78.2	-4.3	71.1	
LC01	10/26/2022 09:46	50.1	49.9	0.0	0.0	-2.3	67.2	
LC02	10/19/2022 12:07	0.8	0.7	20.6	77.9	-4.5	71.5	
LC02	10/26/2022 09:48	0.8	0.7	21.1	77.4	-3.9	67.8	
LC03	10/19/2022 12:08	1.0	0.9	20.5	77.6	-4.3	71.1	
LC03	10/26/2022 09:49	52.5	47.1	0.5		-7.3	67.8	
LCO4	10/19/2022 12:09	0.1	0.1	20.8	79.0	-4.2	67.9	
LCO4	10/26/2022 09:50	53.1	46.3	0.6	0.0	-7.0	67.3	
LC05	10/19/2022 12:10	0.1	0.1	20.9	78.9	-4.5	70.2	
LC05	10/26/2022 09:52	51.2	48.8	0.0	0.0	-2.4	65.6	
LC06	10/19/2022 12:12	0.1	0.1	20.9	78.9	-4.3	66.8	
LC06	10/26/2022 09:53	54.5	45.1	0.4	0.0	-7.2	66.2	
LC07	10/19/2022 12:13	48.1	26.1	2.5	23.3	-4.3	68.6	
LC08	10/19/2022 12:15	52.6	28.7	0.5	18.2	-4.3	69.3	
LC08	10/26/2022 09:55	49.2	50.8	0.0	0.0	-2.4	70.7	
LC09	10/19/2022 12:16	50.3	27.5	1.3	20.9	-4.3	69.2	
LC09	10/26/2022 09:57	52.6	47.3	0.1	0.0	-7.3	68.5	
LC10	10/19/2022 12:17	0.2	0.2	20.8	78.8	-4.1	69.3	
LC10	10/26/2022 09:58	52.5	47.5	0.1		-7.2	68.1	
NC01	10/19/2022 12:43	50.3	48.7	1.0	0.0	-5.1	76.0	
NC01	10/26/2022 08:16	2.7	1.9	19.3	76.1	0.0	55.0	
NC02	10/19/2022 12:44	4.0	4.5	18.5	73.0	-6.4	76.2	
NC02	10/26/2022 08:18	2.8	1.9	19.4	75.9	-0.1	55.1	
NC03	10/19/2022 12:46	50.9	48.6	0.5	0.0	-9.0	75.6	
NC03	10/26/2022 08:19	4.0	2.6	19.0	74.4	-0.1	55.1	
NC04	10/19/2022 12:47	46.1	43.0	2.4	8.5	-9.3	75.4	
NC04	10/26/2022 08:20	51.0	27.7	6.0	15.3	0.0	55.2	
NC05	10/19/2022 12:49	49.1	50.9	0.0	0.0	-5.2	74.5	
NC05	10/26/2022 08:22	39.3	21.8	5.3	33.6	-0.1	55.2	
NC06	10/19/2022 12:50	49.5	45.0	1.6	3.9	-9.1	73.4	
NC06	10/26/2022 08:23	25.0	13.4	12.0	49.6	0.0	55.1	

-9-CL

SCS DataServices - Secure Environmental Data

Bristol Virginia Landfill - North/South Cleanouts Data - 10/01/2022 to 10/31/2022

Point Name	Record Date	CH4 (% by vol)	CO2 (% by vol)	O2 (% by vol)	Bal Gas (% by vol)	Static Pressure ("H2O)	Temp (F)	Comments
NC07	10/19/2022 12:54	75.0	8.0	0.0	17.0	-0.2	72.2	
NC07	10/26/2022 08:24	47.3	25.5	1.7	25.5	0.0	55.3	
NC08	10/19/2022 12:53	46.7	53.3	0.0	0.0	-5.3	72.6	
NC08	10/26/2022 08:25	50.6	27.9	1.1	20.4	-0.1	55.2	
NC09	10/19/2022 12:55	51.1	48.2	0.7	0.0	-9.6	71.8	
NC09	10/26/2022 08:28	51.2	28.2	1.0	19.6	-0.1	55.2	
NC10	10/19/2022 12:57	49.2	50.8	0.0	0.0	-9.4	71.5	
NC10	10/26/2022 08:31	43.6	24.2	3.6	28.6	0.0	55.2	

Attachment 2

Exceedance Detail Report

Exceedance Detail Report Date Range: 10/01/2022 to 10/31/2022

Report Date: 11/08/2022 Site Name: Bristol Virginia Landfill

					% by Ve	olume	Temperat	ture (°F)	Static Pr							
Point ID	Point Name	Record Date	Days Between Readings	Point Status	CH4	O2	Initial Temp	Adjusted Temp	Initial Static Pressure (H2O)	Adjusted Static Pressure (H2O)	Operation Comments	Total Days Open	Corrective Action Comments	Corre	ctive Action Due	Dates
BRTLGW37				Active			>= 145	>= 145	>= 0	>= 0			NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	37	3/30/2022 12:20:33 PM	0)	13.8	6.4	150	150	-1.24	-1.75	i heck,,,,,,			4/3/2022	4/13/2022	7/27/2022
	37	4/6/2022 12:14:16 PM	7		14.2	7.3	149	149	-1.98	-1.95	Comments:No Change,,,,,,					
	37	4/13/2022 1:45:11 PM	7		16.5	7	159	159	-1.70	-1.70	Comments:,,,,,,					
	37	4/13/2022 1:47:58 PM	0	1	16	7	159	159	-2.10	-2.14	Comments:,,,,,,					
	37	4/21/2022 7:24:55 AM	8	i	13.1	8.3	159	159	-2.35	-2.27	Comments:,,,,,,,					
	37	5/4/2022 12:21:07 PM	13	i	13	7.3	149	149	-2.57	-2.42	2 Open,No Change,,,,,					
	37	5/16/2022 10:51:43 AM	12	2	11.6	9.8	150	150	-2.21	-2.39	Comments:Adjustment,,,,,,					
	37	5/16/2022 2:09:00 PM	0	1	14.9	9.8	159	159	-2.48	-2.48	Comments:,,,,,,					
	37	5/24/2022 10:23:52 AM	8	i	17	7.8	150	150	-3.44	-3.43	Comments:,,,,,,					
	37	5/24/2022 10:26:15 AM	0	1	17.3	7.9	150	150	-3.47	-3.44	Comments:,,,,,,					
	37	6/1/2022 12:43:16 PM	8	ł	22	6.2	150	150	-2.89	-2.89	Comments:,,,,,,					
	37	6/8/2022 11:34:45 AM	7		6.5	14.8	155.8	155.9	-12.72	-12.63	Comments:,,,,,,					
	37	6/16/2022 1:35:06 PM	8		21.6	6.7	153.9	153.8	-2.56	-2.54	Comments:,,,,,,					
	37	7/6/2022 12:59:43 PM	20	1	19.2	6.6	154.2	153.8	-2.44	-2.43	Comments:,,,,,,					
	37	7/11/2022 1:31:12 PM	5	i	19.8	6.7	155.5	155.5	-2.25	-2.19	Comments:,,,,,,					
	37	7/11/2022 1:36:48 PM	0	1	19.6	6.5	155.7	155.8	-2.12	-2.10	Comments:,,,,,,					
	37	8/3/2022 12:31:49 PM	23		20	7.3	155.5	155.5	-2.39	-2.38	Comments:,,,,,,					
	37	8/3/2022 12:35:39 PM	0	1	20.2	7.3	155.4	155.4	-2.72	-2.77	Comments:,,,,,,					
	37	8/3/2022 2:29:58 PM	0	1	19.5	6.6	152.2	152.9	-3.03	-3.01	Comments:,,,,,,					
	37	8/24/2022 11:44:07 AM	21		19.2	7.6	152.7	152.8	-15.16	-15.14	Open,,,,,,					
	37	9/1/2022 11:37:46 AM	8		20.8	7.6	155	154.7	-3.14	-3.14	Comments:,,,,,,					
	37	9/1/2022 12:28:35 PM	0	1	18.9	7.9	152.7	152.7	-15.15	-15.13	Comments:,,,,,,					
	37	10/12/2022 10:08:08 AM	41		20.5	7.6	152	151.5	-2.69	-2.64	Comments:,,,,,,					
	37	10/12/2022 2:36:59 PM	0	I	28.3	7.1	151	151	-2.74	-2.75	Comments:,,,,,,					
	37	10/19/2022 10:59:40 AM	7		20	7.4	149	149.1	-2.94	-2.85	o Comments:,,,,,,	216				
BRTLGW40				Active			>= 210	>= 210	>= 0	>= 0			NSPS AAAA HOV 210	5 Day	15 Day	120 Day
	40	10/12/2022 11:30:24 AM	0		56.8	0	105.1	105.2	1.11	1.10	Comments:,,,,,,		good reading on 10/26/2022	10/16/2022	10/26/2022	2/8/2023
	40	10/14/2022 9:55:31 AM	2	!	58.3	0.2	110.3	110.5	1.58		Open,Surging Flow,Bad		good reading on 10/26/2022			
	40	10/14/2022 9:56:33 AM	0	1	57.9	0.1	110.6	110.7	1.36		Open,Surging Flow,Bad		good reading on 10/26/2022			
	40	10/26/2022 9:07:18 AM	12		30	17.1	120.1	121.5	-2.87	-2.87	Comments:,,,,,,	15				
BRTLGW57				Active			>= 145	>= 145	>= 0	>= 0			NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	57	10/12/2022 11:02:07 AM	0)	18.8	10.2	183.6	183.8	-0.11	-0.95	Comments:,,,,,,			10/16/2022	10/26/2022	2/8/2023
	57	10/19/2022 11:14:39 AM	7		52.3	1	152.9	152.9			Comments:,,,,,,					
	57	10/26/2022 9:16:32 AM	7		32.4	8	149.3	149.3			Comments:,,,,,,	20				
BRTLGW67				Active			>= 145	>= 145	>= 0	>= 0			NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	67	10/12/2022 11:24:40 AM	0		46.2	0	154.5	155.3	-16.21	-16.18	Comments:,,,,,,		good reading on 10/19/2022	10/16/2022	10/26/2022	2/8/2023
	67	10/12/2022 2:12:15 PM	0		39.9	0.2		154.7			Comments:,,,,,,		good reading on 10/19/2022			
	67	10/19/2022 11:11:24 AM	7		31.8	0.2		141			Comments:,,,,,,	8	- •			

Exceedance Detail Report Date Range: 10/01/2022 to 10/31/2022

Report Date: 11/08/2022 Site Name: Bristol Virginia Landfill

					% by Vo	olume	Temperat	ture (°F)	Static I	Pressure						
Point ID	Point Name	Record Date	Days Between Readings	Point Status	CH4	02	Initial Temp	Adjusted Temp	Initial Static Pressure (H2O)	Adjusted Static Pressure (H2O)	Operation Comments	Total Days Open	Corrective Action Comments	Corre	ctive Action Due	Dates
BRTLGW68				Active			>= 145	>= 145	>= 0	>= 0			NESHAP AAAA HOV 145	5 Day	15 Day	120 Day
	68	10/12/2022 11:35:18 AM	0		57.1	2	77.6	78.9	0.24	-0.11	Comments:,,,,,,		good reading on 10/14/2022	10/16/2022	10/26/2022	2/8/2023
	68	10/12/2022 11:35:18 AM	0		57.1	2	77.6	78.9	0.24	-0.11	Comments:,,,,,,		good reading on 10/14/2022			
	68	10/14/2022 9:49:40 AM	2		59	0.8	125.3	125.3	-7.20	-7.27	Comments:,,,,,,	3				
Point	s with Exceedances		5				Parameter e	xceeds rule	e (Exceedand	ce)						
c	losed Exceedances		3													
	Open Exceedances		2				Parameter ir	n compliand	ce (Exceeda	nce cleared)						

- B

Attachment 3

Enhanced Monitoring Record Forms and Analytical Results

ENHANCED MONITORING RECORD FORM

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS

- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS

- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)

- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfi	ll Name: Brist								Technician	: Ryan Seymour		
Well ID	Date & Time		M Read 02 (%)	Well Temp	Gas Sample Collected	Pickup Scheduled?		F Smoldering Ash Observed?	Damage to Well?	If Temp ≥165F Downhole Temp Monitoring	If Temp ≥170F Contacted Engineers for Notification?	Comments
		(/•)	(/0)	(°F)	Y/N	Y/N	smoke)? Y/N	Y/N	Y/N	Performed? Y/N	Y/N	
37	2022-10-12 14:15:00	28.3	7.1	151	yes	yes	no	no	no	no	yes	No comment needed
67	2022-10-12 14:12:00	39.9	0.2	154	yes	yes	no	no	no	no	no	My sample train gauge didn't work both times I took a sample in 2 different cans the pressure never changed
57	2022-10-12 13:45:00	18.8	10.2	183.6	no	no	yes	no	yes	no	yes	No sample on this well due to steam and black foam at port. I didn't want to risk my gem or ruin a canister

ENHANCED MONITORING RECORD FORM

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS

- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS

- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)

- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfil	Name: Brist	ol							Technician	echnician: Ryan Seymour				
		GE	M Read	ling			If Temp >145	F		lf Temp ≥165F	If Temp ≥170F			
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected	Pickup Scheduled?	smoke)?	Smoldering Ash Observed?	Damage to Well?	Downhole Temp Monitoring Performed?	Contacted Engineers for Notification?	Comments		
					Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N			
57	2022-10-19 11:07:00	52.3	1.0	152.9	yes	yes	yes	no	no	no	no	Well 67 beside it has visible smoke/steam coming out the ground around it		
37	2022-10-19 10:59:00	20.0	7.4	149	yes	yes	no	no	no	no	no			

ENHANCED MONITORING RECORD FORM

- FORM TO BE COMPLETED IF ANY WELLHEAD TEMPERATURES OVER 145F THAT CANNOT BE CORRECTED IN 7 DAYS

- WEEKLY MONITORING MUST BEGIN WITHIN 7 DAYS OF EXCEEDANCE FOR CO AND VISUAL OBSERVATIONS

- TEMPERATURES AT OR ABOVE 165F REQUIRE ANNUAL DOWNHOLE TEMPERATURE MONITORING (10FT INTERVALS)

- TEMPERATURES AT OR ABOVE 170F REQUIRE 24-HOUR PADEP NOTIFICATION; IMMEDIATELY CONTACT ENGINEERS IN THIS CASE

Landfil	l Name: Brist	ol							Technician	nnician: Ryan Seymour			
		GE	M Read	ling			If Temp >145	βF		lf Temp ≥165F			
Well ID	Date & Time	CH4 (%)	O2 (%)	Well Temp (°F)	Gas Sample Collected Y/N	Pickup Scheduled? Y/N	Visible Emissions (e.g. smoke)? Y/N	Smoldering Ash Observed? Y/N	Damage to Well? Y/N	Downhole Temp Monitoring Performed? Y/N	Contacted Engineers for Notification? Y/N	Comments	
57	2022-10-26 09:13:00	32.4	8.0	149.3	yes	yes	no	no	no	no	no		

SCS ENGINEERS

PAGE___OF____

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	October 18, 2022 10:28
	4330 Lewis Road, Suite 1	Date Issued:	October 21, 2022 14:15
	Harrisburg, PA 17111	Project Number:	[none]
Submitted To:	Tom Lock	Purchase Order:	

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 10/18/2022 10:28. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	October 18, 2022 10:28
	4330 Lewis Road, Suite 1	Date Issued:	October 21, 2022 14:15
	Harrisburg, PA 17111	Project Number:	[none]
Submitted To:	Tom Lock	Purchase Order:	
Client Site I.D.:	Bristol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	22J0865-01	Air	10/12/2022 14:23	10/18/2022 10:28
67	22J0865-02	Air	10/12/2022 14:00	10/18/2022 10:28

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 18, 2022 10:28 October 21, 2022 14:15
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	
	ANALYTICAL RES	SULTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 9.2
Sample ID: 22J0865-01	Canister ID: 063-00087::00335		Receipt Vacuum(in Hg): 9.2
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 10/12/2022 14:23			Flow Controller ID:
Sample Type: LG			
	Volatile Organic Compounds by GC/TCD -	Unadjusted, as received basis	
	ppmv ALT-145		Date/Time

ppmv							Date/Time
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Analyst
Carbon Monoxide, as received	94.5	90.0	90.0		9	1	10/20/22 11:46 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 18, 2022 10:28 October 21, 2022 14:15
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	
	ANALYTICAL RESU	ILTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 67	Sub Description/Location:		Final Vacuum(in Hg): 4.2
Sample ID: 22J0865-02 Sample Matrix: Air Sampled: 10/12/2022 14:00	Canister ID: 063-00204::9205 Canister Size: 1.4		Receipt Vacuum(in Hg): 4.2 Flow Controller Type: Passive Flow Controller ID:
Sample Type: LG			
	Volatile Organic Compounds by GC/TCD - U ppmv ALT-145	Inadjusted, as received basis	Date/Time

Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Analyst
Carbon Monoxide, as received	580	90.0	90.0		9	1	10/20/22 13:06 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 18, 2022 10:28 October 21, 2022 14:15
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Cor	mpounds by GC/TCD - Unadjust	ed, as received basis	Preparation Method:	No Prep VOC GC Air	
22J0865-01	1.00 mL / 1.00 mL	ALT-145	BFJ0773	SFJ0750	AG00026
22J0865-02	1.00 mL / 1.00 mL	ALT-145	BFJ0773	SFJ0750	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 18, 2022 10:28 October 21, 2022 14:15
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

			En	thalpy	Analyti	cai				
	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFJ0773 - No Prep VO	C GC Air									
Blank (BFJ0773-BLK1)					Prep	pared &	Analyzed	: 10/20/20)22	
Carbon Monoxide	<	10.0	ppmv							
LCS (BFJ0773-BS1)					Prep	pared &	Analyzed	: 10/20/20)22	
Methane	4480	500	ppmv	5000		89.6	0-200			
Carbon dioxide	4420	500	ppmv	5000		88.4	0-200			
Oxygen (O2)	5100	500	ppmv	5000		102	0-200			
Nitrogen (N2)	5530	2000	ppmv	5000		111	0-200			
Hydrogen (H2)	5710	200	ppmv	5100		112	0-200			
Carbon Monoxide	4800	10	ppmv	5000		95.9	0-200			
Duplicate (BFJ0773-DUP1)		So	urce: 22J	0865-01	Prep	bared &	Analyzed	: 10/20/20)22	
Methane	147000	4500	ppmv		14600	00		0.992	25	
Carbon dioxide	223000	4500	ppmv		21900	00		1.53	25	
Oxygen (O2)	71900	4500	ppmv		7120	0		0.989	25	
Hydrogen (H2)	11700	1800	ppmv		1160	0		0.305	25	
Nitrogen (N2)	421000	18000	ppmv		41600	00		1.18	25	
Carbon Monoxide	<	90.0	ppmv		94.5	5		NA	25	
Duplicate (BFJ0773-DUP3)		So	urce: 22J	0731-01	Prep	pared &	Analyzed	: 10/20/20)22	
Methane	311000	4500	ppmv		31200	00		0.268	25	
Carbon dioxide	282000	4500	ppmv		28200	00		0.0129	25	
Oxygen (O2)	10200	4500	ppmv		1030	0		0.915	25	
Hydrogen (H2)	<	1800	ppmv		<180	0		NA	25	
Nitrogen (N2)	326000	18000	ppmv		32800	00		0.436	25	
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1		Date Received: Date Issued:	October 18, 2022 10:28 October 21, 2022 14:15			
	Harrisburg, PA 17111						
Submitted To:	Tom Lock		Project Number:	[none]			
Client Site I.D.:	Bristol		Purchase Order:				
Certified Analytes included in this Report							
Analyte	Certifications	Analyte	Cert	ifications			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2022
NCDEQ	North Carolina DEQ	495	12/31/2022
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #007	68-03503	10/31/2022
VELAP	NELAP-Virginia Certificate #12098	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2022

Qualifiers and Definitions

- RPD Relative Percent Difference
- Qual Qualifers
- -RE Denotes sample was re-analyzed
- PF Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation
- ppbv parts per billion by volume

TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

AIR ANALYSIS

Tormen	y <i>mi,</i> x	vuler a s	onLu	0010101	ies			CHAIN	OF CUS	TODY	Ec	quipm	ient du	e 10/31					
COMPAN	Y NAME	: SCS Fiel	d Servi	ces - Harri	sbu	rg IN	VOICE TO	: Same				PROJ	ECT NA	ME/Quote #	#: Bristo	ol 🛛		1	
CONTACT: INVOICE CONTACT:					1. C		SITE I	NAME:	Bristol					T					
ADDRESS	S:					IN	VOICE AD	DRESS:				PROJ	ECT NU	MBER:					
PHONE #						IN	VOICE PH	ONE #:				P.O. #	!:	1					
FAX #:				EN	IAIL			A				Pretre	atment F	rogram:				1	
Is sample	for comp	oliance rep	orting	YES NO		Regulat	ory State:	VA Is:	sample fro	m a chlorir	nated supp	oly?	YES (NO PV	VS I.D. #:		191		
		(PRINT):					MPLER S	IGNATUR	e: <i>Pya</i> i	~ Su	mær	Turn 7	Around ⁻	Fime: Circ	cle: 10	5 Days)	or _	_ Da
Matrix Codes	AA=Indoo	or/Ambient Air	SG=Soil	Gas LV=Lan	dfill/\	/ent Gas OT	=Other D/		/	0			00	53-22I-0016	6				3
		Regulator	Info	Canister Ir	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		0	ANA	ALYS
CL	IENT	1					LAB	LAB	Barometric	Pres. (in Hg			Barometr	ic Pres. (in H		1	(See Cod	8	
	PLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in ^{Hg)}	Receiving Canister Vacuum (in ^{Hg)}	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in ^{Hg)}	Starting Sample Temp °F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in ^{Hg)}	Ending Sample Temp °F	Matrix (s		
1) 3-	7	LAD	AB	335	1.4		20	9.2	10/12/22	14:20	18	151	10/12	14:29	3		LG		
2) 4-	7	UPB.	- Ale	9205	1.4	220901-01	20	4.2	10/12/22	13:-58	0	159	10/12/	14:00	0	159	LG	x	
3) 5-	1			10224	1.4	220919-02	20	this black	feam	183 comi			Spew) Aidn	t wa,	111		LG	x	
4) (a-	7			11317	1.4	220728-01	20	Suck	1 00		3 9e	m.					LG	x	
	11				14							10 Se		1 le	20.2	3(0		
							exarc	und	e / Time	QC Data P Level I	ackage LA	AB USE	ONLY	SCS Fiel	ld Servi	ces	22	2J08	865
R NQUISHE Page NQUISHE R 8 of	fed	etgro	ound	e / Time			10/1	8 22	10.28 TE / TIME	Level II Level III Level IV				Bristol Recd: 10/	18/2022	Due:	10/		2 022 325002
1				The	, <	Samp	le tra	i'm qu	age d	idn't	nort				063-221-0	016-SCS	Bristo	LLE-CO	00

2 J

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 18, 2022 10:28 October 21, 2022 14:15
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	

Sample Conditions Checklist

Samples Received at:	20.20°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	October 21, 2022 10:25
	4330 Lewis Road, Suite 1	Date Issued:	October 28, 2022 15:13
	Harrisburg, PA 17111	Project Number:	[none]
Submitted To:	Tom Lock	Purchase Order:	

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 10/21/2022 10:25. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	October 21, 2022 10:25
	4330 Lewis Road, Suite 1	Date Issued:	October 28, 2022 15:13
	Harrisburg, PA 17111	Project Number:	[none]
Submitted To:	Tom Lock	Purchase Order:	
Client Site I.D.:	Bristol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
57	22J1080-01	Air	10/19/2022 11:15	10/21/2022 10:25
37	22J1080-02	Air	10/19/2022 11:00	10/21/2022 10:25

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 21, 2022 10:25 October 28, 2022 15:13
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	
	ANALYTICAL RES	SULTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 57	Sub Description/Location:		Final Vacuum(in Hg): 6.6
Sample ID: 22J1080-01	Canister ID: 063-00373: 13954		Receipt Vacuum(in Hg): 6.6
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: passive
Sampled: 10/19/2022 11:15			Flow Controller ID:
Sample Type: LG			
	Volatile Organic Compounds by GC/TCD -	Unadjusted, as received basis	
	ppmv ALT-145		Date/Time

	ppmv				Date/Time				
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF		nalyst	
Carbon Monoxide, as received	102	90.0	90.0		9	1	10/24/22 9:24 DI	FH	

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 21, 2022 10:25 October 28, 2022 15:13
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	
	ANALYTI	CAL RESULTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 37	Sub Description/Location:		Final Vacuum(in Hg): 7.8
Sample ID: 22J1080-02	Canister ID: 063-00372: 13957		Receipt Vacuum(in Hg): 7.8
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: passive
Sampled: 10/19/2022 11:00			Flow Controller ID:
Sample Type: LG			
		C/TCD - Unadjusted, as received basis LT-145	
	ppmv A	L1-140	Date/Time

		ppmv					Date/Time
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Analyst
Carbon Monoxide, as received	94.9	90.0	90.0		9	1	10/24/22 10:17 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 21, 2022 10:25 October 28, 2022 15:13
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	

- Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Cor	mpounds by GC/TCD - Unadjust	ed, as received basis	Preparation Method:	No Prep VOC GC Air	
22J1080-01	1.00 mL / 1.00 mL	ALT-145	BFJ0870	SFJ0832	AG00026
22J1080-02	1.00 mL / 1.00 mL	ALT-145	BFJ0870	SFJ0832	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 21, 2022 10:25 October 28, 2022 15:13
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

			En	thalpy	Analyti	cai					
	F	Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BFJ0870 - No Prep VO	C GC Air										
Blank (BFJ0870-BLK1)					Prep	ared &	Analyzed	: 10/24/20	22		
Carbon Monoxide	<	10.0	ppmv								
LCS (BFJ0870-BS1)					Prep	ared &	Analyzed	: 10/24/20	22		
Methane	4490	500	ppmv	5000		89.8	0-200				
Carbon dioxide	4110	500	ppmv	5000		82.3	0-200				
Oxygen (O2)	5520	500	ppmv	5000		110	0-200				
Nitrogen (N2)	6690	2000	ppmv	5000		134	0-200				
Hydrogen (H2)	5790	200	ppmv	5100		113	0-200				
Carbon Monoxide	4820	10	ppmv	5000		96.3	0-200				
Duplicate (BFJ0870-DUP1)		So	urce: 22J	1080-01	Prep	ared &	Analyzed	: 10/24/20	22		
Vethane	412000	4500	ppmv		41200	00		0.0289	25		
Carbon dioxide	408000	4500	ppmv		40700	00		0.277	25		
Oxygen (O2)	20700	4500	ppmv		2070	0		0.0361	25	С	
Nitrogen (N2)	81500	18000	ppmv		8110	0		0.426	25		
Hydrogen (H2)	22200	1800	ppmv		2230	0		0.0724	25		
Carbon Monoxide	105	90.0	ppmv		102			3.05	25		
Duplicate (BFJ0870-DUP2)		So	urce: 22J	1080-02	Prep	ared &	Analyzed	: 10/24/20	22		
Methane	149000	4500	ppmv		14900	00		0.0974	25		
Carbon dioxide	229000	4500	ppmv		22900	00		0.293	25		
Oxygen (O2)	73200	4500	ppmv		7310	0		0.120	25	С	
Hydrogen (H2)	10200	1800	ppmv		1010	0		0.769	25		
Nitrogen (N2)	431000	18000	ppmv		43000	00		0.125	25		
Carbon Monoxide	97.0	90.0	ppmv		94.9			2.25	25		
Duplicate (BFJ0870-DUP3)		So	urce: 22J	1078-01	Prep	ared &	Analyzed	: 10/24/20	22		
Methane	324000	4500	ppmv		32500	00		0.413	25		
Carbon dioxide	268000	4500	ppmv		26900	00		0.419	25		
Oxygen (O2)	10900	4500	ppmv		1110	D		1.79	25	С	
Nitrogen (N2)	322000	18000	ppmv		32300	00		0.549	25		
Hydrogen (H2)	<	1800	ppmv		<180	0		NA	25		
Carbon Monoxide	<	90.0	ppmv		<90.0	C		NA	25		

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 21, 2022 10:25 October 28, 2022 15:13
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]

Client Site I.D.: Bristol

Purchase Order:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

			En	thalpy	Analyti	cal				
	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFJ0870 - No Prep VO	C GC Air									
Duplicate (BFJ0870-DUP4)		So	urce: 22J	1089-01	Prep	pared & A	Analyzed	: 10/24/20)22	
Methane	276000	4500	ppmv		27500	00		0.425	25	
Carbon dioxide	492000	4500	ppmv		49100	00		0.156	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	С
Hydrogen (H2)	124000	1800	ppmv		12400	00		0.0336	25	
Nitrogen (N2)	69000	18000	ppmv		6890	0		0.0724	25	
Carbon Monoxide	647	90.0	ppmv		636			1.71	25	
Duplicate (BFJ0870-DUP5)		So	urce: 22J	1089-02	Prep	pared & A	Analyzed	: 10/24/20)22	
Methane	312000	4500	ppmv		30900	00		0.742	25	
Carbon dioxide	494000	4500	ppmv		48900	00		0.982	25	
Oxygen (O2)	19800	4500	ppmv		1970	0		0.433	25	С
Hydrogen (H2)	46300	1800	ppmv		4600	0		0.745	25	
Nitrogen (N2)	72200	18000	ppmv		7200	0		0.355	25	
Carbon Monoxide	371	90.0	ppmv		367			1.05	25	
Duplicate (BFJ0870-DUP6)		So	urce: 22J	1089-03	Prep	bared & A	Analyzed	: 10/24/20)22	
Methane	64600	4500	ppmv		6480	0		0.259	25	
Carbon dioxide	631000	4500	ppmv		63100	00		0.0692	25	
Oxygen (O2)	13900	4500	ppmv		1410	0		1.73	25	С
Hydrogen (H2)	182000	1800	ppmv		18200	00		0.212	25	
Nitrogen (N2)	52400	18000	ppmv		5330	0		1.80	25	
Carbon Monoxide	1430	90.0	ppmv		1430)		0.196	25	
Duplicate (BFJ0870-DUP7)		So	urce: 22J	1307-01	Prep	pared: 10)/24/2022	2 Analyze	d: 10/27/202	2
Methane	265000	9000	ppmv		26500	00		0.114	25	
Carbon dioxide	463000	9000	ppmv		46100	00		0.335	25	
Oxygen (O2)	<	9000	ppmv		<900	0		NA	25	
Hydrogen (H2)	107000	3600	ppmv		10700	00		0.0419	25	
Nitrogen (N2)	49500	36000	ppmv		5000	0		1.06	25	
Carbon Monoxide	559	180	ppmv		565			0.992	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 21, 2022 10:25 October 28, 2022 15:13
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]

Client Site I.D.: Bristol Purchase Order:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Analyte Batch BFJ0870 - No Prep VO	Result	eporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Duplicate (BFJ0870-DUP8)		So	urce: 22J [,]	1307-02	Prep	pared: 10)/24/202	2 Analyze	d: 10/27/2022	2
Methane	207000	9000	ppmv		20400	00		1.66	25	
Carbon dioxide	549000	9000	ppmv		54200	00		1.27	25	
Oxygen (O2)	<	9000	ppmv		<900	0		NA	25	
Nitrogen (N2)	61200	36000	ppmv		6010	0		1.83	25	

5 ()						
Hydrogen (H2)	71400	3600	ppmv	70100	1.91	25
Carbon Monoxide	338	180	ppmv	<180	NA	25
Duplicate (BFJ0870-DUP9)		So	urce: 22J1307-03	Prepared: 10	/24/2022 Analyzed:	10/27/2022
Methane	179000	9000	ppmv	176000	1.42	25
Carbon dioxide	332000	9000	ppmv	331000	0.378	25
Oxygen (O2)	63600	9000	ppmv	63100	0.683	25
Nitrogen (N2)	231000	36000	ppmv	229000	0.869	25
Hydrogen (H2)	61200	3600	ppmv	60600	0.931	25
Carbon Monoxide	523	180	ppmv	514	1.77	25
uplicate (BFJ0870-DUPA)		So	urce: 22J1332-01	Prepared: 10	/24/2022 Analyzed:	10/28/2022
Methane	311000	4500	ppmv	309000	0.793	25
Carbon dioxide	308000	4500	ppmv	305000	0.760	25
Dxygen (O2)	58900	4500	ppmv	58900	0.000610	25
Hydrogen (H2)	23100	1800	ppmv	23300	1.16	25
Nitrogen (N2)	216000	18000	ppmv	216000	0.132	25
Carbon Monoxide	129	90.0	ppmv	120	6.80	25

Certified Analytes included in this Report

Analyte Certifications Analyte Certifications	fications
---	-----------

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name:	SCS Field Services - Harrisbur 4330 Lewis Road, Suite 1	g, PA Date Received: Date Issued:	October 21, 2022 10:25 October 28, 2022 15:13
Submitted To:	Harrisburg, PA 17111 Tom Lock	Project Number:	[none]
			[]
Client Site I.D.:	Bristol	Purchase Order:	
Code	Description	Laboratory ID	Expires
Code MdDOE	Description Maryland DE Dri		Expires 12/31/2022
		nking Water 341	
MdDOE	Maryland DE Dri	nking Water 341 EQ 495	12/31/2022
MdDOE NCDEQ	Maryland DE Dri North Carolina D New York DOH I	nking Water 341 EQ 495	12/31/2022 12/31/2022
MdDOE NCDEQ NYDOH	Maryland DE Dri North Carolina D New York DOH I NELAP-Pennsylv	rinking Water 341 EQ 495 rinking Water 12096	12/31/2022 12/31/2022 04/01/2023

Qualifiers and Definitions

С	Continuing calibration verification response for this analyte is outside specifications.
RPD	Relative Percent Difference
Qual	Qualifers
-RE	Denotes sample was re-analyzed
PF	Preparation Factor
MDL	Method Detection Limit
LOQ	Limit of Quantitation
ppbv	parts per billion by volume
TIC	Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

12

formerly Air, M			i I C A aborator					ANALY		Ed	quipm	ent due	10/30 9/86/22	/22				
COMPANY NAME:	SCS Fi	eld Ser	/ices - Harri	sbu	rg INV	VOICE TO	: Same							E Bris	1 9/			
CONTACT: Mike	Byk				IN	VOICE CO	NTACT:							•				
ADDRESS:					IN	VOICE AD	DRESS:			<u></u>		ECT NUM	BER:		1 1000			
PHONE #:					IN	VOICE PH	ONE #:				P.O. #		<u></u>			•		
FAX #:			EN	1AIL								atment Pr		···				
Is sample for comp	liance re	porting	YES NO		Regulat	ory State:		sample from	m a chlorii	nated sup	oly?	YES (VS I.D. #:				
SAMPLER NAME	(PRINT)	Rya	1 Sevmo	NC.	SA	MPLER S	IGNATUR	E: Kyan	1 Duy	mon	Turn /	round Ti			5 Days		or _	_ Day
Matrix Codes: AA≃indoo	r/Ambient /	Nir SG=S	il Gas LV=Lan	dfill/V	/ent Gas OT	=Other_LY		<u> </u>	V			06:	3-221-0009	9				
	Regulate	or Info	Canister Ir	nforn	nation		r ·	Sampling S	Start Inform	ation	-		Stop Inforn			(ja		
CLIENT						LAB	LAB	Barometric	Pres. (in Ho	r -	1	Barometric	: Pres. (in H	1		Ŭ 8	8	
SAMPLE I.D.	Flow Controlle			Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (ir ^{Hg)}	Starting Sample Temp *F	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in Hg)	Ending Sample Temp "F	Matrix (See Codes)	Ait 145 CO	
1) 57	NE	30X	13954	1.4	220902-01	30	29	10/19/22	11:14=== Am	29	152°	10/19/22	11:15 AM	-2	15 <u>7</u> °	LG	x	
2) 37	N	BOX	13957	1.4	220902-01	30	295	10/19/22	10:59 AM	-29	149 °	10/19/22	11:00 Am	-2	149.	LG	x	
3)			13964	1.4	220902-01	30										LG	x	
4)			13967	1.4	220902-01	30										LG	x	
LL	ł			I		<u> </u>	L	1		^S	- ن ر	5 50	ه ، دو	nes	0.1	i		
RELINQUISHED:				REC	CEIVED:	d af a	DA	TE / TIME	QC Data F	ackage L	AB USE	ONLY					_	
	0.0	C	ATE / TIME	REC	CEIVED:	Jekar Lala	DA'	TE / TIME	Level I Level II			SCS F	ield Sei	rvices	22J1	08	0	
Page (INQUISHED:	er,		نو ہر/ ATE / TIME	DE/		10/2		0:25	Level III		22J	1			10/79	12.02	22	
	•	· L							Level IV		22.J1080	Recd:	10/21/20	22 Due:	10/20 v1	30325	002	

Red.

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 21, 2022 10:25 October 28, 2022 15:13
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	[none]
Client Site I.D.:	Bristol	Purchase Order:	

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 22J1332

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	October 27, 2022 10:12
	4330 Lewis Road, Suite 1	Date Issued:	November 3, 2022 16:29
	Harrisburg, PA 17111	Project Number:	Bristol
Submitted To:	Tom Lock	Purchase Order:	

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 10/27/2022 10:12. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

TEOPOTAS

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 22J1332

Client Name:	SCS Field Services - Harrisburg, PA	Date Received:	October 27, 2022 10:12
	4330 Lewis Road, Suite 1	Date Issued:	November 3, 2022 16:29
	Harrisburg, PA 17111	Project Number:	Bristol
Submitted To:	Tom Lock	Purchase Order:	
Client Site I.D.:	Bristol		

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
57	22J1332-01	Air	10/26/2022 09:17	10/27/2022 10:12

Certificate of Analysis

Final Report

Laboratory Order ID 22J1332

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 27, 2022 10:12 November 3, 2022 16:29
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	Bristol
Client Site I.D.:	Bristol	Purchase Order:	
	ANALYTI	CAL RESULTS	
Project Location:	Sample Description/Location:		Initial Vacuum(in Hg): 30
Field Sample #: 57	Sub Description/Location:		Final Vacuum(in Hg): 16
Sample ID: 22J1332-01	Canister ID: 063-00208::00286		Receipt Vacuum(in Hg): 16
Sample Matrix: Air	Canister Size: 1.4		Flow Controller Type: Passive
Sampled: 10/26/2022 09:17			Flow Controller ID:
Sample Type: LG			
		C/TCD - Unadjusted, as received basis	
	ppmv A	LT-145	Date/Time

		ppinv					Date/Time
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed Analyst
Carbon Monoxide, as received	133	90.0	90.0		9	1	10/28/22 10:01 MER

Certificate of Analysis

Final Report

Laboratory Order ID 22J1332

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 27, 2022 10:12 November 3, 2022 16:29
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	Bristol
Client Site I.D.:	Bristol	Purchase Order:	
——— Ai	nalytical Summary —————		

Sample ID Preparation Factors Initial / Final Volatile Organic Compounds by GC/TCD - Unadjusted, as r		Method	Method Batch ID		Calibration ID
Volatile Organic Compo	ounds by GC/TCD - Unadjusted,	as received basis	Preparation Method:	No Prep VOC GC Air	
22J1332-01	1.00 mL / 1.00 mL	ALT-145	BFJ0870	SFJ1078	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 22J1332

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 27, 2022 10:12 November 3, 2022 16:29
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	Bristol
Client Site I.D.:	Bristol	Purchase Order:	

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

				maipy	Analyti	Cal					
	R	Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BFJ0870 - No Prep VO	C GC Air										
Blank (BFJ0870-BLK1)					Prep	ared &	Analyzed	: 10/24/20)22		
Carbon Monoxide	<	10.0	ppmv								
_CS (BFJ0870-BS1)					Prep	ared &	Analyzed	: 10/24/20)22		
Methane	4490	500	ppmv	5000		89.8	0-200				
Carbon dioxide	4110	500	ppmv	5000		82.3	0-200				
Dxygen (O2)	5520	500	ppmv	5000		110	0-200				
Nitrogen (N2)	6690	2000	ppmv	5000		134	0-200				
Hydrogen (H2)	5790	200	ppmv	5100		113	0-200				
Carbon Monoxide	4820	10	ppmv	5000		96.3	0-200				
Duplicate (BFJ0870-DUP1)		So	urce: 22J	1080-01	Prep	ared &	Analyzed	: 10/24/20)22		
<i>l</i> lethane	412000	4500	ppmv		41200	00		0.0289	25		
Carbon dioxide	408000	4500	ppmv		40700	00		0.277	25		
Dxygen (O2)	20700	4500	ppmv		2070	0		0.0361	25	С	
litrogen (N2)	81500	18000	ppmv		8110	0		0.426	25		
Hydrogen (H2)	22200	1800	ppmv		2230	0		0.0724	25		
Carbon Monoxide	105	90.0	ppmv		102			3.05	25		
Duplicate (BFJ0870-DUP2)		So	urce: 22J	1080-02	Prep	ared &	Analyzed	: 10/24/20)22		
Methane	149000	4500	ppmv		14900	00		0.0974	25		
Carbon dioxide	229000	4500	ppmv		22900	00		0.293	25		
Oxygen (O2)	73200	4500	ppmv		7310	0		0.120	25	С	
Hydrogen (H2)	10200	1800	ppmv		1010	0		0.769	25		
Nitrogen (N2)	431000	18000	ppmv		43000	00		0.125	25		
Carbon Monoxide	97.0	90.0	ppmv		94.9)		2.25	25		
Duplicate (BFJ0870-DUP3)		So	urce: 22J	1078-01	Prep	ared &	Analyzed	: 10/24/20)22		
Methane	324000	4500	ppmv		32500	00		0.413	25		
Carbon dioxide	268000	4500	ppmv		26900	00		0.419	25		
Oxygen (O2)	10900	4500	ppmv		1110	0		1.79	25	С	
Nitrogen (N2)	322000	18000	ppmv		32300	00		0.549	25		
Hydrogen (H2)	<	1800	ppmv		<180	0		NA	25		
Carbon Monoxide	<	90.0	ppmv		<90.0	D		NA	25		

Certificate of Analysis

Final Report

Laboratory Order ID 22J1332

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 27, 2022 10:12 November 3, 2022 16:29
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	Bristol

Client Site I.D.: Bristol

Purchase Order:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

			En	thalpy	Analyti	ical				
	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFJ0870 - No Prep VO	C GC Air									
Duplicate (BFJ0870-DUP4)		So	urce: 22J	1089-01	Prep	bared & A	Analyzed	: 10/24/20)22	
Methane	276000	4500	ppmv		27500	00		0.425	25	
Carbon dioxide	492000	4500	ppmv		49100	00		0.156	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	С
Hydrogen (H2)	124000	1800	ppmv		12400	00		0.0336	25	
Nitrogen (N2)	69000	18000	ppmv		6890	0		0.0724	25	
Carbon Monoxide	647	90.0	ppmv		636			1.71	25	
Duplicate (BFJ0870-DUP5)		So	urce: 22J	1089-02	Prep	bared & /	Analyzed	: 10/24/20)22	
Methane	312000	4500	ppmv		30900	00		0.742	25	
Carbon dioxide	494000	4500	ppmv		48900	00		0.982	25	
Oxygen (O2)	19800	4500	ppmv		1970	0		0.433	25	С
Hydrogen (H2)	46300	1800	ppmv		4600	0		0.745	25	
Nitrogen (N2)	72200	18000	ppmv		7200	0		0.355	25	
Carbon Monoxide	371	90.0	ppmv		367			1.05	25	
Duplicate (BFJ0870-DUP6)		So	urce: 22J	1089-03	Prep	bared & A	Analyzed	: 10/24/20)22	
Methane	64600	4500	ppmv		6480	0		0.259	25	
Carbon dioxide	631000	4500	ppmv		63100	00		0.0692	25	
Oxygen (O2)	13900	4500	ppmv		1410	0		1.73	25	С
Hydrogen (H2)	182000	1800	ppmv		18200	00		0.212	25	
Nitrogen (N2)	52400	18000	ppmv		5330	0		1.80	25	
Carbon Monoxide	1430	90.0	ppmv		1430)		0.196	25	
Duplicate (BFJ0870-DUP7)		So	urce: 22J	1307-01	Prep	pared: 10)/24/2022	2 Analyze	d: 10/27/202	2
Methane	265000	9000	ppmv		26500	00		0.114	25	
Carbon dioxide	463000	9000	ppmv		46100	00		0.335	25	
Oxygen (O2)	<	9000	ppmv		<900	0		NA	25	
Hydrogen (H2)	107000	3600	ppmv		10700	00		0.0419	25	
Nitrogen (N2)	49500	36000	ppmv		5000	0		1.06	25	
Carbon Monoxide	546	180	ppmv		567			3.72	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22J1332

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 27, 2022 10:12 November 3, 2022 16:29
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	Bristol

Client Site I.D.: Bristol

Purchase Order:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	Reporting	S	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units L	evel	Result	%REC	Limits	RPD	Limit	Qual
Batch BFJ0870 - No Prep VO	C GC Air									
Duplicate (BFJ0870-DUP8)		So	urce: 22J130	7-02	Prep	ared: 10	/24/2022	2 Analyze	d: 10/27/2022	
Methane	207000	9000	ppmv		20400	00		1.66	25	
Carbon dioxide	549000	9000	ppmv		54200	00		1.27	25	
Oxygen (O2)	<	9000	ppmv		<900	0		NA	25	
Nitrogen (N2)	61200	36000	ppmv		6010	0		1.83	25	
Hydrogen (H2)	71400	3600	ppmv		7010	0		1.91	25	
Carbon Monoxide	354	180	ppmv		350			1.14	25	
Duplicate (BFJ0870-DUP9)		So	urce: 22J130	7-03	Prep	oared: 10	/24/2022	2 Analyze	d: 10/27/2022	

Duplicate (BFJ0870-DUP9)		So	urce: 22J1307-03	Prepared: 10/2	24/2022 Analyzed:	10/27/2022	
Methane	179000	9000	ppmv	176000	1.42	25	
Carbon dioxide	332000	9000	ppmv	331000	0.378	25	
Oxygen (O2)	63600	9000	ppmv	63100	0.683	25	С
Nitrogen (N2)	231000	36000	ppmv	229000	0.869	25	
Hydrogen (H2)	61200	3600	ppmv	60600	0.931	25	
Carbon Monoxide	530	180	ppmv	507	4.45	25	
Duplicate (BFJ0870-DUPA)		So	urce: 22J1332-01	Prepared: 10/2	24/2022 Analyzed:	10/28/2022	
	311000	So 4500	urce: 22J1332-01 ppmv	Prepared: 10/2 309000	24/2022 Analyzed: 0.793	10/28/2022 25	
	311000 308000			•	,		
Methane Carbon dioxide		4500	ppmv	309000	0.793	25	С
Carbon dioxide	308000	4500 4500	ppmv ppmv	309000 305000	0.793 0.760	25 25	C
Methane Carbon dioxide Oxygen (O2)	308000 58900	4500 4500 4500	ppmv ppmv ppmv	309000 305000 58900	0.793 0.760 0.000610	25 25 25	С

Certified Analytes included in this Report

Analyte Certifications	Analyte	Certifications
------------------------	---------	----------------

Certificate of Analysis

Final Report

Laboratory Order ID 22J1332

Client Name:	SCS Field Service 4330 Lewis Road	es - Harrisburg, PA , Suite 1	Date Received: Date Issued:	October 27, 2022 10:12 November 3, 2022 16:29
	Harrisburg, PA 17	'111		
Submitted To:	Tom Lock		Project Number:	Bristol
Client Site I.D.:	Bristol		Purchase Order:	
Code		Description	Laboratory ID	Expires
MdDOE		Maryland DE Drinking Water	341	12/31/2022
NC		North Carolina DENR	495	07/31/2023
NCDEQ		North Carolina DEQ	495	07/31/2023
NCDOH		North Carolina Department of Health	51714	07/31/2023
NYDOH		New York DOH Drinking Water	12096	04/01/2023
PADEP		NELAP-Pennsylvania Certificate #007	68-03503	10/31/2023
VELAP		NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP		West Virginia DEP	350	11/30/2022

Qualifiers and Definitions

- C
 Continuing calibration verification response for this analyte is outside specifications.

 RPD
 Relative Percent Difference

 Qual
 Qualifers

 -RE
 Denotes sample was re-analyzed

 PF
 Preparation Factor
- MDL Method Detection Limit
- LOQ Limit of Quantitation

- ppbv parts per billion by volume
- TIC Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern. Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

AIR ANALYSIS

ιç	ameny An, g	inter & s	ion Lu	0010101	103			CHAIN	OF CUS	TODY	Ed	quipm	ent due	e 10/31/2	022				
CC	MPANY NAME	: SCS Fiel	d Servi	ces - Harri	sbu	rg IN\	OICE TO	Same				PROJ	ECT NAM	/IE/Quote #	ŧ:				
cc	NTACT: Mike	Byk				INV	OICE CO	NTACT:				SITE I	NAME:	Bristo	1				
AD	DRESS:					INV	OICE AD	DRESS:				PROJ	ECT NUN	ABER:	risto/				
PH	ONE #:					INV	OICE PH	ONE #:				P.O. #	:			1971 - A			
FA	X #:			EN	1AIL	:						Pretre	atment P	rogram:		1			
ls s	sample for comp	liance rep	orting?	(YE) NO)	Regulate	ory State:	VA Is	sample fro	m a chlorir	nated sup	oly?	YES TI	NO PV	VS I.D. #:	17. 17.4			
SA	MPLER NAME	(PRINT):	Ry	an Se	ym	or sa	MPLER S	IGNATUR	E: Rya	n Suga	nar	Turn	Around T			5 Days)	or _	Day
Mat	rix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Lan	dfill/V	ent Gas OT	=Other		/	r			06	3-22J-0014	4			an anarah	ALC: 12 12 12 12
		Regulator	Info	Canister Ir	forn	nation		1	Sampling S	Start Inform	ation			Stop Inform			Codes)	ANA	LYSI
	CLIENT						LAB	LAB	Barometric	Pres. (in Hg	1	1	Barometri	c Pres. (in H I			See Co	8	
	SAMPLE I.D.	Flow Controller	Cal Flow	Conjeter ID	Size (L)	Cleaning		Receiving Canister Vacuum (in	Start Date	Start Time	Initial Canister Vacuum (in	Starting Sample	Stop Date	Stop Time (24hr clock)	Final Canister Vacuum (in _{Hg)}	Ending Sample Temp °F	Matrix _{(See}	Alt 145 CO	
1)	51	KF2	(mL/min)	Canister ID 286	1.4	Batch ID 220921-02	_{Нg)} 30	Hg)	10/11/22		н _{э)} 35hg		9:17pm	9:17 13m	164	149"			
2)				11078	1.4	220921-02	30										LG	x	
3)				11307	1.4	220921-03	30				14.						LG	x	
4)			£	12464	1.4	220921-02	30			1	f						LG	x	
_	and the	and .	5.	1	1	•0			*	1	2013	50	30	noice	Nosec	1			
h	NQUISHED:	hr	DAT	2:45	r.		DEX(1		re / Time re / Time	QC Data P Level I Level II	ackage L/	AB USE					17-22-04		22
Page 9 of	NQUISHED:	xG		/16/22-	REC		6 //14)	DAT	- 10/ C	Level II Level III			5	SCS Fiel Bristol	ld Servi	ces		2J13	
L9 12					1				1	Leveriv	<u> </u>			Bristol Recd: 10					
	1																istol C	:0 -00	С

Certificate of Analysis

Final Report

Laboratory Order ID 22J1332

Client Name:	SCS Field Services - Harrisburg, PA 4330 Lewis Road, Suite 1	Date Received: Date Issued:	October 27, 2022 10:12 November 3, 2022 16:29
	Harrisburg, PA 17111		
Submitted To:	Tom Lock	Project Number:	Bristol
Client Site I.D.:	Bristol	Purchase Order:	

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Attachment 4

Daily Logs

DAILY LOG

JOB NO.	9000	0017.07	TA	TASK NO. 00001 DATE 10.12.22 NAI			TOL						
TEMP	45		WE	ATHER	Partly cl	loudy	B.P.	28.1	5	WIN 12N			
SCS	S-FS LAI	BOR	HOUR	;	OT						HOURS	OT	
Ryan Seymour		8											
									DAILY TOT	AL	8		
EQUI	P, SVCS,	, MLG	QTY		UNITS						QTY	UNITS	
G	GEM 500	0	1		Day			MX4				Day	
	Truck 1				Day		Generato		erator			Day	
INSTE	RUMENT MODE		ATION (CAI	. GAS) /N	- CF (%-\		CH (%-LI		02 LOW CAL %-VOL		CO2 (%-VOL)	H2S (PPM)	
	5000		50	399	50				20.9		35.1		
_							-						
SUMM	SUMMARY Scs was on site for monthly well monitoring and some fixes of the quarry and probe 9. I calibrated my gem and mx4. Got fitted with 2 badges my project manager gave me. Blower reading: CH4- 26.7% C02-25.5% 02-8.3% BAL-39.6% While in the quarry I get a strong odor of sulfur walking down the road.												
I had to	replace	flex hose	at 68 it was	too short.									
EW57 w	as at 18	3 degrees	s it's going t	need do	wn hole ter	np probe	and dug u	ιp. I coι	uldn't get a sa	mple	off it because it	s steaming.	
Will had	d 2 exee	dances. 3	7 and 67 th	y were b	oth over 14	5 degree	S.						

PREPARED BY: RYAN SEYMOUR

ACCEPTED BY:

DAILY LOG

JOB NO.	02218208.04	TASK NO	4		DATE	10/12	2/2022	PRC NAI	DJECT Me	City of E	Bristol
TEMP	72deg	WEATHEI	R Mostly (Cloudy	B.P.	28.18	3	WIN	ID	S 9MPF	1
SCS	-FS LABOR	HOURS	OT						HOU	RS	OT
Mike Gib	bons	8									
Ryan Se	ymour	6									
							DAILY TOT	AL			
EQUIP, SVCS, , MLG QTY		UNITS						QT	Y	UNITS	
Tool True		1	DAY								
	or 3500watt	1	DAY								
C-4 Fusi	on Equipment	1	DAY								
INSTR	UMENT CALIBRA	TION (CAL. GAS)	CF	14	CH4		02 LOW SCA	LE	CO	2	
	MODEL	S/N	(%-\	/OL)	(%-LE	L)	%-VOL	.)	(%-V	OL)	H2S (PPM)
SUMMA	RV SCS-ES	arrived on site at 7:	30am								
		wearing the organi				se.					
		up equipment at the									
		making the repair to									
		operating the mini e									
		assisted Ryan with									
		uncovering the forc	e main near e	extraction	1 32 and ins	stalled a		e tor a	an air reie	ease vaive).
@7:30pr	n end of day and t	cook on badges									

PREPARED BY: <u>Mike Gibbons</u> ACCEPTED BY:

DAILY LOG

JOB NO.	02218208.04	TASK NO	D . <u>4</u>		DATE	10/13	3/2022	PRC NAM	DJECT ME City	v of Bristol
TEMP	69deg	WEATHE	R Mostly	Cloudy	B.P.	29.77	7	WIN	D W 1	I3MPH
SCS-	FS LABOR	HOURS	OT						HOURS	ОТ
Mike Gibl	bons	8								
Ryan Sey	/mour	10								
							DAILY TOT	AL		
	, SVCS, , MLG	QTY	UNITS						QTY	UNITS
Tool Truc		1	DAY	Hand T	ools				1	DAY
Generato	or 3500watt	1	DAY							
C-6 Fusio	on Equipment	1	DAY							
INSTRU	UMENT CALIBRA	TION (CAL. GAS) Сн	-14	CH4	L	02 LOW SCA	ALE	CO2	
	MODEL	S/N		VOL)	(%-LE		%-VOI		(%-VOL)	H2S (PPM)
		arrived on site at 7	(-20 a.m.							
SUMMA										
		wearing the orgar				se.				
		up equipment at th								
		checked inspected								
		operating the mini				alve fo	r permit are	a 498 a	and replaced it	
		ocating the 6" hea	ader for 498 or	n other si	de of road					
@6:00pm	n end of day and t	ook off badges								

PREPARED BY: <u>Mike Gibbons</u> ACCEPTED BY:

DAILY LOG

JOB NO.	02218208.04		O . <u>4</u>		DATE	10/14	4/2022	PRO	DJECT ME City	of Bristol
TEMP	68deg	WEATH	ER C	Clear	B.P.	28.34	1	WIN	D SW 9	9MPH
SCS	-FS LABOR	HOURS	0	т					HOURS	ОТ
Mike Gib	bons	8								
Ryan Se	ymour	8						A 1		
							DAILY TOT	AL		
	P, SVCS, , MLG	QTY	UNI						QTY	UNITS
Tool True		1	DA							
	or 3500watt	1	DA DA							
	on Equipment						02			
INSTR	UMENT CALIBRA		5)	CH4	CH4		LOW SCA		CO2	
	MODEL	S/N		(%-VOL)	(%-LE	:L)	%-VOL	.)	(%-VOL)	H2S (PPM)
SUMMA	NRY SCS-FS a	arrived on site at	7:30am							
At 8:00ar	m SCS-FS began	wearing the orga	nic vapo	ors badges a	at the scale hou	se.				
@8:30am SCS-FS fueled up equipment at the landfill office garage.										
@9:00am SCS-FS began uncovering the 6" header piping in permit area 498										
@12:00pm stopped for lunch and to delivery badges to FedEx for shipment in TN.										
@2:00pm continued uncovering header but still could find any issue to why there is no vacuum at EW19.										
@3:30pm began to recovering the header piping.										
@5:30pn	n completed recov	vering header pip	ing							

PREPARED BY: <u>Mike Gibbons</u> ACCEPTED BY:

DAILY LOG

JOB NO. 90000017.0	7 TASK N	IO . 00001	DATE	10.1		OJECT ME BRIS	TOL			
ТЕМР	WEATH	ER	B.P.		121					
SCS-FS LABOR	HOURS	OT				HOURS	ОТ			
Ryan Seymour	13									
					DAILY TOTAL	13				
EQUIP, SVCS, , MLG	QTY	UNITS				QTY	UNITS			
GEM 5000	1	Day		MX4			Day			
Truck	1	Day	<u> </u>	Generato	or		Day			
INSTRUMENT CALIE	RATION (CAL. GA	. <u>S)</u> CI	-14 C	H4	02 LOW CALE	CO2				
MODEL	S/N	-	-	LEL)	%-VOL)	(%-VOL)	H2S (PPM)			
5000	500399	5	0		20.9	35.1				
	SLIMMARY Scs was on site for exceedance rechecks and to grab samples from wells over 1/5 degrees									
SUMMARY Scs was on site for exceedance rechecks and to grab samples from wells over 145 degrees. Blower reading: CH4- 31.2% C02-31.0 % 02- 6.0 % BAL-31.8 %										
I drilled and tapped 33 to get a reading. It's by a bunch of excavation. Not reachable.										
Put new fittings on 37, 6						today.				
I also collected data fro I tried to work on tempe							Noxt wook Lwill wo	rk on		
installing a "saddle" to t					UIN UII WAS HUL UL	cialing correctly.				

PREPARED BY: RYAN SEYMOUR ACCEPTED BY:

DAILY LOG

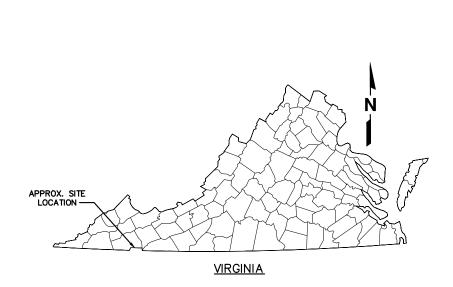
JOB NO.	07220	028.00	TASK N	0.	00001		DATE	10.2	6.22	NA		TOL			
TEMP	45		WEATH	ER	Partly cl	oudy	B.P.	28.1	5	WIN 12N					
SCS	S-FS LAB	OR	HOURS		ОТ						HOURS	OT			
Rya	an Seymo	our	13												
									DAILY TOTA	۹L	13				
EQUI	P, SVCS, ,	MLG	QTY	ι	JNITS						QTY	UNITS			
G	GEM 5000)	1		Day			MX4				Day			
	Truck		1		Day		G	enerato	or		Day				
INSTE	RUMENT MODEL		ATION (CAL. GA	S)	- CF (%-\		CH (%-LI		02 LOW CAL %-VOL		CO2 (%-VOL)	H2S (PPM)			
	5000		500399		50)			20.9		35.1				
SUMM	SUMMARY Scs was on site for exceedance rechecks and to grab samples from wells over 145 degrees. As well as I put a new saddle on ew 68 for the temperature probes. I took readings at the blower, and the cleanouts north and south sides. Got vacuum on 40. And sampled 57 Blower reading: CH4- 31.4% C02-29.5 % 02- 6.0 % BAL-33.1% While in the quarry I get a strong odor of sulfur walking down the road.														
T L															
The sad	dies will	work good	d for the tempera	ture	probes.										

PREPARED BY: RYAN SEYMOUR ACCEPTED BY:

Appendix C

Sidewall Odor Mitigation System Design Drawings

BRISTOL, VIRGINIA INTEGRATED SOLID WASTE MANAGEMENT FACILITY SOLID WASTE PERMIT #588


SIDEWALL ODOR MITIGATION SYSTEM

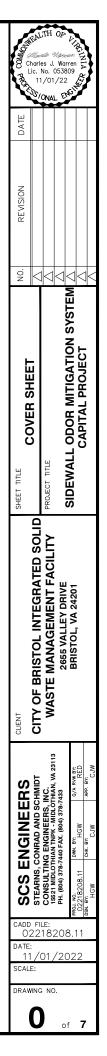
BRISTOL, VIRGINIA

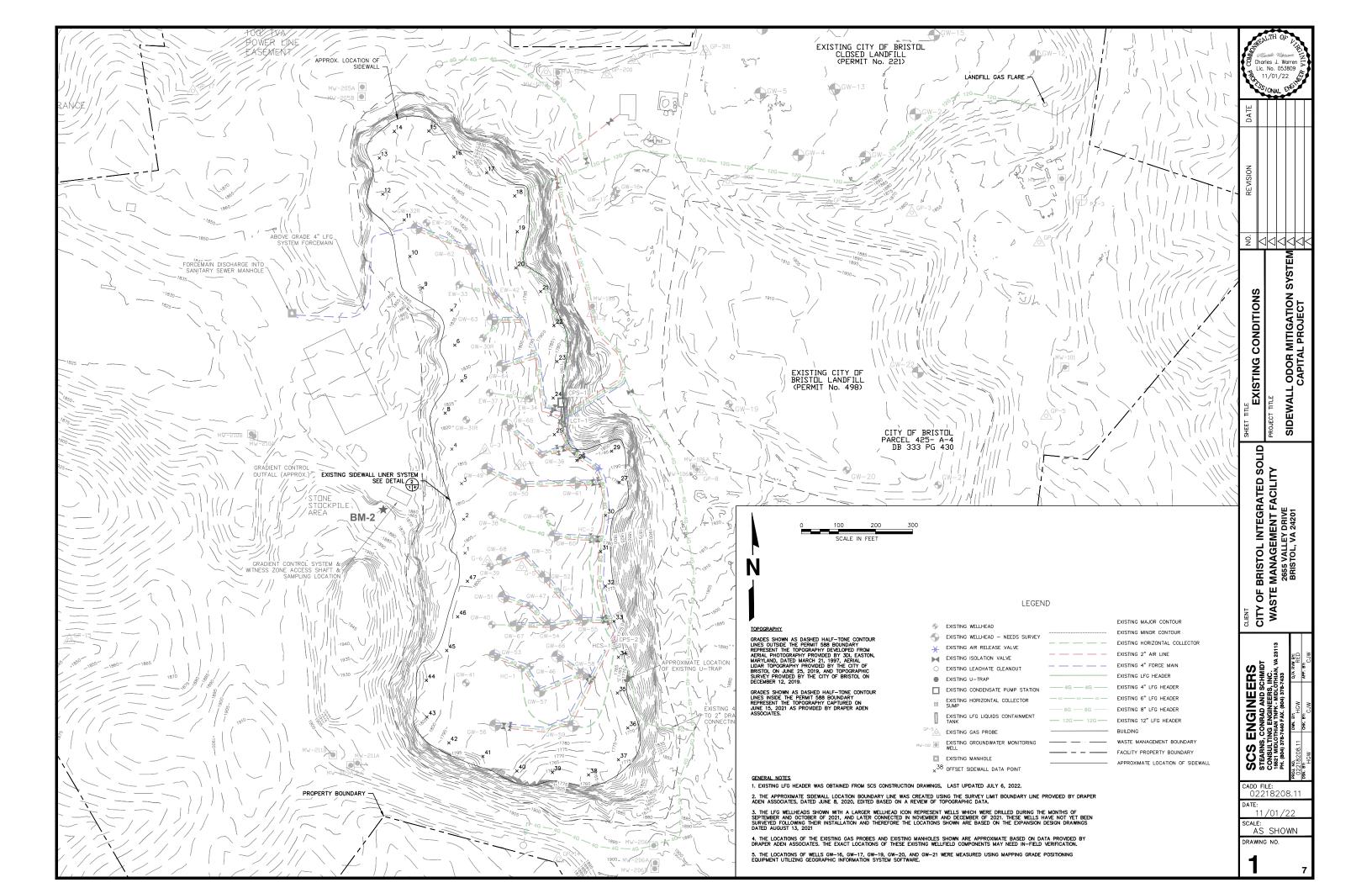
INDEX OF DRAWING

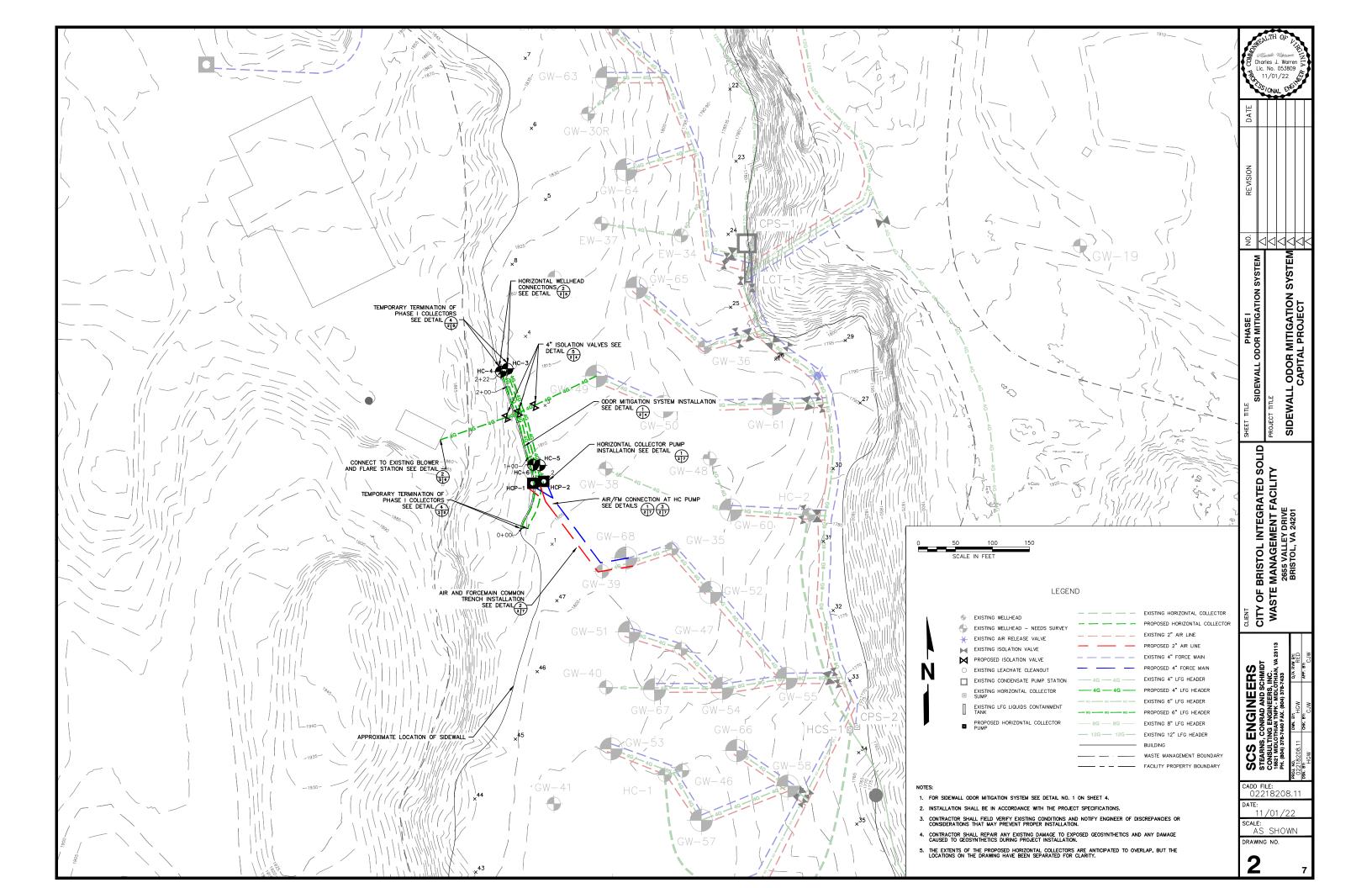
SHEET	DRAWING NO	D. SHEET TITLE
1	0	COVER SHEET
2	1	EXISTING CONDITIONS
3	2	PHASE I - SIDEWALL ODOR MITIGATION SYSTEM
4	2A	PHASE II - SIDEWALL ODOR MITIGATION SYSTEM
5	3	SYSTEM PROFILE VIEW
6	4	DETAIL SHEET 1
7	5	DETAIL SHEET 2
8	6	DETAIL SHEET 3
9	7	DETAIL SHEET 4

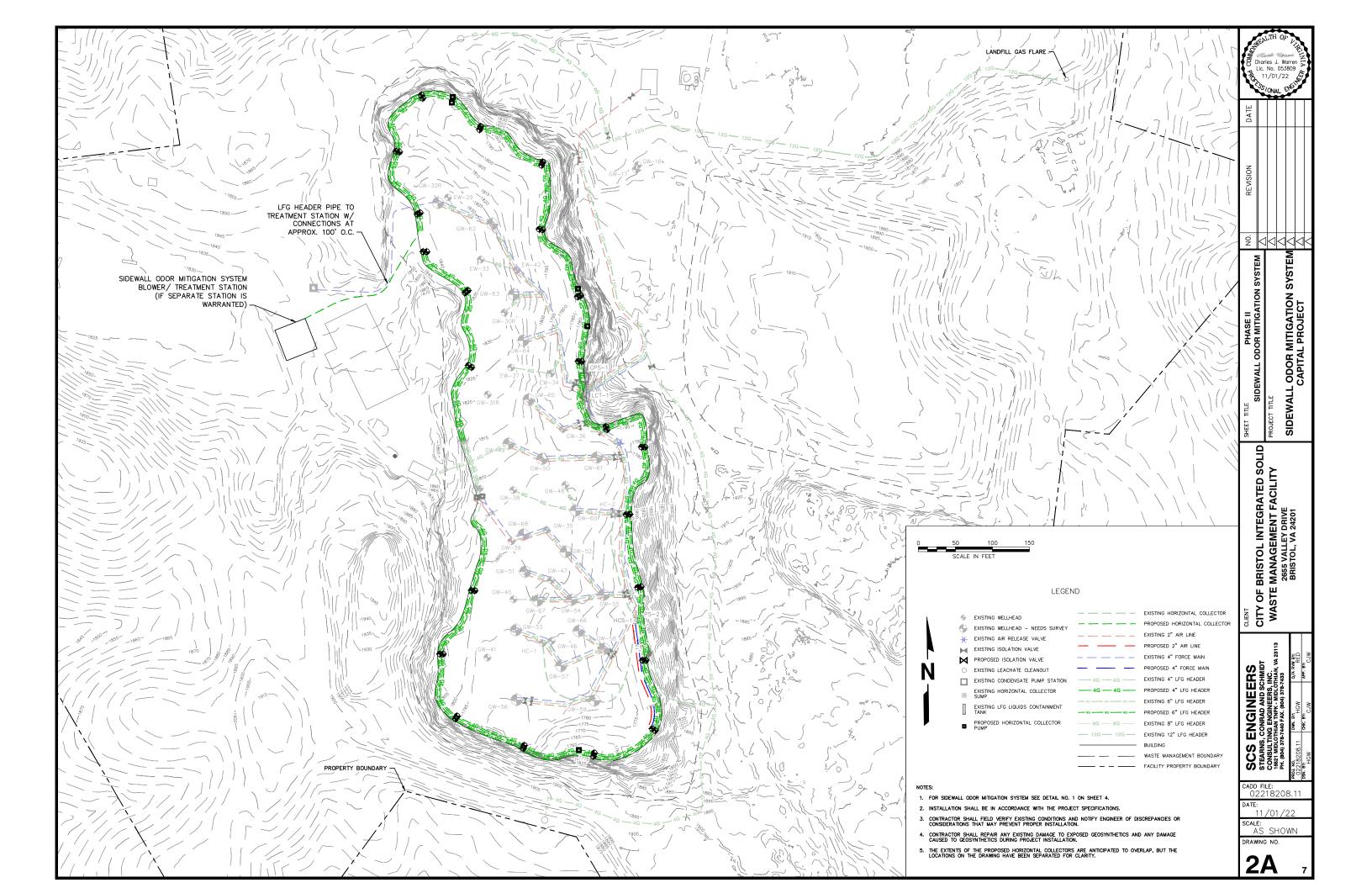
PREPARED FOR:

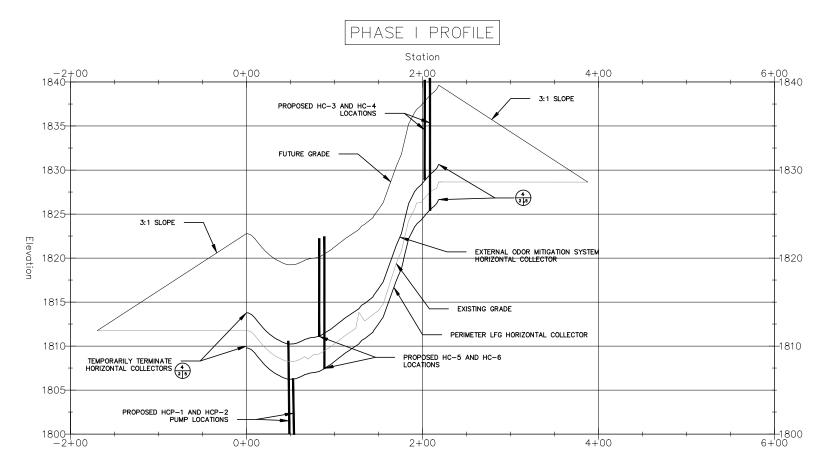
CITY OF BRISTOL, VIRGINIA 300 LEE STREET BRISTOL, VIRGINIA 24201

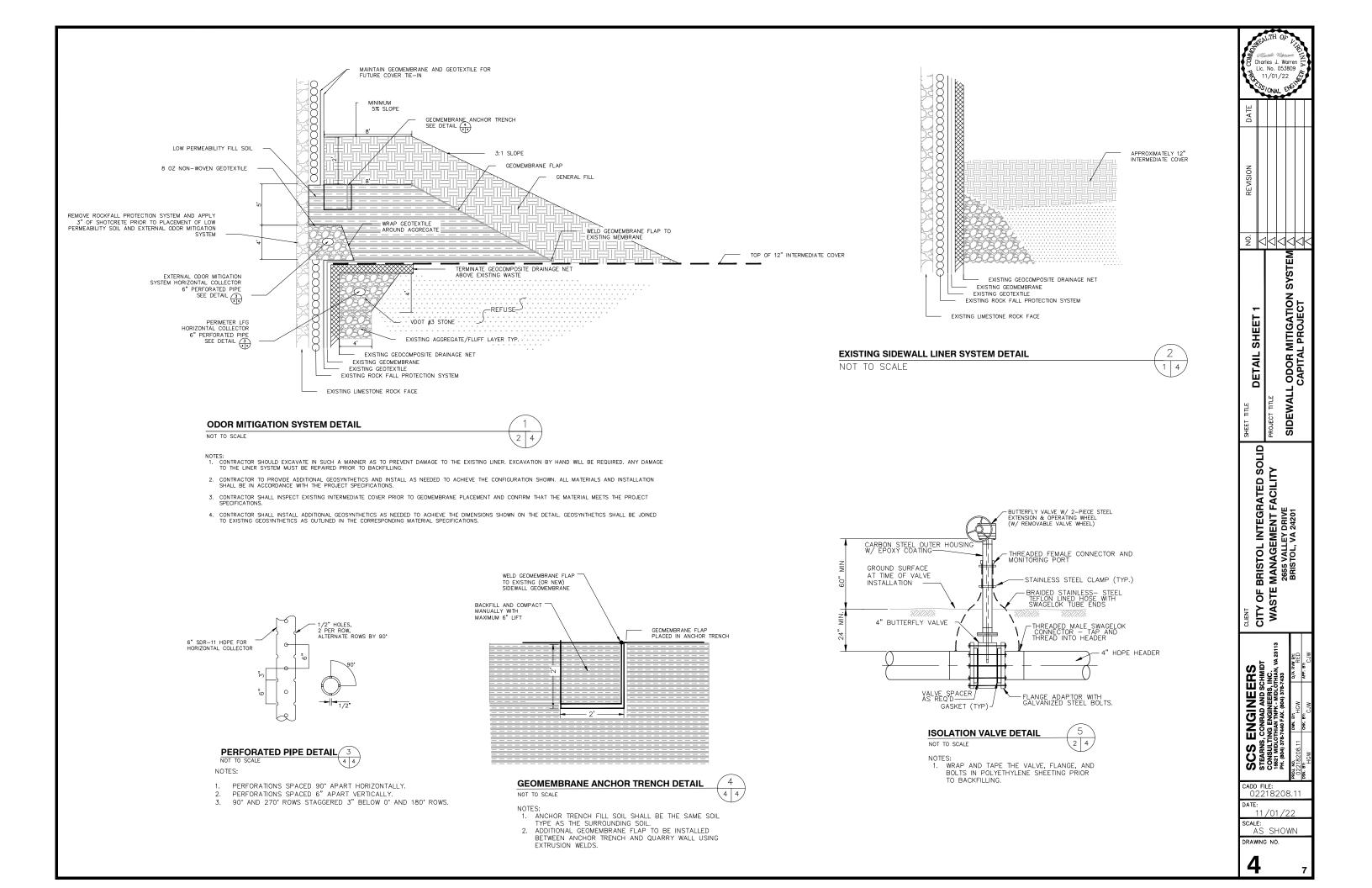

INTEGRATED SOLID WASTE MANAGEMENT FACILITY 2655 VALLEY DRIVE BRISTOL, VIRGINIA 24201

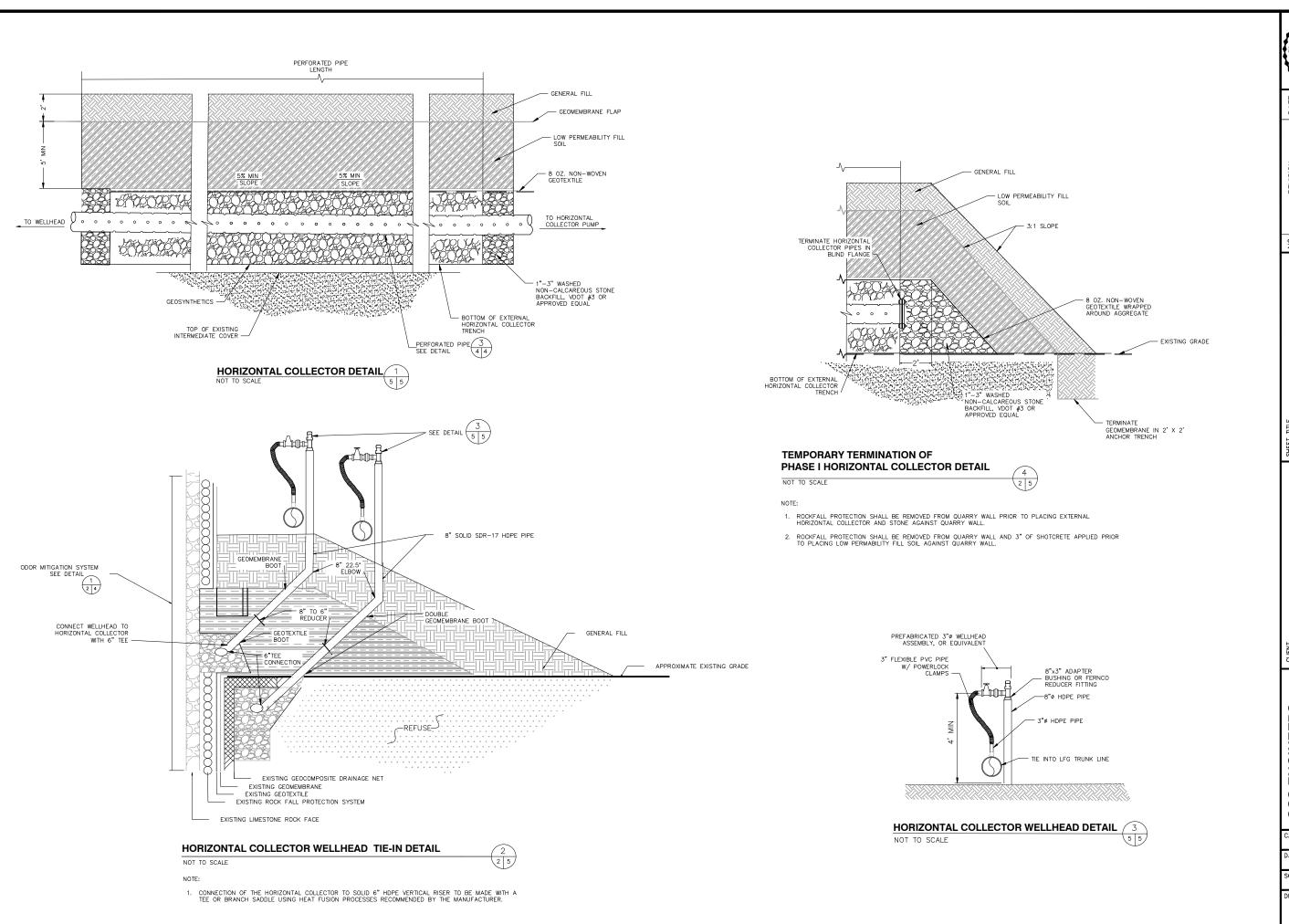

SCS ENGINEERS

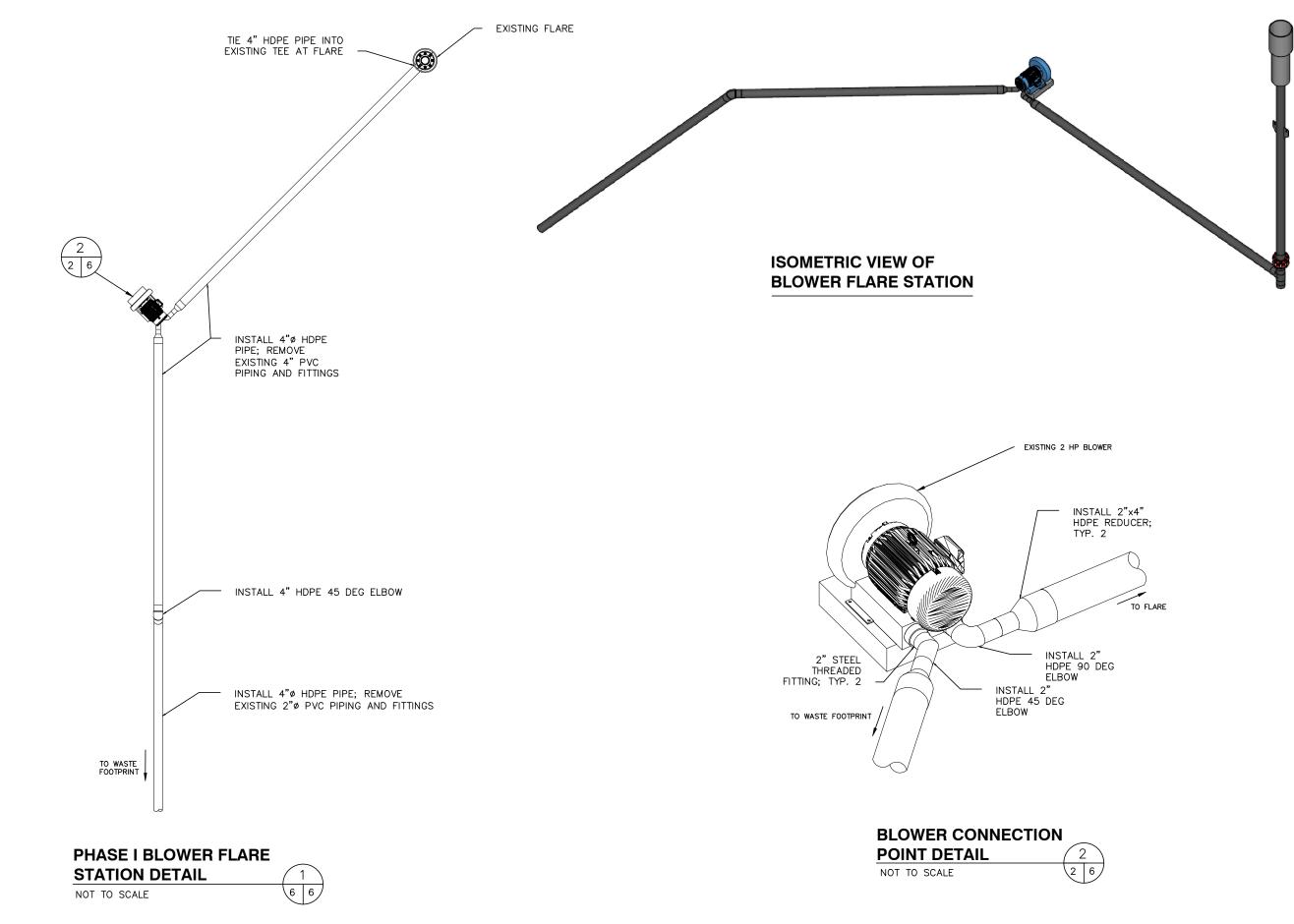

STEARNS, CONRAD AND SCHMIDT CONSULTING ENGINEERS, INC. 15521 MIDLOTHIAN TURNPIKE, SUITE 305 MIDLOTHIAN, VIRGINIA 23113-7313 PH. (804) 378-7440 FAX. (703) 471-6676 WWW.SCSENGINEERS.COM


SCS PROJECT NO. 02218208.11

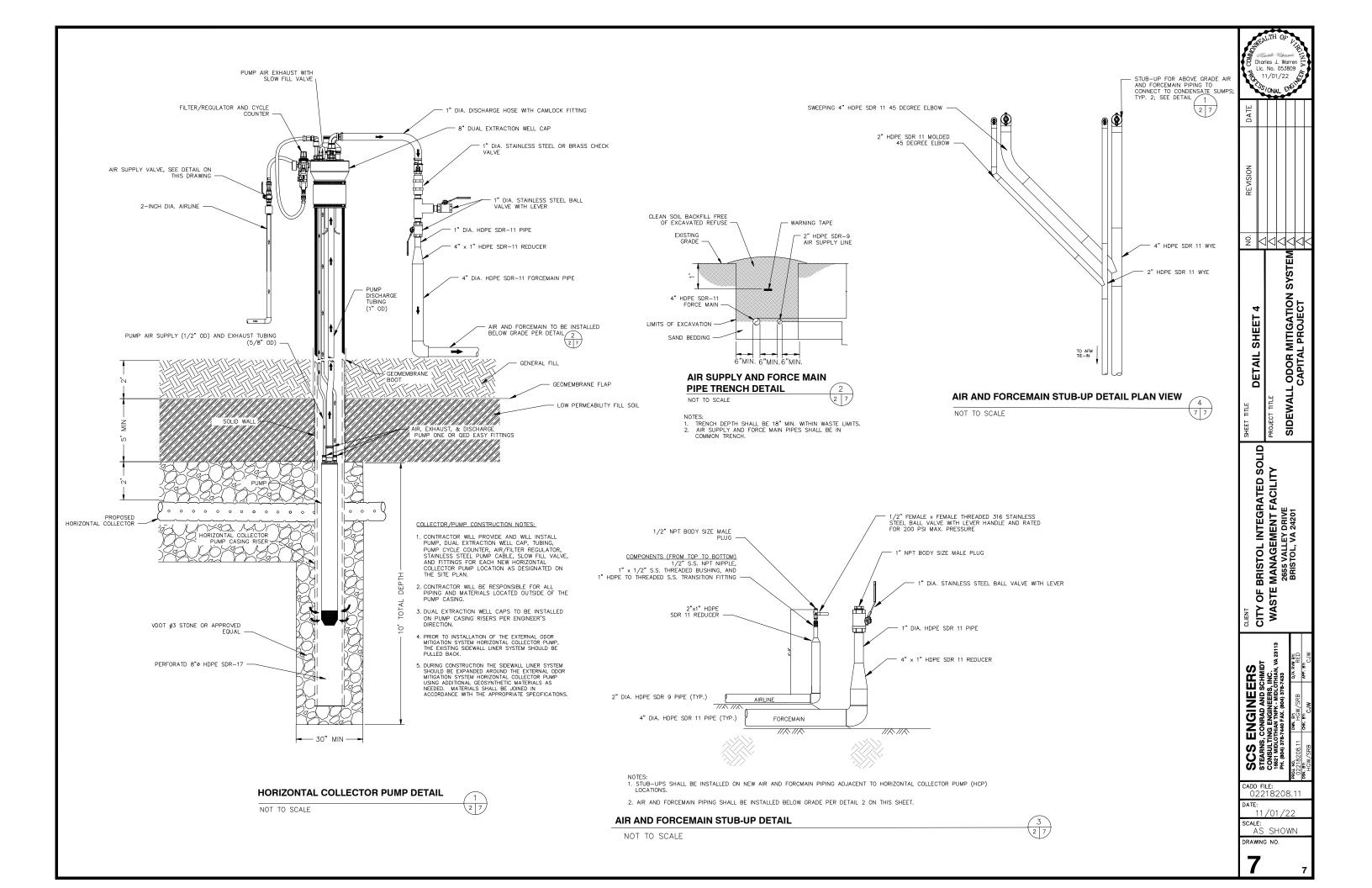

NOVEMBER 1, 2022






SCALE: H: 1"=50' V: 1"=5'

	SCS ENGINEERS	SCS ENGINEERS							No	REVISION	DATE	170,7	COMPO
	STEARNS, CONRAD AND SCHMIDT	STEARNS, CONRAD AND SCHMIDT				CITY OF BRIS	TOL INTEGRATED SOLID		k			1 20	Char Lic.
						WASTE MAN	AGEMENT FACILITY	PROJECT TITLE	\triangleleft			1/0'	les (No.
PH. (804) 378-7440 FAX. (804) 378-7433	PH. (804) 378-7440 FAX. (804) 378-7433	PH. (804) 378-7440 FAX. (804) 378-7433				JEEE V	DEEE VALLEV DRIVE	7	\triangleleft			1/2 1	ଏନ J. W 053
ROLINO. DWN. BY: 0./A RVW BY:	ROLINO. DWN. BY: 0./A RVW BY:	ROLINO. DWN. BY: 0./A RVW BY:	Q/A RVW BY:	Q/A RVW BY:	T	BRIST	BRISTOL. VA 24201	SIDEWALL ODOR MITIGATION SYSTEM				2 ENG	arre
02218208.11 HGW RED	02218208.11 HGW RED	02218208.11 HGW RED	8208.11 HGW RED	HGW RED					<				
BSN. BY: CHK. BY: APP. BY: HGW CJW APP. BY:	HGW CHK. BY: APP. BY	HGW CHK. BY: APP. BY	HGW CHK. BY: APP. BY	CUW APP. BY	APP. BY: CJW				K				



Add COMPON	Harl Lic. 11	,TH es J No. /01	02 262 053 /2	arre 8809 2	ACTINE OF	
DATE						
REVISION						
v	\triangleleft	\bigtriangledown	\triangleleft	\triangleleft	<	
SHEET TILE DETAIL SHEET 2		PROJECT TITLE		SIDEWALL ODOR MITIGATION SYSTEM	CAPITAL PROJECT	
CLIENT	CITY OF BRISTOL IN LEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOL. VA 24201		
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT	CONSULTING ENGINEERS, INC. 15531 MIDI OTHIAN TNPK - MIDI OTHIAN VA 23113	PH. (804) 378-7440 FAX. (804) 378-7433	BY: O/A RVW BY:	GW	CHK. BY: CJW APP. BY: CJW CJW
CADD O2 DATE: 1 SCALE A DRAW	STEARNS, CON			DWN. BY:	02218208.11	DSN. BY: HGW OHK.
DATE: 1	1,	/0′	1/	22		
SCALE A DRAW	S INC	SH	10).	W١	١	
5)					7

L _						
	EAI	TH	0	P V	R	
COM	//// harl ic	es . No	<i>ଏହ</i> J. W 053	arre	INIA	
	11	/0'	1/2	2	EE C	ł
	00				^	
DATE						
NOI						
REVISION						
NO.	\triangleleft	\triangleleft	\triangleleft	\triangleleft	\triangleleft	<
				ЫN		
				SYS.		
				Z	⊢	
	?			Ă	ЧЩС	
				E	PRO	
	2			∑ ⊮	P	
DETAIL SHEFT 3				ğ	CAPITAL PROJECT	
	ו	1.1		Ę	O	
TITLE				₹ A		
SHEET TITLE		PROJECT TITLE		SIDEWALL ODOR MITIGATION SYSTEM		
		<u>а</u>				
		>				
	Ē					
		FACILITY				
	EGRAIED S	NT FACILITY	. >			
	INIEGRAIED S	- L	. >			
	I UL INIEGRAIED S	- L	. >			
	HISTOL IN EGRATED S	- L	. >			
	JF BRISTOL IN LEGRATED S	- L	. >			
	IY OF BRISTOL IN LEGRATED S	VASTE MANAGEMENT FACILITY	. >			
CLENT	CITY OF BRISTOL IN LEGRATED SOLIL	- L	. >			
CLIENT		WASTE MANAGEMENT	2655 VALLEY DRIV	BRISTOL. VA 2420		~
		W 3111 WASTE MANAGEMENT		BRISTOL. VA 2420		CJW
		W 3111 WASTE MANAGEMENT				COW
		W 3111 WASTE MANAGEMENT		BRISTOL. VA 2420	SRB RED	MC MC
		W 3111 WASTE MANAGEMENT		1 O/A RVW BY: BRISTOL. VA 2420	SRB RED	MC MC
		W 3111 WASTE MANAGEMENT		TOWN BY: 19/A RWW BY: BRISTOL. VA 2420	1 SRB RED	MC MC
		W 3111 WASTE MANAGEMENT			3208.11 SRB RED	RB CJW
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT		PH. (804) 378-7440 FAX. (804) 378-7433 2610 278-7433	ROL NO. DWW.BY: 10/A RVW BY: BRISTOL. VA 2420	SRB RED	RB CJW
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT		PH. (804) 378-7440 FAX. (804) 378-7433 2610 278-7433	ROL NO. DWW.BY: 10/A RVW BY: BRISTOL. VA 2420	3208.11 SRB RED	RB CJW
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT		PH. (804) 378-7440 FAX. (804) 378-7433 2610 278-7433	ROL NO. DWW.BY: 10/A RVW BY: BRISTOL. VA 2420	3208.11 SRB RED	RB CJW
SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT		PH. (804) 378-7440 FAX. (804) 378-7433 2610 278-7433	ROL NO. DWW.BY: 10/A RVW BY: BRISTOL. VA 2420	3208.11 SRB RED	RB CJW
	STEARNS, CONRAD AND SCHMIDT		PH. (804) 378-7440 FAX. (804) 378-7433 2610 278-7433	ROL NO. DWW.BY: 10/A RVW BY: BRISTOL. VA 2420	3208.11 SRB RED	RB CJW

Appendix D

Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan

Dual Phase Landfill Gas Extraction Well Leachate Monitoring Plan Bristol Integrated Solid Waste Management Facility Solid Waste Permit #588

2125 Shakesville Road Bristol, VA 24201

SCS ENGINEERS

02218208.15 | November 1, 2022

296 Victory Road Winchester, VA 22602 540-662-7097

Signature/Certification Sheet

We certify that we have prepared this Plan, that it has been prepared in accordance with industry standards and practices, and that the information contained herein is truthful and accurate to the best of our knowledge.

Name:

Jennifer S. Robb, Vice President/Project Director

ZS RAT

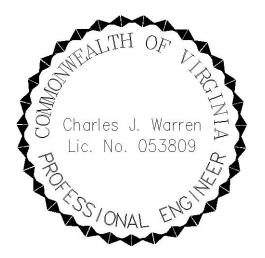
Signature:

Date:

November 1, 2022

Name:

Charles Warren, PE, Project Manager


lenelle Varen

Signature:

Date:

November 1, 2022

Virginia Professional Engineer's Certification:

Table of Contents

Sect	ion				Page					
1.0	Intro	duction.			1					
	1.1	Site Ba	ckground.		1					
	1.2									
	1.3			action System						
2.0	LFG-			itoring Program						
	2.1	Extract	ion Well ar	nd Pump Maintenance	2					
	2.2	Leacha	ite Samplir	ng Procedures	2					
		2.2.1	Bottle Kit	Preparation	3					
		2.2.2		Collection Procedures						
		2.2.3	2.2.3 Sample Documentation							
			2.2.3.1	Sample Bottle Labeling	4					
			2.2.3.2	Field Logs	4					
				Chain-of-Custody						
	2.3	Quality Control Sampling								
	2.4	Laboratory Analysis								
	2.5	Data Validation								
3.0	Repo									
4.0	-	-								

List of Figures

- Figure 1. Topographic Quadrangle Map
- Figure 2. Site Map

List of Appendices

Appendix A Dual Phase LFG-EW Pump Cycle Count Log Daily Field Log Dual Phase LFG-EW Liquid Level Measurement Log Laboratory Analytical/Bottle Kit Request Sheet Dual Phase LFG-EW Sample Collection Log Sample Label Custody Seal Chain-of-Custody Form

1.0 INTRODUCTION

This Monitoring Plan documents procedures and instructions necessary to implement a leachate monitoring program for Dual Phase Landfill Gas Extraction Wells (LFG-EWs) installed within the City of Bristol Integrated Solid Waste Management Facility Solid Waste Permit #588 Landfill. This plan was prepared in response to the Expert Panel Report (Virginia Tech, 2022) prepared by the Expert Panel convened by the Virginia Department of Environmental Quality (VDEQ) to address odor problems and operational concerns at the Facility.

1.1 SITE BACKGROUND

The City of Bristol Integrated Solid Waste Management Facility, which includes Solid Waste Permit Landfills #221, 498, and 588, is owned and operated by the City of Bristol. Solid Waste Permit #588 was issued by VDEQ on February 13, 1996. The Facility is located in the southeastern section of the City of Bristol, approximately 1,000 feet north of the Tennessee border.

The Permit #588 Landfill is constructed within a former rock quarry. Prior to July 2007, the waste was baled prior to its placement in the landfill. In July 2007, the City of Bristol initiated placement of loose waste in the former quarry as the primary method of waste disposal. The Permit #588 Landfill is lined with a primary high-density polyethylene geomembrane and compacted clay liner placed above a secondary compacted clay liner, with a 12-inch witness zone between the two liner systems. An additional linear low-density polyethylene geomembrane liner system is in place on the quarry walls. A gradient control underdrain system is in place beneath the secondary liner for the purpose of controlling the water level to a maximum elevation of 1,557 feet above mean sea level. This gradient control water currently discharges to the Bristol Virginia Utilities (BVU) Authority Sewer.

1.2 PHYSICAL SETTING

The City of Bristol Integrated Solid Waste Management Facility is located on Shakesville Road in the southeastern section of the City of Bristol, approximately 1,000 feet north of the Tennessee border. The location of the Facility is illustrated on a portion of the Bristol, Virginia, United States Geologic Society 7.5-minute topographic quadrangle map presented as **Figure 1**. The land surrounding the Facility is primarily wooded and residential. Residents in the area are served by public water supply.

The Facility encompasses approximately 138 acres. The limits of waste occupied by the Permit #588 Landfill encompasses approximately 20 acres. The base of the quarry covers approximately 5.6 acres. The Permit #588 Landfill is bordered to the east by the Permit #498 Landfill and to the north by intermittent streams which drain into Sinking Creek.

Based on a review of the Bristol, Virginia USGS 7.5-minute topographic quadrangle map, several unnamed tributaries of Sinking Creek are intermittent streams located east of the adjacent Permit No. 498 landfill. Sinking Creek is the nearest permanent water body and is located east/southeast of the adjacent Permit No. 498 facility.

1.3 LANDFILL GAS EXTRACTION SYSTEM

Permit No. 588 was required to have an active LFG collection system operational in Phase I by May 2, 2001. The City previously installed horizontal collectors in Permit No. 588 in stages upon placement of vertical lifts of waste. This ceased when waste reached a depth that allowed the installation of vertical gas collection wells. Additional gas collection lines installed in Landfill No. 588

became operational during July 2010. Three additional vertical gas wells were installed in Permit No. 588 to increase LFG flows in preparation for the landfill gas to energy project. The additional wells became operational in September 2013.

The Landfill Gas to Energy plant began operating in December 2015. The plant is owned and operated by Ingenco, LLC. Subsequent gas collection and control system expansions have occurred in the Permit No. 588 landfill in 2016 and 2017. An additional expansion project at the Permit 588 landfill occurred in the Fall of 2021. During this expansion, 21 new vertical extraction wells were installed along with new header and force main lines. Subsequently, dewatering infrastructure was constructed and dewatering pumps were placed in 19 of the vertical wells.

As of July 2022, there are 52 vertical wells in the gas collection system: 15 in Permit 221 and 37 in Permit 588. Note that an additional six functional collectors located in Permit 221. An additional four, non-functioning wells are located in Permit 498. Several leachate cleanouts and horizontal collectors are also found at the Facility. The layout of the Permit #588 Landfill gas collection system is shown on **Figure 2**.

2.0 LFG-EW LEACHATE MONITORING PROGRAM

Sampling of the leachate in the Dual-Phase LFG-EWs will be conducted on a monthly basis. In addition, extraction pump cycle count data will be recorded on a weekly basis. A sample pump cycle log is included in **Appendix A**. The current list of dual phase LFG-EWs include those shown below and their locations are shown on **Figure 2**. New dual-phase LFG-EWs will be incorporated into this monitoring plan.

EW-49, EW-50, EW-51, EW-52, EW-53, EW-54, EW-55, EW-56, EW-57, EW-58, EW-59, EW-60, EW-61, EW-62, EW-63, EW-64, EW-65 EW-67, and EW-68

2.1 EXTRACTION WELL AND PUMP MAINTENANCE

During each monitoring event, the field technician will visually observe each Dual-Phase LFG-EW for evidence of damage and obstructions. Conditions of the Dual-Phase LFG-EW will be documented. A sample daily field log is included in **Appendix A**. If the well is damaged, a note will be made on the daily field log and the project manager will be alerted so the need for repair or replacement of the well can be assessed. Repair of the well should occur within 30-days of identification of the issue. If this timeframe cannot be met, VDEQ will be notified of an alternate schedule. If the well requires replacement, VDEQ will be notified of the need and schedule for replacement.

In addition, a liquid level will be measured and recorded to assess the presence of liquids within the well if weekly pump cycle count data indicates no leachate has been extracted from the Dual-Phase LFG-EW. A sample liquid level measurement log is included in **Appendix A**. If liquids are found to be present at a level at which extraction should be occurring, a note will be made on the daily field log and the project manager will be alerted so the need for maintenance or replacement of the pump can be assessed. Maintenance or replacement of the pump should occur within 30-days of identification of the issue. If this timeframe cannot be met, VDEQ will be notified of an alternate schedule.

2.2 LEACHATE SAMPLING PROCEDURES

The following subsections outline the procedures for monitoring event preparation and sample collection. Procedures are also provided for field documentation of sample collection.

2.2.1 Bottle Kit Preparation

A sample collection bottle kit will be prepared by the laboratory according to the laboratory analytical/bottle kit request sheet and in accordance with approved sample analysis methods. A sample of the laboratory analytical/bottle kit request sheet is included in **Appendix A**. The sample kit will be stored in clean laboratory-provided coolers for transport to the site.

2.2.2 Sample Collection Procedures

Samples will be collected from the manual ball valve located along the liquids discharge line of the extraction pump at the wellhead as shown on **Exhibit 1**. At the time of sample collection, the following parameters will be measured and recorded: pH, dissolved oxygen, oxidation-reduction potential, temperature, turbidity, and specific conductivity. A sample Dual Phase LFG-EW sample collection log is included in **Appendix A**.

Exhibit 1. Dual-Phase LFG Extraction Wellhead

Samples for laboratory analysis will be collected in new, laboratory-provided sampling containers with the appropriate volume and preservatives needed as specified by the selected analytical method. The sampler will be careful not to displace the preservative from the pre-preserved sample container. Samples will be stored in a clean, iced cooler immediately after sample collection and secured and tracked using chain-of-custody procedures as specified by the contract laboratory.

If a sample is unable to be collected, the liquid level within the well will be measured and recorded to assess the presence of liquids within the well. If liquids are found to be present at a level at which extraction should be occurring, a note will be made on the daily field log and the project manager will be alerted so the need for maintenance or replacement of the pump can be assessed. Maintenance or replacement of the pump can be assessed. Maintenance or replacement of the issue. If this timeframe cannot be met, VDEQ will be notified of an alternate schedule.

2.2.3 Sample Documentation

The following subsections outline the sample documentation procedures. These procedures include sample bottle labeling, field log documentation, and sample chain-of-custody forms.

2.2.3.1 Sample Bottle Labeling

The sample containers will be laboratory certified bottles and properly labeled for identification including the following information. A sample label is included in **Appendix A**.

- o Sample ID
- Date and Time
- Sampler(s)
- Sample Type grab or composite
- Analysis Parameter(s)/Method
- Project Name/Site ID

Preservative

2.2.3.2 Field Logs

As previously indicated, field technicians will maintain field logs documenting information pertaining to field activities. The field notes will be reviewed monthly to verify that the monitoring requirements of this Plan are met and to identify unusual circumstances which may affect the implementation of the Plan.

2.2.3.3 Chain-of-Custody

Sample transport and handling will be controlled to reduce the opportunity of the samples to be tampered with. Chain-of-Custody control for the samples will consist of the following:

- Sample containers will be securely placed in coolers (iced) and will remain in the continuous possession of the field technician until transfer of the samples to the laboratory.
- If the samples leave the possession of the sampling crew, the sample containers or coolers will be individually sealed to reduce the opportunity for disruption/tampering of the samples during transportation. A sample custody seal is included in **Appendix A**.
- Upon delivery to a Virginia Environmental Laboratory Accreditation Program (VELAP) certified laboratory, samples will be given unique laboratory sample numbers and recorded into a logbook indicating the client, well number, and date and time of delivery. The laboratory director or his/her designee will sign the Chain-of-Custody form(s) and formally receive the samples. The field technician and laboratory director will work together to maintain proper refrigeration of the samples.
- The Chain-of-Custody document will contain the following information (see example in **Appendix A**):
 - Date of Collection Client Name Time of Collection **Client Project Name** 0 0 **Client Contact** Type of Container and Preservative 0 0 **Client Address** Number of Containers 0 0 Client Phone/Fax Number/Email Address • Sample Matrix 0

- Sampler(s) Name and Signature
- o Sample ID(s)

- Sample Type Grab or Composite
- Analysis Parameter(s)/Method

2.3 QUALITY CONTROL SAMPLING

Field quality control may involve the collection and analysis trip blanks, to verify that the sample handling processes have not impaired the quality of the samples. Trip blanks are prepared for volatile organic compound analysis via SW-846 Methods 8260. Laboratory personnel fill one of each type of sample bottle with distilled/deionized water and transport them to the site. Trip blanks are prepared immediately prior to the sampling event and transported with the empty bottle kits. Field personnel handle the trip blanks like a sample; they remain un-opened, are transported in the sample cooler, and are returned to the laboratory for analysis. A trip blank is used to indicate potential contamination due to migration of volatile organic compounds from the air on-site or in the sample shipping containers through the septum or around the lid of the sampling vials and into the sample.

2.4 LABORATORY ANALYSIS

The leachate samples will be analyzed for parameters listed in Appendix E of the Expert Panel Report (Virginia Tech, 2022) via wastewater matrix methods, if available. A list of these parameters provided below. Laboratory analysis will be performed by a VELAP certified laboratory. The laboratory's Quality Assurance/Quality Control Manual will be used to maintain the integrity of the data.

- o Ammonia
- Biological Oxygen Demand
- Chemical Oxygen Demand
- Nitrate and Nitrite
- o Total Kjeldahl Nitrogen
- Semi-Volatile Organic Compound: Anthracene
- Total Metals: Arsenic, Barium, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Silver, and Zinc
- Total Recoverable Phenolics
- \circ Volatile Fatty Acids: Acetic Acid, Butyric Acid, Lactic Acid, Propionic Acid, and Pyruvic Acid
- Volatile Organic Compounds: Acetone, Benzene, Ethyl benzene, Methyl ethyl ketone, Tetrahydrofuran, Toluene, and Total Xylenes

Upon receipt by the laboratory, samples, including the blanks, will be assigned a unique laboratory identification number and inspected for integrity and consistency with information entered on the Chain-of-Custody document. The samples will also be tested for proper preservation or, in the case of volatile organic samples, inspected for lack of air bubbles in the sample vials. Deviations from applicable protocol will be noted on the Chain-of-Custody document and laboratory's sample conditions checklist. If possible, missing, broken, or improperly preserved samples will be replaced within 10 working days from the date that the deviation is first noted.

While awaiting analysis, samples will be stored in a secure location under the appropriate method of preservation (i.e. refrigeration). If a method-prescribed holding time is exceeded, the sample will be discarded and replaced. If possible, samples will be replaced within 10 working days from the date that the deviation is first noted.

Sample analyses should be completed within 14 days after receipt by the contract laboratory. The laboratory will alert the project manager if there is to be a delay in analysis. Analytical results will be

reported relative to the limit of quantitation (LOQ). LOQ values are parameter, method, and matrixspecific. Sub-LOQ results will be reported as not detected.

2.5 DATA VALIDATION

Data validation will be performed within 14 days of receipt of the final laboratory's certificate of analysis for each semi-annual monitoring event. Data from each monitoring event are reviewed to identify analytical data that may not represent valid results. Samples with parameter detections less than five times that of the trip blank and/or method/laboratory blank detection but greater than the laboratory's LOQ are flagged with a "B" qualifier. Samples with common lab contaminant parameter (Yacoub, 1996) detections less than 10 times that of the trip blank and/or method/laboratory blank detection but greater than the laboratory laboratory's LOQ are flagged with a "B" qualified detections are considered not validated as the detection may be anomalous to due to sampling, laboratory, or transportation errors.

3.0 REPORTING

Monthly monitoring reports will be submitted to VDEQ by the tenth of the following month. The monthly report will document the following. The report will also include historical pump cycle data and leachate analytical results and may include notifications of well or pump replacement, if needed.

- Weekly pump cycle recordings
- Monthly LFG-EW leachate sample collection and laboratory analyses
- Extraction well maintenance (if any)
- Extraction pump maintenance (if any)

Reporting may be submitted as part of a larger monthly report outlining remediation activities at the Solid Waste Permit #588 landfill or may be submitted as a standalone document.

4.0 **REFERENCES**

United States Environmental Protection Agency. National Functional Guidelines for Organic Superfunds Methods Data Review. January 2017.

United States Environmental Protection Agency. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods Compendium (SW-846). July 2014.

Virginia Tech College of Engineering. Expert Panel Report: Bristol Integrated Solid Waste Management Facility, Bristol, Virginia. April 25, 2022.

Yacoub, Nabil. Common Laboratory Contaminants. ECL User's Manual. Appendix C. July 27, 2016

Figures

- Topographic Quadrangle Map Site Map 1 -2 -

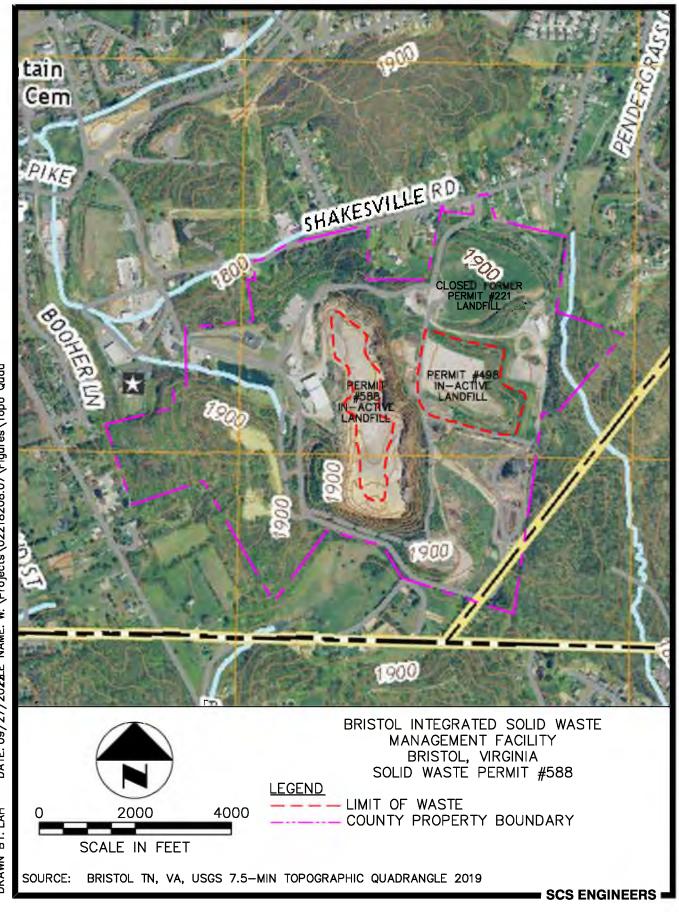
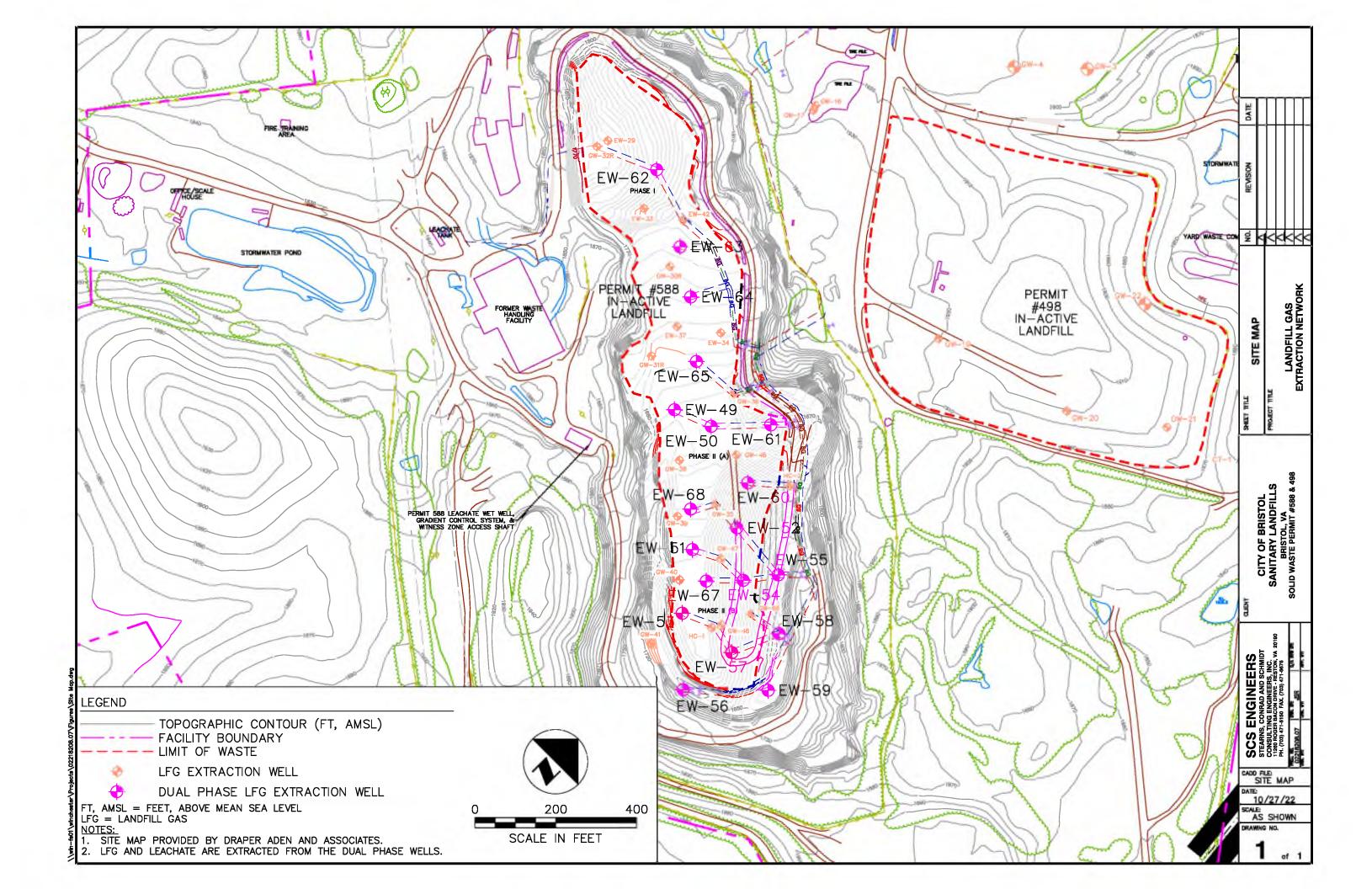



FIGURE 1 - TOPOGRAPHIC QUADRANGLE MAP

DATE: 09/27/2023. NAME: W: \Projects\02218208.07\Figures\Topo Quad DRAWN BY: LAH

Appendix A

Dual Phase LFG-EW Pump Cycle Count Log Daily Field Log Dual Phase LFG-EW Liquid Level Measurement Log Laboratory Analytical/Bottle Kit Request Sheet Dual Phase LFG-EW Sample Collection Log Sample Label Custody Seal Chain-of-Custody Form

Date	Personnel Initials	EW-49	EW-50	EW-51	EW-52
			10		
			6		
		50.11			
		CO			
		701			

Date	Personnel Initials	EW-53	EW-54	EW-55	EW-56
			50.11	10	
			CON		

Date	Personnel Initials	EW-57	EW-58	EW-59	EW-60
				10-	
			50.19		
			CON		
			2		

Date	Personnel Initials	EW-61	EW-62	EW-63	EW-64
			50.119	10	
			GOM		
			20		

Date	Personnel Initials	EW-65	EW-67	EW-68
				e.
		C	o mp	

DAILY FIELD LOG				
Site Name:				
Project Manager:		Field Personnel:		
Date:	Vehicle:	Miles Billed:	Travel Time:	
Weather:				
Labor	Hours	Equipment	Materials	
Work Completed:				
Prepared By:		Review By:		

Loca	tion ID	EW-49	EW-50	EW-51	EW-52
Well Casin	g Depth (ft)	100	93	105	103
Pump D)epth (ft)	90	83	95	93
Date	Personnel Initials		Depth to	Liquid (ft)	
			1 Cr		
			1016		
		CON			
		2			

Locat	ion ID	EW-53	EW-54	EW-55	EW-56
Well Casing	g Depth (ft)	38	85	90	58
Pump D	epth (ft)		75	90	58
Date	Personnel Initials		Depth to	Liquid (ft)	·
				G	
				101	
			661		
			50.11		

Loco	ation ID	EW-57	EW-58	EW-59	EW-60
Well Casi	ng Depth (ft)	100	92	74	98
Pump	Depth (ft)	90	82	64	88
Date	Personnel Initials		Depth to	Liquid (ft)	
				10	
			CON		
			Sam		

Loco	ition ID	EW-61	EW-62	EW-63	EW-64
Well Casir	ng Depth (ft)	102	83	64	123
Pump I	Depth (ft)	92	80	64	113
Date	Personnel Initials		Depth to	Liquid (ft)	
				10	
				6	
			5011		
			CON		
			50.		

Locati	on ID	EW-65	EW-67	EW-68
Well Casing	g Depth (ft)	44	104	78
Pump De	epth (ft)	50	100	68
Date	Personnel Initials		Depth to Liquid (ft)	·
				G
			00	
			6 mil	

Laboratory Analytical/Bottle Kit Request Sheet

Locati	on IDs	Laboratory Parameters
EW-49	EW-59	Ammonia
EW-50	EW-60	Chemical Oxygen Demand
EW-51	EW-61	Biological Oxygen Demand
EW-52	EW-62	Total Kjeldahl Nitrogen
EW-53	EW-63	Semi-Volatile Organic Compound: Anthracene
EW-54	EW-64	Total Metals: Arsenic Barium, Cadmium, Chromium, Copper, Lead, Mercury, Nock 7, selenium, Silver, and Zinc
EW-55	EW-65	Total Recover a le rhenolics
EW-56	EW-67	Toxic, le 'in tor Nitrification
EW-57	EW-	V) 'alle Fatty Acids: Acetic Acid, Butyric Acid, Lactic Acid, Hopionic Acid, and Pyruvic Acid
EW-58		Volatile Organic Compounds: Acetone, Benzene, Ethyl benzene, Methyl ethyl ketone, Tetrahydrofuran, Toluene, and Total Xylenes

Quality Control Sample	Laboratory Parameters
Trip Blank	Volatile Organic Compounds: Acetone, Benzene, Ethyl benzene, Methyl ethyl ketone, Tetrahydrofuran, Toluene, and Total Xylenes

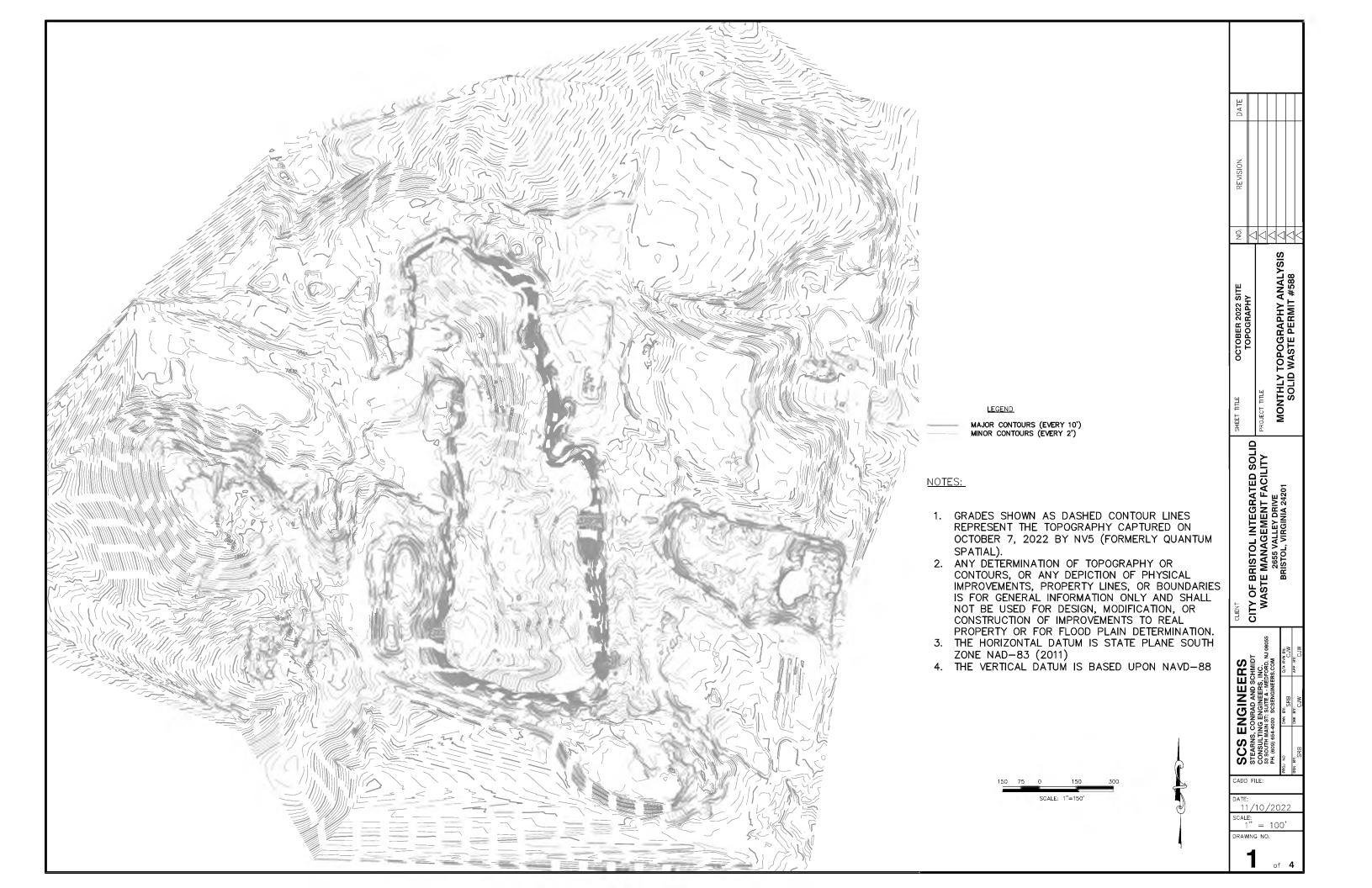
City of Bristol SWP 588 Landfill Dual Phase LFG-EW Sample Collection Log

Location ID	Sample Date	Sample Time	Temperature (°C)	рН (s.u.)	Specific Conductance (uS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU)	Observations
EW-49									
EW-50									
EW-51									
EW-52									
EW-53									
EW-54									
EW-55					1				
EW-56						6			
EW-57									
EW-58				50					
EW-59				20					
EW-60									
EW-61									
EW-62									
EW-63									
EW-64									
EW-65									
EW-67									
EW-68									
Sampler:						Sample	es Shipped By:		
Log Check	ked By:						Laboratory:		

SAMPLE LABEL

ANALYSIS REQUESTED

CUSTODY SEAL


CHAIN-OF-CUSTODY / Analytical Request Document

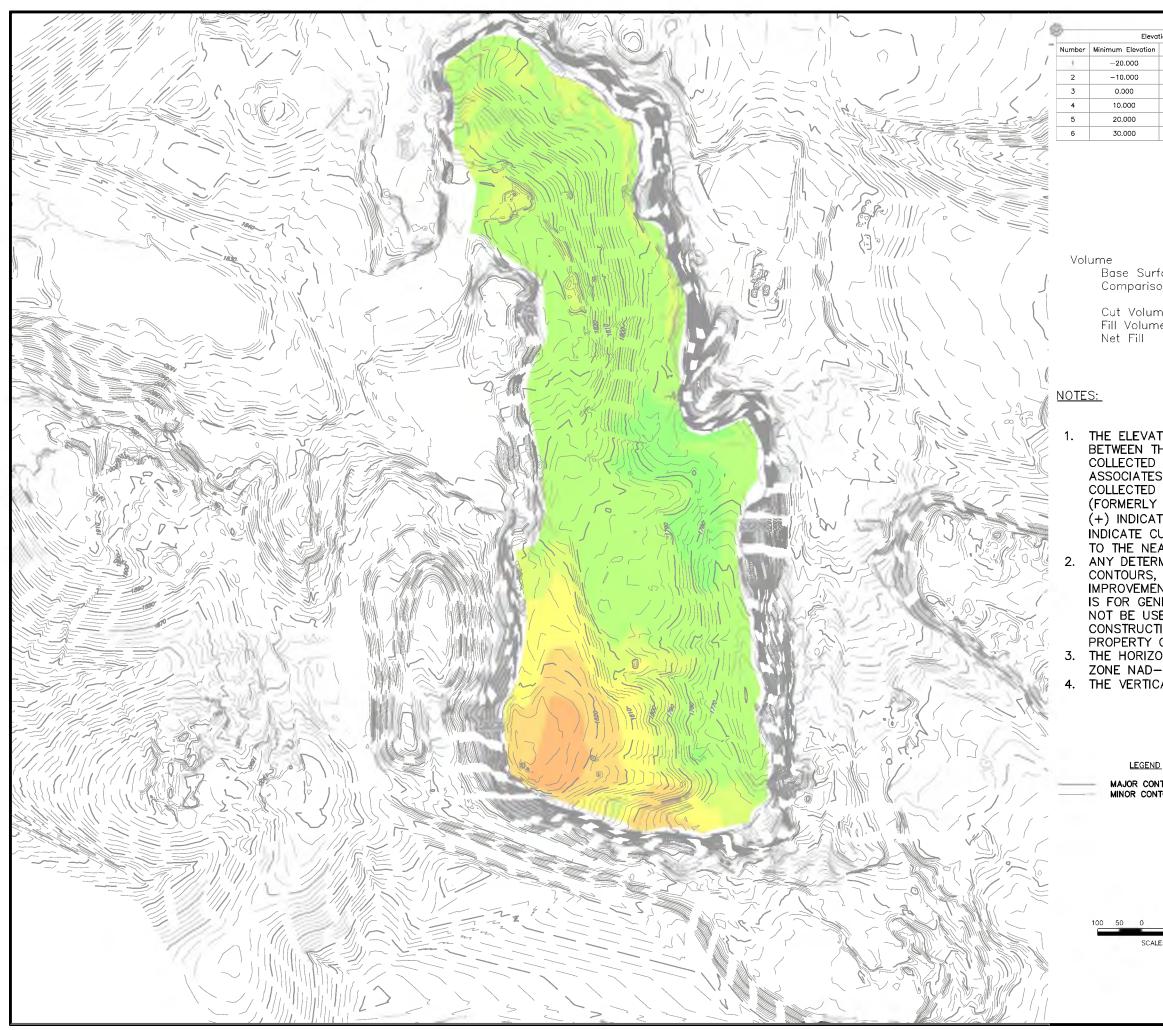
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be complete accurately.

Section	A	Section B						Section C																						
Require	ed Client Information:	Required Project In	form	ation	:				Inv	oice	Info	rma	tion:											Р	age:			0	i	
Compar	ny:	Report To:						Attenti	on:											1										
Address	5:	Сору То:						Company Name:																						
		PN #:						Address:					Re				Regulatory Agency													
Email to):	Purchase Order No.						Pace Q	uote	Ref	eren	ce:																		
Phone:		Client Project ID:						Pace Pr			anage	er:													St	ate /	Locat	ion		
Request	ted Due Date/TAT:	Container Order Nu	mber	:				Pace Pr	ofile	e#:																				
																				Re	quest	ted A	nalysi	s Filt	ered (Y/N)				
		Matrix CODE Drinking Water DW Water WT	codes to left)	AP)		COLLE	ECTED						Pre	serva	atives		<u> </u>	N/X												
	SAMPLE ID One Character per box.	Waste Water WW Product P Soil/Solid SL Oil OL	valid	RAB (ST/	ART	E	۱D	- COLLECTION	S									L									1.47.57	(v1/1)	
ITEM #	(A-Z, O-9/,-) Sample ids must be unique	Oil OL Wipe WP Air AR Other OT Tissue TS	MATRIX CODE (see	SAMPLE TYPE (G=	DATE	TIME	DATE	TIME	SAMPLE TEMP AT (# OF CONTAINERS	Unpreserved	H2SO4	HNO3	HCI	NaOH	Methanol	Other	Analvses Test											Kesidual Chiorine (Y/N)	
1		113500 13	2	S	DATE	TIIVIE	DATE	TIVIE	S	#	\supset	Т	I	Т	ZZ	z 2	0	∢		1								4	<u> </u>	
2													_	_		_			_	-					-					
																-	-		-					-	-					
3			-														_		_	_					_					
4													_			_	-	-	-	-					_	-				
5											ļ	_						-	-				_	-	_					
6			_														_	_	_											
7									6	\mathcal{A}	L	2							_											
8												_																		
9								Th	1	<u> </u>									_											
10			_				CJ!	20.											_											
11							と																							
12																														
13																														
14																														
15																														
	ADDITIONAL COMMENTS	R	ELINO	QUISH	HED BY /	AFFILIA	TION	DAT	E		TIME		AC	CEP	TED I	BY / /	\FFIL	IATI	ON		DAT	E		TIN	1E		SA	AMPLE	CONDITIO	NS
					SAMPLE	R NAME	AND SI	GNATU	RE																			n Ice	aled (act
					PRINT N	lame of !	SAMPLE	R:																			u ⊑	ed or	ły Seć '(Υ/Ν	es Int
SIGNATURE of SAMPLER: DATE Signa						igne	d:							IEMP IN C	Received on lce (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)													

Appendix E

Monthly Topography Analysis

	DATE	
	REVISION	
	°N <	
	OCTOBER 2022 SITE TOPOGRAPHY	MONTHLY TOPOGRAPHY ANALYSIS SOLID WASTE PERMIT #588
SEND.	SHEET TITLE	PROJECT TILE MONTHLY SOLII
CONTOURS (EVERY 10') CONTOURS (EVERY 2') SHOWN AS DASHED CONTOUR LINES ENT THE TOPOGRAPHY CAPTURED ON R 7, 2022 BY NV5 (FORMERLY QUANTUM). TERMINATION OF TOPOGRAPHY OR RS, OR ANY DEPICTION OF PHYSICAL MENTS, PROPERTY LINES, OR BOUNDARIES GENERAL INFORMATION ONLY AND SHALL USED FOR DESIGN, MODIFICATION, OR JCTION OF IMPROVEMENTS TO REAL TY OR FOR FLOOD PLAIN DETERMINATION. RIZONTAL DATUM IS STATE PLANE SOUTH AD-83 (2011) RTICAL DATUM IS BASED UPON NAVD-88		UNDER DE
100 50 0 100 200 SCALE: 1"=100'	CADD F	FILE: /10/2022


LEGEND MAJOR CONTO MINOR CONTO

NOTES:

- GRADES SHOT THE PERMIT TOPOGRAPHY PROVIDED BY
 ANY DETERMI CONTOURS, C IMPROVEMENT IS FOR GENEL NOT BE USEL CONSTRUCTIC PROPERTY OF
 THE HORIZON ZONE NAD-8
 THE VERTICAL

100

	DATE					
	REVISION					
	NO	∇	\triangleleft		\square	<
	SHEET TITE JIINE 2021 ANDEIL TOBOGBABHY		PROJECT TITLE	MONTHLY TOPOGPABHY ANALYSIS	SOLID WASTE PERMIT #588	
TOURS (EVERY 10') TOURS (EVERY 2') OWN AS CONTOUR LINES ONLY WITHIN 588 BOUNDARY REPRESENT THE IY CAPTURED ON JUNE 15, 2021 AS 3Y DRAPER ADEN ASSOCIATES. MINATION OF TOPOGRAPHY OR OR ANY DEPICTION OF PHYSICAL NTS, PROPERTY LINES, OR BOUNDARIES IERAL INFORMATION ONLY AND SHALL ED FOR DESIGN, MODIFICATION, OR 10N OF IMPROVEMENTS TO REAL	CLIENT	CITY OF BRISTOL INTEGRATED SOLID	WASTE MANAGEMENT FACILITY	2655 VALLEY DRIVE	BRISTOL, VIRGINIA 24201	
OR FOR FLOOD PLAIN DETERMINATION. ONTAL DATUM IS STATE PLANE SOUTH -83 (2011) AL DATUM IS BASED UPON NAVD-88	SCS ENGINEERS		CONSULTING ENGINEERS, INC. 53 SOUTH MAIN ST: SUITE A - MEDFORD, NJ 08055	PH. (609) 654-4000 SCSENGINEERS.COM	PROJ NO DVAN BY Q/A RVW BY DSU BY CHK BY APP BY DSU BY CHK BY APP BY	SRB CJW
50 0 100 200 SCALE: 1"=100'	DATE: 11 SCAL	: /1 E: 1"	0/ =1	00'	22	
				of	4	

		_				_
eva on	tions Table Maximum Elevation Color					
	-10.000					
	0.000					
	10.000 20.000					
	30.000	DATE				
	40.000					
		REVISION				
		REV				
		0 N			1/	
	face LF 210615 on Surface TOPO - OCT 2022			11	<u> 1</u>	
50	on surface for 0 - Oct 2022			ġ	20	
	ne 102074.96 Cu. Yd.		5		ž	
m	ne 120703.02 Cu. Yd. 18628.06 Cu. Yd.				#55 #	
	10020.00 00. 10.		51	2	וֹיַב	
			<u>ا</u>	Ģ	7 Å	
			5	ģ	2 d 5 m	
			3	Ż	MUNTHLY TUPUGRAPHY ANALYSIS SOLID WASTE PERMIT #588	
		ļ	í	Č	₽₹	
	TION CHANGES ARE CALCULATED				29	
	HE AREIAL TOPOGRAPHY DATA ON JUNE 15, 2021 BY DRAPER ADEN			-	SOL	
	S AND THE AERIAL TOPOGRAPHY DATA				5	
D	ON OCTOBER 7, 2022 BY NV5	SHEET TITLE			Σ	
	QUANTUM SPACIAL). POSITIVE VALUE	-				
	TES FILL AND NEGATIVE VALUES (–) UT (SETTLEMENT).VALUES ARE ROUNDED		GRATED SOLID	~		
	AREST FOOT.		Š	Ę		
R	MINATION OF TOPOGRAPHY OR		빝		5	
	OR ANY DEPICTION OF PHYSICAL		₹ H	IENT FC	242	
	NTS, PROPERTY LINES, OR BOUNDARIES IERAL INFORMATION ONLY AND SHALL		БП		۸I	
	ED FOR DESIGN, MODIFICATION, OR		Ę	Щ Ц	RGII	
	TION OF IMPROVEMENTS TO REAL		5	MANAGEME 2655 VALLEY D	_ ۲	
	OR FOR FLOOD PLAIN DETERMINATION. ONTAL DATUM IS STATE PLANE SOUTH		STO		101	
	-83 (2011)		E S	≤ ⊼ Щ	BRISTOL, VIRGINI	
	CAL DATUM IS BASED UPON NAVD-88		CITY OF BRISTOL INTE	WASTE MANAGEMENT FCILITY 2655 VALLEY DRIVE	_	
		Ļ	7	Š		
		CLIENT	5			
				ц		
'NI F				53 SOUTH MAIN ST: SUITE A - MEDFORD, NJ 08055 PH. (609) 654-4000 SCSENGINEERS.COM	λ M M	CJW
		0	VIIDT ,	SOM N.	Q/A RVW BY CJW	O
	ITOURS (EVERY 10') TOURS (EVERY 2')	SCS ENGINEERS	STEARNS, CONRAD AND SCHMIDT	52000000000000000000000000000000000000	à	
		🗒	VND (
			AD A	SUITE	er SRB	CJW
		ž	NOC NE	N ST: 1000	NMO	5
			NS, C	H MAI 654-4	05	
		ပိ	TEAR	SOUT (609)	8208	SRB
		v	ភេទ	5 8 E	PROJ NO 02218208 05	
	100 200	CADE	FILE	:	1 1	
		DATE				-
AL	E: 1"-100'	11 SCAL		5/20)22	
	Ĭ		1"=	=100	,	
		DRAV	ING	NO.		
	٦		Δ			
				01	f 4	

SCS ENGINEERS

Transmittal

Midlothian, VA

PROJECT:	City Bristol, LF Engineering, ISWMF, VA 02218208.05	DATE:	11/10/2022
SUBJECT:	Monthly Reports SWP# 588, 498, & 221	TRANSMITTAL ID:	00002
PURPOSE:	For your review and comment	VIA:	Info Exchange

FROM

NAME	COMPANY	EMAIL	PHONE
Charles Warren Midlothian, VA	SCS Engineers	CWarren@scsengineers.com	+1-804-486-1903

ТО

NAME	COMPANY	EMAIL	PHONE
Jonathan Chapman 355-A Deadmore Street Abingdon VA 24210 United States	Virginia Department of Environmental Quality	Jonathan.chapman@deq.virg inia.gov	

REMARKS: Jonathan,

The Monthly Reports of the Solid Waste Permit #588, 498, and 221 landfills can be downloaded using the links below. Let us know if you have questions about the contents of these reports.

Regards, Charles

Charles J. Warren, PE¹ Project Manager SCS Engineers 15521 Midlothian Turnpike, Suite 305 Midlothian, VA 23113 USA 804-486-1903 (W) cwarren@scsengineers.com

Driven by Client Success

www.scsengineers.com ¹ Registered in VA DESCRIPTION OF CONTENTS

QTY	DATED	TITLE	NOTES
1	11/10/2022	October Compliance Report - SWP 588.pdf	
1	11/10/2022	October Compliance Report - SWP 498.pdf	
1	11/10/2022	October Compliance Report - SWP 221.pdf	

COPIES:

Bob Dick Brandon King Charles Warren Crystal Bazyk Jacob Chandler Jeffery Hurst Jennifer Robb Tom Lock Stacy Bowers Randall Eads Michael Martin Joey Lamie	 (SCS Engineers) (SCS Engineers) (SCS Engineers) (Virginia Department of Environmental Quality) (Bristol, VA, City of) (Virginia Department of Environmental Quality) (SCS Engineers) (SCS Field Services) (Virginia Department of Environmental Quality) (City of Bristol) (Bristol, VA, City of) (City of Bristol)
Joey Lamie Robert Gardner	(City of Bristol) (SCS Engineers)